dc.description |
[1] J. Lonski, Coronavirus may be a black swan like no
other, https://www.moodysanalytics.com/-/media/article/2020/
weekly-market-outlook-coronavirus-may-be-black-swan-like-no-other.pdf?source=
news_body_link, 2020.
[2] T. Fetzer, L. Hensel, J. Hermle, C. Roth, Coronavirus perceptions and economic anxiety,
The Review of Economics and Statistics (2020) 1–36. doi:10.1162/rest_a_00946.
[3] M. Feldkircher, F. Huber, M. Pfarrhofer, Measuring the effectiveness of us monetary policy
during the covid-19 recession, 2020. arXiv:2007.15419.
[4] R. Cerqueti, V. Ficcadenti, Anxiety for the pandemic and trust in financial markets, 2020.
arXiv:2008.01649.
[5] P. F. Procacci, C. E. Phelan, T. Aste, Market structure dynamics during covid-19 outbreak,
2020. arXiv:2003.10922.
[6] A. A. Toda, Susceptible-infected-recovered (sir) dynamics of covid-19 and economic impact, 2020. arXiv:2003.11221.
[7] R. Anderson, J. Heesterbeek, D. Klinkenberg, T. Hollingsworth, Comment how will
country-based mitigation measures influence the course of the covid-19 epidemic?, The
Lancet 395 (2020) 921–1010. doi:10.1016/S0140-6736(20)30567-5.
[8] B. M. Pavlyshenko, Regression approach for modeling covid-19 spread and its impact on
stock market, 2020. arXiv:2004.01489.
[9] M. Costola, M. Iacopini, C. R. M. A. Santagiustina, Public concern and the financial markets during the covid-19 outbreak, 2020. arXiv:2005.06796.
[10] K. Arias-Calluari, F. Alonso-Marroquin, M. Nattagh-Najafi, M. Harré, Methods for forecasting the effect of exogenous risk on stock markets, 2020. arXiv:2005.03969.
[11] M. Garcin, J. Klein, S. Laaribi, Estimation of time-varying kernel densities and chronology
of the impact of COVID-19 on financial markets, Working Papers hal-02901988, HAL,
2020. URL: https://ideas.repec.org/p/hal/wpaper/hal-02901988.html.
[12] A. Ammy-Driss, M. Garcin, Efficiency of the financial markets during the COVID-19 crisis: time-varying parameters of fractional stable dynamics, Working Papers hal-02903655,
HAL, 2020. URL: https://ideas.repec.org/p/hal/wpaper/hal-02903655.html. [13] A. F. Colladon, S. Grassi, F. Ravazzolo, F. Violante, Forecasting financial markets with
semantic network analysis in the covid-19 crisis, 2020. arXiv:2009.04975.
[14] N. Courtois, M. Grajek, R. Naik, Optimizing sha256 in bitcoin mining, Communications in Computer and Information Science 448 (2014) 131–144. doi:10.1007/
978-3-662-44893-9_12.
[15] L. Kristoufek, Grandpa, grandpa, tell me the one about bitcoin being a safe haven: New
evidence from the covid-19 pandemic, Frontiers in Physics 8 (2020) 296. URL: https://
www.frontiersin.org/article/10.3389/fphy.2020.00296. doi:10.3389/fphy.2020.00296.
[16] D. Broomhead, G. P. King, Extracting qualitative dynamics from experimental data, Physica D: Nonlinear Phenomena 20 (1986) 217 – 236. URL: http://
www.sciencedirect.com/science/article/pii/016727898690031X. doi:https://doi.org/
10.1016/0167-2789(86)90031-X.
[17] M. Rajkovic, Extracting meaningful information from financial data, Physica A: Statistical Mechanics and its Applications 287 (2000) 383–395. doi:10.1016/S0378-4371(00)
00377-0.
[18] V. Ponomarenko, M. Prokhorov, Extracting information masked by the chaotic signal of
a time-delay system, Physical review. E, Statistical, nonlinear, and soft matter physics 66
(2002) 026215. doi:10.1103/PhysRevE.66.026215.
[19] M. Henry, G. Judge, Permutation Entropy and Information Recovery in Nonlinear Dynamic Economic Time Series, Econometrics 7 (2019) 1–16. URL: https://ideas.repec.org/
a/gam/jecnmx/v7y2019i1p10-d213039.html.
[20] H. Sigaki, M. Perc, H. Valentin Ribeiro, Clustering patterns in efficiency and the comingof-age of the cryptocurrency market, Scientific Reports 9 (2019) 1440. doi:10.1038/
s41598-018-37773-3.
