DSpace Repository

Analysis and Application of Semantic Networks in Education

Show simple item record

dc.contributor.author Soloviev, Vladimir
dc.contributor.author Kiv, Arnold
dc.contributor.author Koycheva, Tetyana
dc.contributor.author Kolesnykova, Katrina
dc.contributor.author Соловйов, Володимир Миколайович
dc.contributor.author Ків, Арнольд Юхимович
dc.contributor.author Койчева, Тетяна Іванівна
dc.contributor.author Колесникова, Катріна
dc.date.accessioned 2023-01-04T06:28:03Z
dc.date.available 2023-01-04T06:28:03Z
dc.date.issued 2022
dc.identifier.citation Kiv, A.; Soloviev, V.; Tarasova, E.; Koycheva, T. and Kolesnykova, K. (2022). Analysis and Application of Semantic Networks in Education. In Proceedings of the 1st Symposium on Advances in Educational Technology - Volume 1: AET, ISBN 978-989-758-558-6, pages 416-431. DOI: 10.5220/0010924800003364 uk
dc.identifier.uri http://elibrary.kdpu.edu.ua/xmlui/handle/123456789/7021
dc.identifier.uri https://doi.org/10.5220/0010924800003364
dc.description Ahromeeva, T. S., Malinetskiy, G. G., and Posashkov, S. A. (2013). Innovacionnye samorazvivajushhiesja sredy v kontekste sinergetiki i teorii refleksivnogo upravlenija. In Sbornik materialov IX Mezhdunarodnogo simpoziuma “Refleksivnye processy i upravlenie”, pages 171–182. Moscow. http://www.reflexion. ru/Library/Sbornic2013.pdf. Arshinov, V. I., Budanov, V. G., Lepskiy, V. E., and Malinetskiy, G. G. (2011). Samoorganizacija, kognitivnyj bar’er, gumanitarnye tehnologii. Doklad na sobranii nanotehnologicheskogo obschestva Rossii. http://www.ntsr.info/science/library/3828.htm. Babkin, E. A., Kozyrev, O. R., and Kurkina, I. V. (2006). Principy i algoritmy iskusstvennogo intellekta. NGTU, N. Novgorod. https://www.hse.ru/ data/570/907/1224/Publ9 Kozyrev.pdf. Barabasi, A.-L. (2012). Luck or reason. ´ Nature, 489(7417):507–508. Barabasi, A.-L. (2016). ´ Network Science. Cambridge University Press, Cambridge. http://www.book2look.com/books/9781107076266. Baronchelli, A., Ferrer-i-Cancho, R., Pastor-Satorras, R., Chater, N., and Christiansen, M. H. (2013). Networks in cognitive science. Trends in Cognitive Sciences, 17(7):348–360. Barrat, A. (2008). Dynamical processes on complex networks. Cambridge University Press, Cambridge. Beckage, N. M. and Colunga, E. (2015). Language networks as models of cognition: Understanding cognition through language. In Towards a Theoretical Framework for Analyzing Complex Linguistic Networks, page 3–28. Springer, Berlin. Boca, G. D. and Mukaj, L. (2016). Barriers in sustainable knowledge management model in education. Economics and Applied Informatics, 3:19– 28. http://www.eia.feaa.ugal.ro/images/eia/2016 3/ BocaMukaj.pdf. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., and Hwang, D.-U. (2006). Complex networks: Structure and dynamics. Physics Reports, 424(4):175–308. Borge-Holthoefer, J. and Arenas, A. (2010). Semantic networks: Structure and dynamics. Entropy, 12(5):1264– 1302. https://www.mdpi.com/1099-4300/12/5/1264. Byrch, C., Kearins, K., Milne, M., and Morgan, R. (2015). Seeds of hope? Exploring business actors’ diverse understandings of sustainable development. Accounting, Auditing & Accountability Journal, 28(5):671–705. Carrington, P. J., Scott, J., and Wasserman, S., editors (2015). Models and methods in social network analysis. Cambridge University Press, Cambridge. Chekmarev, V. V. (2014). Myshlenie budushhego: mezhdisciplinarnoe obrazovanie kak uslovie konkurentosposobnosti. Teoreticheskaya ekonomika, 3:36–42. https://www.ystu.ru/3 (21) 2014.pdf. Cheramangalath, U., Nasre, R., and Srikant, Y. (2020). Distributed Graph Analytics: Programming, Languages, and Their Compilation. Springer. https: //www.springer.com/gp/book/9783030418854. Czerkawski, B. O. (2014). The semantic web in teacher education. The Turkish Online Journal of Educational Technology, 13(4):144–147. http://www.tojet.net/articles/v13i4/13416.pdf. Dunn, J. D. (2013). Utilization of semantic networks in the teaching of vocabulary. Language Education in Asia, 4(2):175–182. http://www.leia.org/LEiA/LEiA Eilks, I. (2015). Science education and education for sustainable development – justifications, models, practices and perspectives. Eurasia Journal of Mathematics, Science and Technology Education, 11(1):149– 158. Fazey, I., Evely, A. C., Reed, M. S., Stringer, L. C., Kruijsen, J., White, P. C. L., Newsham, A., Jin, L., Cortazzi, M., Phillipson, J., Blackstock, K., Entwistle, N., Sheate, W., Armstrong, F., Blackmore, C., Fazey, J., Ingram, J., Gregson, J., Lowe, P., Morton, S., and