dc.description |
[1] I. Prigogine, From Being to Becoming: Time and Complexity in the Physical Sciences, W. H. Freeman, 1980.
[2] M. Costa, A. L. Goldberger, C.-K. Peng, Multiscale entropy analysis of biological signals, Phys. Rev. E 71 (2005) 021906. URL: https://link.aps.org/doi/10.1103/PhysRevE.71.021906. doi: 10.1103/PhysRevE.71.021906 .
[3] M. Costa, C.-K. Peng, A. Goldberger, Multiscale analysis of heart rate dynamics: Entropy and time irreversibility measures, Cardiovascular Engineering 8 (2008) 88–93.
[4] J. Donges, R. Donner, J. Kurths, Testing time series irreversibility using complex network methods, EPL 102 (2013) 10004.
[5] M. Zanin, A. Rodríguez-González, E. Menasalvas Ruiz, D. Papo, Assessing time series reversibility through permutation patterns, Entropy 20 (2018). doi: 10.3390/e20090665 .
[6] R. Flanagan, L. Lacasa, Irreversibility of financial time series: A graph-theoretical approach, Phys. Lett. A 380 (2016) 1689–1697. doi: 10.1016/j.physleta.2016.03.011 .
[7] A. Puglisi, D. Villamaina, Irreversible effects of memory, EPL 88 (2009) 30004. doi: 10.1209/0295-5075/88/30004 .
[8] A. Bielinskyi, S. Hushko, A. Matviychuk, O. Serdyuk, S. Semerikov, V. Soloviev, The lack of reversibility during financial crisis and its identification, SHS Web of Conferences 107 (2021) 03002. doi: 10.1051/shsconf/202110703002 .
[9] C. S. Daw, C. E. A. Finney, M. B. Kennel, Symbolic approach for measuring temporal “irreversibility”, Phys. Rev. E 62 (2000) 1912–1921. URL: https://link.aps.org/doi/10.1103/PhysRevE.62.1912. doi: 10.1103/PhysRevE.62.1912 .
[10] C. Diks, J. van Houwelingen, F. Takens, J. DeGoede, Reversibility as a criterion for discriminating time series, Phys. Lett. A 201 (1995) 221 – 228. doi: 10.1016/0375-9601(95)00239-Y .
[11] P. Guzik, J. Piskorski, T. Krauze, A. Wykretowicz, H. Wysocki, Heart rate asymmetry by Poincaré plots of RR intervals, Biomedizinische Technik. Biomedical engineering 51 (2006) 272–275. doi: 10.1515/BMT.2006.054 .
[12] M. B. Kennel, Testing time symmetry in time series using data compression dictionaries, Phys. Rev. E 69 (2004) 056208. URL: https://link.aps.org/doi/10.1103/PhysRevE.69.056208.doi: 10.1103/PhysRevE.69.056208 .
[13] L. Lacasa, A. Nuñez, E. Roldán, J. Parrondo, B. Luque, Time series irreversibility: a visibility graph approach, Eur. Phys. J. B 85 (2012) 217. doi: 10.1140/epjb/e2012-20809-8 .
[14] A. Porta, S. Guzzetti, N. Montano, T. Gnecchi-Ruscone, R. Furlan, A. Malliani, Time reversibility in short-term heart period variability, in: 2006 Computers in Cardiology, volume 2006, IEEE, 2006, pp. 77–80.
[15] V. Soloviev, V. Solovieva, A. Tuliakova, Visibility graphs and precursors of stock crashes, Neuro-Fuzzy Modeling Techniques in Economics 8 (2019) 3–29. doi: 10.33111/nfmte.2019.003 .
[16] V. Soloviev, V. Solovieva, A. Tuliakova, A. Hostryk, L. Pichl, Complex networks theory and precursors of financial crashes, CEUR Workshop Proceedings 2713 (2020) 53–67.
[17] V. Soloviev, A. Bielinskyi, O. Serdyuk, V. Solovieva, S. Semerikov, Lyapunov exponents as indicators of the stock market crashes, CEUR Workshop Proceedings 2732 (2020) 455–470.
[18] A. Bielinskyi, S. Semerikov, V. Solovieva, V. Soloviev, Levy’s stable distribution for stock crash detecting, SHS Web of Conferences 65 (2019) 06006. doi: 10.1051/shsconf/20196506006 .
[19] V. Soloviev, A. Bielinskyi, V. Solovieva, Entropy analysis of crisis phenomena for DJIA index, CEUR Workshop Proceedings 2393 (2019) 434–449.
[20] V. N. Soloviev, A. Belinskiy, Complex systems theory and crashes of cryptocurrency market, Communications in Computer and Information Science 1007 (2019) 276–297. doi: 10.1007/978-3-030-13929-2_14 .
[21] V. N. Soloviev, S. P. Yevtushenko, V. V. Batareyev, Comparative analysis of the cryptocurrency and the stock markets using the Random Matrix Theory, CEUR Workshop Proceedings 2546 (2019) 87–100.
[22] V. Soloviev, A. Belinskij, Methods of nonlinear dynamics and the construction of cryptocurrency crisis phenomena precursors, CEUR Workshop Proceedings 2104 (2018) 116–127.
[23] A. O. Bielinskyi, I. Khvostina, A. Mamanazarov, A. Matviychuk, S. Semerikov, O. Serdyuk, V. Solovieva, V. N. Soloviev, Predictors of oil shocks. Econophysical approach in environmental science, IOP Conference Series: Earth and Environmental Science 628 (2021) 012019. doi: 10.1088/1755-1315/628/1/012019 .
[24] V. N. Soloviev, A. O. Bielinskyi, N. A. Kharadzjan, Coverage of the coronavirus pandemic through entropy measures, CEUR Workshop Proceedings 2832 (2020) 24–42.
[25] M. Costa, A. L. Goldberger, C.-K. Peng, Broken asymmetry of the human heartbeat: Loss of time irreversibility in aging and disease, Phys. Rev. Lett. 95 (2005) 198102. URL: https://link.aps.org/doi/10.1103/PhysRevLett.95.198102. doi: 10.1103/PhysRevLett.95.198102 .
[26] L. Lacasa, B. Luque, F. Ballesteros, J. Luque, J. C. Nuño, From time series to complex networks: The visibility graph, Proceedings of the National Academy of Sciences 105 (2008) 4972. doi: 10.1073/pnas.0709247105 .
[27] B. Luque, L. Lacasa, F. Ballesteros, J. Luque, Horizontal visibility graphs: Exact results for random time series, Physical Rev. E 80 (2009) 046103. doi: 10.1103/PhysRevE.80.046103 .
[28] M. E. J. Newman, The structure and function of complex networks, SIAM Rev. 45 (2003) 167–256. doi: 10.1137/s003614450342480 .
[29] D. Jou, J. Casas-Vázquez, G. Lebon, Extended irreversible thermodynamics, Reports on Progress in Physics 51 (1999) 1105. doi: 10.1088/0034- 4885/51/8/002 .
[30] C. Bandt, B. Pompe, Permutation entropy: A natural complexity measure for time series, Phys. Rev. Lett. 88 (2002) 174102. URL: https://link.aps.org/doi/10.1103/PhysRevLett.88.174102. doi: 10.1103/PhysRevLett.88.174102 .
[31] M. Zanin, L. Zunino, O. A. Rosso, D. Papo, Permutation entropy and its main biomedical and econophysics applications: A review, Entropy 14 (2012) 1553–1577. URL: https://www.mdpi.com/1099-4300/14/8/1553. doi: 10.3390/e14081553 . |
uk |