DSpace Repository

Assessment of mobile phone applications feasibility on plant recognition: comparison with Google Lens AR-app

Show simple item record

dc.contributor.author Bilyk, Zhanna I.
dc.contributor.author Shapovalov, Yevhenii B.
dc.contributor.author Shapovalov, Viktor B.
dc.contributor.author Megalinska, Anna P.
dc.contributor.author Andruszkiewicz, Fabian
dc.contributor.author Dołhańczuk-Śródka, Agnieszka
dc.date.accessioned 2021-09-06T16:37:07Z
dc.date.available 2021-09-06T16:37:07Z
dc.date.issued 2020-11-08
dc.identifier.citation Bilyk Z. I. Assessment of mobile phone applications feasibility on plant recognition: comparison with Google Lens AR-app / Zhanna I. Bilyk, Yevhenii B. Shapovalov, Viktor B. Shapovalov, Anna P. Megalinska, Fabian Andruszkiewicz, Agnieszka Dołhańczuk-Śródka. - CEUR Workshop Proceedings. - 2020. - Vol. 2731. - P. 61-78 uk
dc.identifier.issn 1613-0073
dc.identifier.uri http://elibrary.kdpu.edu.ua/xmlui/handle/123456789/4403
dc.identifier.uri https://doi.org/10.31812/123456789/4403
dc.description 1. Abramovich, S., Schunn, C., Higashi, R., Hunkele, T., Shoop, R.: ‘Achievement Systems’ to Boost ‘Achievement Motivation’. In: 2011 Games+Learning+Society Conference. https://ri.cmu.edu/pub_files/2011/7/GLS_Conference_Proceedings_July_2011.pdf (2011). Accessed 17 Aug 2015 2. Agustina, W.W., Sumarto, S., Trisno, B.: Augmented reality based on stem for supporting science literacy in vocational education. Journal of Physics: Conference Series 1375, 012088 (2019). doi:10.1088/1742-6596/1375/1/012088 3. Antonietti, A., Imperio, E., Rasi, C., Sacco, M.: Virtual reality and hypermedia in learning to use a turning lathe. Journal of Computer Assisted Learning 17(2), 142–155 (2001). doi:10.1046/j.0266-4909.2001.00167.x 4. Bondarenko, O.V., Pakhomova, O.V., Lewoniewski, W.: The didactic potential of virtual information educational environment as a tool of geography students training. CEUR Workshop Proceedings 2547, 13–23 (2020) 5. Cherniavskyi, R., Krainyk, Y., Boiko, A.: Modeling university environment: means and applications for university education. CEUR Workshop Proceedings 2546, 149–158 (2019) 6. Chorna, O.V., Hamaniuk, V.A., Uchitel, A.D.: Use of YouTube on lessons of practical course of German language as the first and second language at the pedagogical university. CEUR Workshop Proceedings 2433, 294–307 (2019) 7. Clark, A.C., Ernst, J. V.: STEM-Based Computational Modeling for Technology Education. Journal of Technology Studies 34(1), 20–27 (2008). doi:10.21061/jots.v34i1.a.3 8. de Jong, T., Sotiriou, S., Gillet, D.: Innovations in STEM education: the Go-Lab federation of online labs. Smart Learning Environments 1, 3 (2014). doi:10.1186/s40561-014-0003-6 9. de Jong, T.: Moving towards engaged learning in STEM domains; there is no simple answer, but clearly a road ahead. Journal of Computer Assisted Learning 35(2), 153–167 (2019). doi:10.1111/jcal.12337 10. Devi, A.N., Gaurav, G.: Reviews on Augmented Reality: Google Lens. International Journal of Computer Trends and Technology 58(2), 94–97 (2018). doi:10.14445/22312803/IJCTT-V58P116 11. Du Plessis, L.K.: Through the Google Lens: Development of lecturing practice in Photography. Dissertation, Durban University of Technology (2015) 12. Dziabenko, O., Budnyk, O.: Go-Lab Ecosystem: Using Online Laboratories in a Primary School. In: 11th International Conference on Education and