dc.description |
1. Arthur, W.B. Foundations of complexity economics. Nature Review (2021) 3 136- 145
2. Kuther, R., Ausloos, M., Grech, D., Di Matteo, T., Schinckus and Stanley H E Econophysics and sociophysics: Their milestones&challenges. Physica A (2019) 516 240-253
3. Bandt, C., Pompe, B. Permutation entropy: a natural complexity measure for time series.
Physical review letters (2002), 88 174102
4. Bandt, C. Order patterns, their variation and change points in financial time series and
Brownian motion. Statistical Papers (2020) 61 1565–1588 https://doi.org/10.1007/s00362-
020-01171
5. Zanin, M., Rodriguez-Gonzalez, A., Ruiz, E.M. and Papo, D. Assessing Time Series Reversibility through Permutation Patterns. Entropy (2018) 20 665. doi:10.3390/e20090665
6. Gao, J., Hou, Y., Fan, F., and Liu, F. Complexity Changes in the US and China’s Stock
Markets: Differences, Causes, and Wider Social Implications. Entropy (2020) 22, 75;
doi:10.3390/e22010075
7. Soloviev, V., Bielinskyi, A. and Solovieva, V. Entropy Analysis of Crisis Phenomena for
DJIA Index. CEUR Workshop Proceedings (2019) 2393 434-449
8. Henry, M. and Judge, G. Permutation Entropy and Information Recovery in Nonlinear Dynamic Economic Time Series. Econometrics (2019) 7 10. doi:10.3390/econometrics7010010
9. Derbentsev, V. et al Recurrence based entropies for sustainability indices. E3S Web of
Conferences (2020) 166 13031 https://doi.org/10.1051/e3sconf/202016613031
10. Bariviera, A.F., Zunino, L., Rosso, O.A. An analysis of high-frequency cryptocurrencies
prices dynamics using permutation-information-theory quantifiers. Chaos (2018) 28, 075511.
doi: 10.1063/1.5027153
11. Sensoy, A. The inefficiency of Bitcoin revisited: A high-frequency analysis with alternative currencies. Finance Research Letters (2019) 28 68–73
12. Pele, D.T., Mazurencu-Marinescu-Pele, M. Using High-Frequency Entropy to Forecast
Bitcoin’sDaily Value at Risk. Entropy (2019) 21, 102. doi:10.3390/e21020102
13. Sigaki, H.Y.D., Perc, M., Ribeiro, H.V. Clustering patterns in efficiency and the comingof-age of the cryptocurrency market. Scientific Reports (2019) 9 1440.
doi.org/10.1038/s41598-018-37773
14. Soloviev, V.N., Belinskiy, A. Complex Systems Theory and Crashes of Cryptocurrency
Market. CCIS (2019) 1007 276–297
15. Soloviev, V., Belinskiy, A. Methods of nonlinear dynamics and the construction of cryptocurrency crisis phenomena precursors CEUR Workshop Proceedings (2018) 2104 116-127
16. Bariviera, A.F., Zunino, L., Rosso, O.A. Crude oil market and geopolitical events: An
analysis based on information-theory-based quantifiers. Fuzzy Economic Review (2016) 21
41-51. doi: 10.25102/fer.2016.01.03
17. Bielinskyi, A.O. et al Predictors of oil shocks. Econophysical approach in environmental
science. IOP Conf. Ser.: Earth Environ. Sci. (2021) 628 012019
18. Cover, T.M. and Thomas, J.A. Elements of Information Theory (Wiley, New Jersey, 2006). |
|