[21] S. Pincus, R. E. Kalman, Irregularity, volatility, risk, and financial market time series,
Proceedings of the National Academy of Sciences 101 (2004) 13709–13714. URL: https:
//www.pnas.org/content/101/38/13709. doi:10.1073/pnas.0405168101.
[22] A. Delgado-Bonal, Quantifying the randomness of the stock markets, Scientific Reports
9 (2019). doi:10.1038/s41598-019-49320-9.
[23] S. Çalik, K. A. Metin, Entropy approach for volatility of wind energy, Thermal Science 23
(2019) 1863–1874.
[24] D. T. Pele, M. Mazurencu, Using high-frequency entropy to forecast bitcoin’s daily value
at risk, Entropy 21 (2019) 102. doi:10.3390/e21020102.
[25] A. Belinskyi, V. Soloviev, S. Semerikov, V. Solovieva, Detecting stock crashes using levy
distribution, in: A. Kiv, S. Semerikov, V. Soloviev, L. Kibalnyk, H. Danylchuk, A. Matviychuk (Eds.), Proceedings of the 8th. International Conference on Monitoring, Modeling &
Managment of Emergent Economy, volume 2422 of POPL ’79, CEUR Workshop Proceedings, Odessa, Ukraine, 2019, pp. 226–236. doi:10.1145/567752.567774.
[26] A. Bielinskyi, S. Semerikov, V. Solovieva, V. Soloviev, Levy´s stable distribution for stock
crash detecting, SHS Web Conf. 65 (2019) 06006. URL: https://doi.org/10.1051/shsconf/
20196506006. doi:10.1051/shsconf/20196506006.
[27] V. Derbentsev, S. Semerikov, O. Serdyuk, V. Solovieva, V. Soloviev, Recurrence based
entropies for sustainability indices, E3S Web Conf. 166 (2020) 13031. URL: https://doi.org/
10.1051/e3sconf/202016613031. doi:10.1051/e3sconf/202016613031. [28] V. Soloviev, A. Belinskiy, Complex Systems Theory and Crashes of Cryptocurrency Market: 14th International Conference, ICTERI 2018, Kyiv, Ukraine, May 14-17, 2018, Revised
Selected Papers, 2019, pp. 276–297. doi:10.1007/978-3-030-13929-2_14.
[29] V. Soloviev, A. Belinskij, Methods of nonlinear dynamics and the construction of cryptocurrency crisis phenomena precursors, in: V. Ermolayev, M. C. Suárez-Figueroa,
V. Yakovyna, V. Kharchenko, V. Kobets, H. Kravtsov, V. Peschanenko, Y. Prytula,
M. Nikitchenko, A. Spivakovsky (Eds.), Proceedings of the 13th International Conference
on ICT in Education, Research and Industrial Applications. Integration, Harmonization
and Knowledge Transfer, volume 2104, CEUR Workshop Proceedings, Kyiv, Ukraine, 2018,
pp. 116–127.
[30] V. Soloviev, O. Serdiuk, Quantum econophysical precursors of cryptocurrency crashes,
Cherkasy University Bulletin: Applied Mathematics. Informatics (2020) 3–16. doi:10.
31651/2076-5886-2019-1-3-16.
[31] V. Soloviev, A. Bielinskyi, V. Solovieva, Entropy analysis of crisis phenomena for djia
index, in: V. Ermolayev, F. Mallet, V. Yakovyna, V. Kharchenko, V. Kobets, A. Korniłowicz, H. Kravtsov, M. Nikitchenko, S. Semerikov, A. Spivakovsky (Eds.), Proceedings of the
15th International Conference on ICT in Education, Research and Industrial Applications.
Integration, Harmonization and Knowledge Transfer, volume 2393, CEUR Workshop Proceedings, Kherson, Ukraine, 2019, pp. 434–449.
[32] V. Soloviev, O. Serdiuk, S. Semerikov, O. Kohut-Ferens, Recurrence entropy and financial crashes, in: Proceedings of the 2019 7th International Conference on Modeling,
Development and Strategic Management of Economic System (MDSMES 2019), Atlantis
Press, 2019/10, pp. 385–388. URL: https://doi.org/10.2991/mdsmes-19.2019.73. doi:https:
//doi.org/10.2991/mdsmes-19.2019.73.