New Learning Technologies EDULEARN19 Proceedings, 1-3 July, 2019, Palma, Spain, pp. 9276–9285 (2019). doi:10.21125/edulearn.2019.2304 13. Hart, W., Albarracín, D.: The Effects of Chronic Achievement Motivation and Achievement Primes on the Activation of Achievement and Fun Goals. Journal of Personality and Social Psychology 97(6), 1129–1141 (2009). doi:10.1037/a0017146 14. Hazlewood, A.: Virtual Reality and Augmented Reality. A practical guide: Turning smartphones into exciting learning tools. http://www.soccon.net.nz/2017/wp-content/uploads/2016/11/Aleisha-Hazlewood.pdf (2016). Accessed 25 Dec 2017 15. Hevko, I., Potapchuk, O., Sіtkar, T., Lutsyk, I., Koliasa, P.: Formation of practical skills modeling and printing of three-dimensional objects in the process of professional training of IT specialists. In: Semerikov, S., Chukharev, S., Sakhno, S., Striuk, A., Osadchyi, V., Solovieva, V., Vakaliuk, T., Nechypurenko, P., Bondarenko, O., Danylchuk, H. (eds.) The International Conference on Sustainable Futures: Environmental, Technological, Social and Economic Matters (ICSF 2020). Kryvyi Rih, Ukraine, May 20-22, 2020. E3S Web of Conferences 166, 10016 (2020). doi:10.1051/e3sconf/202016610016 16. Hussein, M., Nätterdal, C.: The Benefits of Virtual Reality in Education: A Comparison Study. Bachelor of Science Thesis in Software Engineering and Management, University of Gothenburg. https://gupea.ub.gu.se/bitstream/2077/39977/1/gupea_2077_39977_1.pdf (2015). Accessed 25 Dec 2017 17. Kapici, H.O., Akcay, H., de Jong, T.: Using Hands-On and Virtual Laboratories Alone or Together – Which Works Better for Acquiring Knowledge and Skills? Journal of Science Education and Technology 28, 231–250 (2019). doi:10.1007/s10956-018-9762-0 18. Kazhan, Yu.M., Hamaniuk, V.A., Amelina, S.M., Tarasenko, R.O., Tolmachev, S.T.: The use of mobile applications and Web 2.0 interactive tools for students’ German-language lexical competence improvement. CEUR Workshop Proceedings 2643, 392–415 (2020) 19. Khine, M.S. (ed.): Computational Thinking in the STEM Disciplines: Foundations and Research Highlights. Springer, Cham (2018). doi:10.1007/978-3-319-93566-9 20. Kinateder, M., Ronchi, E., Nilsson, D., Kobes, M., Müller, M., Pauli, P., Mühlberger, A.: Virtual Reality for Fire Evacuation Research. In: Ganzha, M., Maciaszek, L., Paprzycki, M. (eds) Proceedings of the 2014 Federated Conference on Computer Science and Information Systems, ACSIS, vol. 2, pp. 313–321 (2014). doi:10.15439/2014f94 21. Kramarenko, T.H., Pylypenko, O.S., Zaselskiy, V.I.: Prospects of using the augmented reality application in STEM-based Mathematics teaching. CEUR Workshop Proceedings 2547, 130–144 (2020) 22. Lavrentieva, O.O., Arkhypov, I.O., Krupskуi, O.P., Velykodnyi, D.O., Filatov, S.V.: Methodology of using mobile apps with augmented reality in students' vocational preparation process for transport industry. In: Burov, O.Yu., Kiv, A.E. (eds.) Proceedings of the 3rd International Workshop on Augmented Reality in Education (AREdu 2020), Kryvyi Rih, Ukraine, May 13, 2020, CEUR-WS.org, online (2020, in press) 23. Lavrentieva, O.O., Arkhypov, I.O., Kuchma, O.I., Uchitel, A.D.: Use of simulators together with virtual and augmented reality in the system of welders’ vocational training: past, present, and future. CEUR Workshop Proceedings 2547, 201–216 (2020) 24. Lee, E.A.