Trevitt, C. (2013). Knowledge exchange: a review and research agenda for environmental management. Environmental Conservation, 40:19–36. Fruchterman, T. M. J. and Reingold, E. M. (1991). Graph drawing by force-directed placement. Software – Practice and Experience, 21(11):1129–1164. Gephi (2020a). Network Visualization and Analysis with Gephi. https://noduslabs.com/courses/networkvisualization-and-analysis-with-gephi/units/section1-quick-introduction-to-network-analysis. Gephi (2020b). The Open Graph Viz Platform. https://gephi.org. Google (2021). Google trends. https://trends.google.com. Grosseck, G., Tiru, L. G., and Bran, R. A. (2019). Education for sustainable development: Evolution and perspectives: A bibliometric review of research, 1992–2018. Sustainability, 11(21):6136. Holfelder, A.-K. (2019). Towards a sustainable future with education? Sustainable science, 14:943–952. Hu, Y. (2005). Efficient, high-quality force-directed graph drawing. The Mathematica Journal, 10(1):37–71. http://asus.myds.me:6543/paper/nw/Efficient, iGraph (2021). iGraph and iGraph Demo. https:// sourceforge.net/projects/igraph-and-igraph-demo/. Jones, M. N., editor (2016). Big Data in Cognitive Science. Routledge. Jurgena, I. and Cedere, D. (2018). The prospects of transdisciplinary approach to promote learners’ cognitive interest in natural science for sustainable development. Journal of Teacher Education for Sustainability, 20(1):5–19. Kiv, A., Bodnar, L., Sedov, E., Britavska, O., Yaremchuk, N., and Yakovleva, M. (2014). Quantitative analysis of translation texts. Computer Modelling & New Technologies, 18(12):260–263. http://www.cmnt.lv/ upload-files/ns 39crt 043 1.pdf. Kovalchuk, M. V. (2011). Konvergencija nauk i tehnologij – proryv v budushhee. Rossiyskie nanotehnologii, 6(1- 2):13–23. http://nrcki.ru/files/pdf/1461850844.pdf. Kumar, M. and Agrawal, S. (2011). Applying knowledge management practices in higher education system. http://pioneerjournal.in/files.php?force&file= Applying Knowledge Management Practices In Higher Education System 584179770.doc. Leicht, A., Heiss, J., and Byun, W. J., editors (2018). Issues and trends in Education for Sustainable Development. United Nations Educational Scientific and Cultural Organization. France. https://europa.eu/capacity4dev/ file/69206/download?token=r 65VVK . Liu, X. F., Tse, C. K., and Small, M. (2010). Complex network structure of musical compositions: Algorithmic generation of appealing music. Physica A, 389:126–132. Malineckiy, G. G. (2013). Teorija samoorganizacii. na poroge iv paradigmy. Kompyuternye issledovaniya i modelirovanie, 5(3):315–366. http://crm-en.ics.org. ru/uploads/crmissues/crm 2013 3/13301.pdf. Martin, S., Brown, W. M., Klavans, R., and Boyack, K. W. (2011). OpenOrd: an open-source toolbox for large graph layout. In Wong, P. C., Park, J., Hao, M. C., Chen, C., Borner, K., Kao, D. L., and Roberts, J. C., ¨ editors, Visualization and Data Analysis 2011, volume 7868, pages 45 – 55. International Society for Optics and Photonics, SPIE. Martins, V. W. B., Rampasso, I. S., Anholon, R., Quelhas, O. L. G., Leal, F. W., and Clean, J. (2019). Knowledge management in the context of sustainability: Literature review and opportunities for future research. Journal of Cleaner Production, 229:489–500. Masterman, M. (1961). Semantic message detection for machine translation, using an interlingua. In International Conference on Machine Translation of Languages and Applied Language Analysis, National Physical Laboratory, Teddington, UK, 5-8 September 1961, pages 437–475, Teddington. H.M. Stationery Office. http://www.mt-archive.info/NPL1961-Masterman.pdf. Morioka, T., Saito, O., and Yabar, H. (2006). The pathway to a sustainable industrial society – initiative of the research institute for sustainability science (riss) at osaka university. Sustainability Science, 1(1):65–82. NetworkX (2021). NetworkX. https://networkx.org. Sanguankaew, P. and Ractham, V. V. (2019). Bibliometric review of research on knowledge management and sustainability, 1994–2018. Sustainability, 11(16):4388–4402. Semerikov, S., Teplytskyi, I., Yechkalo, Y., and Kiv, A. (2018). Computer simulation of neural networks using spreadsheets: The dawn of the age of Camelot. CEUR Workshop Proceedings, 2257:122–147. Shakespeare, W. (1985). Hamlet, Prince of Denmark. Selected translations. Raduga, Moscow. Shults, V. L. and Tsyiganov, V. V. (2010). Modeli i mehanizmyi federalnoy, regionalnoy, munitsipalnoy i korporativnoy