[33] V. Soloviev, S. Semerikov, V. Solovieva, Lempel-ziv complexity and crises of cryptocurrency market, in: Proceedings of the III International Scientific Congress Society of Ambient Intelligence 2020 (ISC-SAI 2020), Atlantis Press, 2020, pp. 299–306. URL: https://doi.
org/10.2991/aebmr.k.200318.037. doi:https://doi.org/10.2991/aebmr.k.200318.
037.
[34] V. Soloviev, A. Bielinskyi, O. Serdyuk, V. Solovieva, S. Semerikov, Lyapunov exponents
as indicators of the stock market crashes, in: O. Sokolov, G. Zholtkevych, V. Yakovyna,
Y. Tarasich, V. Kharchenko, V. Kobets, O. Burov, S. Semerikov, H. Kravtsov (Eds.), Proceedings of the 16th International Conference on ICT in Education, Research and Industrial Applications. Integration, Harmonization and Knowledge Transfer. Volume II: Workshops, Kharkiv, Ukraine, October 06-10, 2020, volume 2732 of CEUR Workshop Proceedings,
CEUR-WS.org, 2020, pp. 455–470. URL: http://ceur-ws.org/Vol-2732/20200455.pdf.
[35] V. Soloviev, V. Solovieva, A. Tuliakova, Visibility graphs and precursors of stock crashes,
Neuro-Fuzzy Modeling Techniques in Economics (2019) 3–29. doi:10.33111/nfmte.
2019.003.
[36] A. Bielinskyi, S. Semerikov, O. Serdyuk, V. Solovieva, V. Soloviev, L. Pichl, Econophysics
of sustainability indices, CEUR Workshop Proceedings 2713 (2020) 372–392.
[37] R. Clausius, The Mechanical Theory of Heat: With its Applications to the Steam-Engine
and to the Physical Properties of Bodies, J. Van Voorst, 1867.
[38] J. W. Gibbs, Elementary Principles in Statistical Mechanics: Developed with Especial Reference to the Rational Foundation of Thermodynamics, Cambridge Library Collection -
Mathematics, Cambridge University Press, 2010. doi:10.1017/CBO9780511686948.
[39] L. Boltzmann, Weitere studien über das wärmegleichgewicht unter gasmolekülen, Wiener
Berichte 66 (1872) 275–370.
[40] C. Chakrabarti, I. Chakrabarty, Boltmann-shannon entropy: Generalization and application, Modern Physics Letters B 20 (2006) 1471–1479. URL: https://doi.org/10.1142/
S0217984906011529. doi:10.1142/S0217984906011529.
[41] C. E. Shannon, A mathematical theory of communication, The Bell System Technical
Journal 27 (1948) 379–423. doi:10.1002/j.1538-7305.1948.tb01338.x.
[42] T. Constantino, Introduction to Nonextensive Statistical Mechanics: Approaching a Complex World, 1st ed., Springer-Verlag New York, 2009.
[43] R. Sole, S. Valverde, Information Theory of Complex Networks: On Evolution and Architectural Constraints, volume 207, 2004, pp. 189–207. doi:10.1007/
978-3-540-44485-5_9.
[44] J. S. Richman, J. R. Moorman, Physiological time-series analysis using approximate entropy and sample entropy, American Journal of Physiology-Heart
and Circulatory Physiology 278 (2000) H2039–H2049. URL: https://doi.org/10.
1152/ajpheart.2000.278.6.H2039. doi:10.1152/ajpheart.2000.278.6.H2039.
arXiv:https://doi.org/10.1152/ajpheart.2000.278.6.H2039, pMID:
10843903.
[45] S. M. Pincus, Approximate entropy as a measure of system complexity, Proceedings of the National Academy of Sciences 88 (1991) 2297–2301.
URL: https://www.pnas.org/content/88/6/2297. doi:10.1073/pnas.88.6.2297.
arXiv:https://www.pnas.org/content/88/6/2297.full.pdf.
[46] C. Bandt, B. Pompe, Permutation entropy: a natural complexity measure for time series.,
Physical review letters 88 17 (2002) 174102.
[47] J. Amigó, Permutation Complexity in Dynamical Systems: Ordinal Patterns, Permutation
Entropy and All That (Springer Series in Synergetics), 2010th ed., Springer, Reading, MA.,
2010.
[48] M. Zanin, L. Zunino, O. Rosso, D. Papo, Permutation entropy and its main biomedical and
econophysics applications: A review, Entropy 14 (2012) 1553. doi:10.3390/e14081553.
[49] H. Kantz, T. Schreiber, Nonlinear Time Series Analysis, 2 ed., Cambridge University Press,
2003. doi:10.1017/CBO9780511755798.