-L., Wong, K.W.: Learning with desktop virtual reality: Low spatial ability learners are more positively affected. Computers & Education 79, 49–58 (2014). doi:10.1016/j.compedu.2014.07.010 25. Marienko, M.V., Nosenko, Yu.H., Shyshkina, M.P.: Personalization of learning using adaptive technologies and augmented reality. In: Burov, O.Yu., Kiv, A.E. (eds.) Proceedings of the 3rd International Workshop on Augmented Reality in Education (AREdu 2020), Kryvyi Rih, Ukraine, May 13, 2020, CEUR-WS.org, online (2020, in press) 26. Martín-Gutiérrez, J., Fabiani, P., Benesova, W., Meneses, M.D., Mora, C.E.: Augmented reality to promote collaborative and autonomous learning in higher education. Computers in Human Behavior 51(B), 752–761 (2015). doi:10.1016/j.chb.2014.11.093 27. Modlo, Ye.O., Semerikov, S.O., Bondarevskyi, S.L., Tolmachev, S.T., Markova, O.M., Nechypurenko, P.P.: Methods of using mobile Internet devices in the formation of the general scientific component of bachelor in electromechanics competency in modeling of technical objects. CEUR Workshop Proceedings 2547, 217–240 (2020) 28. Modlo, Ye.O., Semerikov, S.O., Nechypurenko, P.P., Bondarevskyi, S.L., Bondarevska, O.M., Tolmachev, S.T.: The use of mobile Internet devices in the formation of ICT component of bachelors in electromechanics competency in modeling of technical objects. CEUR Workshop Proceedings 2433, 413–428 (2019) 29. Nechypurenko, P.P., Starova, T.V., Selivanova, T.V., Tomilina, A.O., Uchitel, A.D.: Use of Augmented Reality in Chemistry Education. CEUR Workshop Proceedings 2257, 15–23 (2018) 30. Nechypurenko, P.P., Stoliarenko, V.G., Starova, T.V., Selivanova, T.V., Markova, O.M., Modlo, Ye.O., Shmeltser, E.O.: Development and implementation of educational resources in chemistry with elements of augmented reality. CEUR Workshop Proceedings 2547, 156– 167 (2020) 31. Park, N.: The Development of STEAM Career Education Program using Virtual Reality Technology. Life Science Journal 11(7), 676–679 (2014) 32. Potkonjak, V., Gardner, M., Callaghan, V., Mattila, P., Guetl, C., Petrović, V.M., Jovanović, K.: Virtual laboratories for education in science, technology, and engineering: A review. Computers & Education 95, 309–327 (2016). doi:10.1016/j.compedu.2016.02.002 33. Rashevska, N.V., Semerikov, S.O., Zinonos, N.O., Tkachuk, V.V., Shyshkina, M.P.: Using augmented reality tools in the teaching of two-dimensional plane geometry. In: Burov, O.Yu., Kiv, A.E. (eds.) Proceedings of the 3rd International Workshop on Augmented Reality in Education (AREdu 2020), Kryvyi Rih, Ukraine, May 13, 2020, CEUR-WS.org, online (2020, in press) 34. Sahin, S.: Computer simulations in science education: Implications for distance education. Turkish Online Journal of Distance Education 7(4), 132–146 (2006) 35. Sala, N.: Applications of Virtual Reality Technologies in Architecture and in Engineering. International Journal of Space Technology Management and Innovation 3(2), 78–88 (2014). doi:10.4018/ijstmi.2013070104 36. Sarabando, C., Cravino, J.P., Soares, A.A.: Contribution of a Computer Simulation to Students’ Learning of the Physics Concepts of Weight and Mass. Procedia Technology 13, 112–121 (2014). doi:10.1016/j.protcy.2014.02.015 37. Shapovalov, V.B., Atamas, A.I., Bilyk, Zh.I., Shapovalov, Ye.B., Uchitel, A.D.: Structuring Augmented Reality Information on the stemua.science. CEUR Workshop Proceedings 2257, 75–86 (2018) 