bezopasnosti. Nauka, Moscow. http://opac.hse.ru/absopac/app/webroot/index.php? url=/notices/index/IdNotice:231276/Source:default. Sirenko, S. N. (2013). Rasshirenie predmetnogo polja uchebnoj discipliny na osnove idej mezhdisciplinarnoj integracii (na primere discipliny “Osnovy informacionnyh tehnologij”). Innovatsionnyie obrazovatelnyie tehnologii, 3:19–27. http://media.miu.by/files/ store/items/iot/35/iot 3 2013 3.pdf. Sirenko, S. N. (2014). Obrazovanie kak institucional’nyj mehanizm perehoda k ustojchivomu razvitiju. Vyisheyshaya shkola, 3:47–52. http://nihe.bsu.by/images/2014/3 2014.pdf. SNAP (2021). Stanford Network Analysis Project. http://snap.stanford.edu. Sole, R. V., Corominas-Murtra, B., Valverde, S., and Steels, ´ L. (2010). Language networks: Their structure, function, and evolution. Complexity, 15(6):20–26. https:// onlinelibrary.wiley.com/doi/abs/10.1002/cplx.20305. Solodova, E. A. and Malinetskiy, G. G. (2013). Novyie modeli v sisteme obrazovaniya: sinergeticheskiy podhod. LIBROKOM, Moscow. http://www.tnu.in.ua/ study/books/entry-1398936.html. Soloviev, V., Moiseienko, N., and Tarasova, O. (2020). Complexity theory and dynamic characteristics of cognitive processes. Communications in Computer and Information Science, 1175 CCIS:231–253. Soloviev, V. N., Serdyuk, O. A., and Danylchuk, H. B. (2016). Modelyuvannya skladnih system. O.Yu. Vovchok, Cherkasi. http://elibrary.kdpu.edu.ua/xmlui/ handle/0564/1065. Sporns, O. (2011). Networks of the brain. The MIT Press, Cambridge. http://www.cs.cmu.edu/∼saketn/ files/Sporns Book.pdf. Teng, C.-Y., Lin, Y.-R., and Adamic, L. A. (2012). Recipe recommendation using ingredient networks. Tolman, E. C. (1948). Cognitive maps in rats and men. Psychological Review, 55(4):189–208. Vlasenko, K. V., Lovianova, I. V., Armash, T. S., Sitak, I. V., and Kovalenko, D. A. (2021). A competency-based approach to the systematization of mathematical problems in a specialized school. Journal of Physics: Conference Series, 1946(1):012003. Wikipedia (2021). Wikipedia. https://www.wikipedia.org. Wiktionary Statistics (2020). https://en.wiktionary.org/ wiki/Special:Statistics. Wulff, D. U., De Deyne, S., Jones, M. N., Mata, R., and The Aging Lexicon Consortium (2019). New perspectives on the aging lexicon. Trends in Cognitive Sciences, 23(8):686–698. Xie, Z., Duan, X., Ouyang, Z., and P, Z. (2015). Quantitative analysis of the interdisciplinarity of applied mathematics. Yevin, I. A. (2010). Vvedenie v teoriju slozhnyh setej. Kompyuternye issledovaniya i modelirovanie, 2(2):121–141. http://crm-en.ics.org.ru/ uploads/crmissues/crm2010-2-2/crm10201.pdf. Zesch, T., Muller, C., and Gurevych, I. (2008). Using Wiktionary for computing semantic relatedness. In Proceedings of the twenty-third innovative applications of artificial intelligence conference, pages 861–867. AAAI Press. https://www.aaai.org/Papers/AAAI/2008/AAAI08- 137.pdf.
dc.description.abstract The basis of any discipline is a set of didactic units. The task of the educational process management apparatus is to ensure compliance with the requirements for the order of the didactic units and their full implementation within the framework of the formation of the curriculum while minimizing its duration. A significant difficulty is the logical linking of didactic units with each other, since it is impossible to break the logic of presentation of materials of one discipline and there is a relationship between didactic units of different disciplines. The paper compares the topological characteristics of the concept graphs related to various disciplines. We develop the algorithm to implement the subject area model in the form of a semantic knowledge network. 125 concepts are analyzed that provide optimal mastering disciplines and establish the connection between them. A survey of the dynamics of the popularity of the term “network science” from 2004 to 2020 using Google Trends showed a steady trend of user interest. On average, 80 requests are executed (calculated in arbitrary units), with the largest volume of requests being 100. uk
dc.language.iso en uk
dc.publisher SCITEPRESS uk
dc.relation.ispartofseries AET 2020;416
dc.subject analysis and application of semantic networks in education uk
dc.subject semantic knowledge network uk
dc.subject course concept
dc.subject topic adjacency matrix
dc.subject Gephi
dc.title Analysis and Application of Semantic Networks in Education uk
dc.type Article uk


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account

Statistics