[50] R. Gu, Multiscale shannon entropy and its application in the stock market, Physica A: Statistical Mechanics and its Applications 484 (2017) 215 – 224.
URL: http://www.sciencedirect.com/science/article/pii/S0378437117304740. doi:https:
//doi.org/10.1016/j.physa.2017.04.164.
[51] F. Takens, Detecting strange attractors in turbulence, volume 898, 1981, p. 366. doi:10.
1007/BFb0091924.
[52] C. L. Webber, J. P. Zbilut, Dynamical assessment of physiological systems and states
using recurrence plot strategies, Journal of Applied Physiology 76 (1994) 965–973.
URL: https://doi.org/10.1152/jappl.1994.76.2.965. doi:10.1152/jappl.1994.76.2.965.
arXiv:https://doi.org/10.1152/jappl.1994.76.2.965, pMID: 8175612.
[53] J. P. Zbilut, C. L. Webber, Embeddings and delays as derived from quantification of recurrence plots, Physics Letters A 171 (1992) 199 – 203. URL: http://
www.sciencedirect.com/science/article/pii/037596019290426M. doi:https://doi.org/
10.1016/0375-9601(92)90426-M.
[54] N. Marwan, N. Wessel, U. Meyerfeld, A. Schirdewan, J. Kurths, Recurrence-plot-based
measures of complexity and their application to heart-rate-variability data, Physical Review E 66 (2002) 026702. doi:10.1103/PhysRevE.66.026702.
[55] H. Rabarimanantsoa, L. Achour, C. Letellier, A. Cuvelier, J.-F. Muir, Recurrence plots and
shannon entropy for a dynamical analysis of asynchronisms in noninvasive mechanical
ventilation, Chaos (Woodbury, N.Y.) 17 (2007) 013115. doi:10.1063/1.2435307.
[56] M. Little, P. Mcsharry, S. Roberts, D. Costello, I. Moroz, Exploiting nonlinear recurrence
and fractal scaling properties for voice disorder detection, Biomedical engineering online
6 (2007) 23. doi:10.1186/1475-925X-6-23.
[57] G. Corso, T. L. Prado, G. Z. dos S. Lima, S. R. Lopes, A novel entropy recurrence quantification analysis, 2017. arXiv:1707.00944.
[58] S. Lopes, T. Prado, G. Corso, G. dos S. Lima, J. Kurths, Parameter-free quantification of stochastic and chaotic signals, Chaos, Solitons & Fractals 133 (2020) 109616.
URL: http://www.sciencedirect.com/science/article/pii/S0960077920300151. doi:https:
//doi.org/10.1016/j.chaos.2020.109616.
[59] H. Jang, J. Lee, An empirical study on modeling and prediction of bitcoin prices with
bayesian neural networks based on blockchain information, IEEE Access 6 (2018) 5427–
5437.
[60] L. Alessandretti, A. ElBahrawy, L. M. Aiello, A. Baronchelli, Anticipating cryptocurrency
prices using machine learning, Complexity 2018 (2018) 1–16. URL: http://dx.doi.org/10.
1155/2018/8983590. doi:10.1155/2018/8983590.
[61] L. Zheng, H. He, Share price prediction of aerospace relevant companies with recurrent
neural networks based on pca, 2020. arXiv:2008.11788.
[62] N. Gandal, H. Hałaburda, Can we predict the winner in a market with network effects?
competition in cryptocurrency market, SSRN Electronic Journal (2016). doi:10.2139/
ssrn.2832836.
[63] T. Guo, A. Bifet, N. Antulov-Fantulin, Bitcoin volatility forecasting with a glimpse into
buy and sell orders, 2018 IEEE International Conference on Data Mining (ICDM) (2018).
URL: http://dx.doi.org/10.1109/ICDM.2018.00123. doi:10.1109/icdm.2018.00123.
[64] T. Guo, N. Antulov-Fantulin, Predicting short-term bitcoin price fluctuations from buy
and sell orders, ArXiv abs/1802.04065 (2018).
[65] A. Bielinskyi, I. Khvostina, A. Mamanazarov, A. Matviychuk, S. Semerikov, O. Serdyuk,
V. Solovieva, V. Soloviev, Predictors of oil shocks. Econophysical approach in environmental science, IOP Conference Series: Earth and Environmental Science 628 (2021).
doi:10.1088/1755-1315/628/1/012019, 8th International Scientific Conference on
Sustainability in Energy and Environmental Science, ISCSEES 2020 ; Conference Date: 21
October 2020 Through 22 October 2020. |
|