38. Shapovalov, V.B., Shapovalov, Ye.B., Bilyk, Zh.I., Atamas, A.I., Tarasenko, R.A., Tron, V.V.: Centralized information web-oriented educational environment of Ukraine. CEUR Workshop Proceedings 2433, 246–255 (2019) 39. Shapovalov, V.B., Shapovalov, Ye.B., Bilyk, Zh.I., Megalinska, A.P., Muzyka, I.O.: The Google Lens analyzing quality: an analysis of the possibility to use in the educational process. CEUR Workshop Proceedings 2547, 117–129 (2020) 40. Sifuna, J., Manyali, G.S., Sakwa, T., Mukasia, A.: Computer Modeling for Science, Technology, Engineering and Mathematics Curriculum in Kenya: A Simulation-Based Approach to Science Education. Science Journal of Education 4(1), 1–8 (2016). doi:10.11648/j.sjedu.20160401.11 41. Stryzhak, O.Y., Prychodniuk, V., Podlipaiev, V.: Model of Transdisciplinary Representation of GEOspatial Information. In: Ilchenko, M., Uryvsky, L., Globa, L. (eds.) Advances in Information and Communication Technologies. UKRMICO 2018. Lecture Notes in Electrical Engineering, vol. 560, pp. 34–75. Springer, Cham (2018). doi10.1007/978-3-030-16770-7_3 42. Syawaldi, F.A., H, M.Z., Apandi, Y.: Augmented Reality (Studi Kasus : Google Lens). Informan’s – Jurnal Ilmu-ilmu Informatika dan Manajemen 2(1) (2019) 43. Valko, N.V., Kushnir, N.O., Osadchyi, V.V.: Cloud technologies for STEM education. CEUR Workshop Proceedings 2643, 435–447 (2020) 44. Weiner, B.: Achievement Motivation and Attribution Theory. General Learning Press, New York (1974) 45. Zantua, L.S.O.: Utilization of Virtual Reality Content in Grade 6 Social Studies Using Affordable Virtual Reality Technology. Asia Pacific Journal of Multidisciplinary Research 5(2), 1–10 (2017)
dc.description.abstract The paper is devoted to systemizing all mobile applications used during the STEM-classes and can be used to identify plants. There are 10 mobile applications that are plant identifiers worldwide. These applications can be divided into three groups, such as plant identifiers that can analyze photos, plant classification provides the possibility to identify plants manually, plants-care apps that remind water of the plant, or change the soil. In this work, mobile apps such as Flora Incognita, PlantNet, PlantSnap, PictureThis, LeafSnap, Seek, PlantNet were analyzed for usability parameters and accuracy of identification. To provide usability analysis, a survey of experts of digital education on installation simplicity, level of friendliness of the interface, and correctness of picture processing. It is proved that Flora Incognita and PlantNet are the most usable and the most informative interface from plant identification apps. However, they were characterized by significantly lower accuracy compared to Google Lens results. Further comparison of the usability of applications that have been tested in the article with Google Lens, proves that Google Lens characterize by better usability and therefore, Google Lens is the most recommended app to use to provide plant identification during biology classes. uk
dc.language.iso en uk
dc.publisher CEUR Workshop Proceedings uk
dc.subject mobile application uk
dc.subject STEM-classes uk
dc.subject augmented reality uk
dc.subject plant identification uk
dc.subject Google Lens uk
dc.title Assessment of mobile phone applications feasibility on plant recognition: comparison with Google Lens AR-app uk
dc.type Article uk


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account

Statistics