DSpace Repository

Econophysics of cryptocurrency crashes: an overview

Show simple item record

dc.contributor.author Bielinskyi, Andrii
dc.contributor.author Serdyuk, Oleksandr
dc.contributor.author Семеріков, Сергій Олексійович
dc.contributor.author Соловйов, Володимир Миколайович
dc.date.accessioned 2021-06-22T06:56:57Z
dc.date.available 2021-06-22T06:56:57Z
dc.date.issued 2021-05-24
dc.identifier.citation Bielinskyi A. Econophysics of cryptocurrency crashes: an overview / Andrii Bielinskyi, Oleksandr Serdyuk, Serhiy Semerikov, Vladimir Soloviev // 9th International Conference on Monitoring, Modeling & Management of Emergent Economy (M3E2 2021). Odessa, Ukraine, May 26-28, 2021 / Eds : S. Semerikov, V. Soloviev, L. Kibalnyk, O. Chernyak, H. Danylchuk // SHS Web of Conferences. – 2021. – Vol. 107. – Article 03001. – DOI : 10.1051/shsconf/202110703001 uk
dc.identifier.issn 2261-2424
dc.identifier.uri https://doi.org/10.1051/shsconf/202110703001
dc.identifier.uri http://elibrary.kdpu.edu.ua/xmlui/handle/123456789/4380
dc.description [1] R. Albert, A.L. Barabási, Rev. Mod. Phys. 74, 47 (2002) [2] C. Reuven, H. Shlomo, Complex Networks: Structure, Robustness and Function (Cambridge University Press, 2010), ISBN 9780521841566 [3] M.E.J. Newman, SIAM Review 45, 167–256 (2003) [4] M. Newman, A.L. Barabasi, D.J. Watts, eds., The Structure and Dynamics of Networks (Princeton University Press, Princeton, NJ, USA, 2006) [5] G. Nicolis, I. Prigogine, Exploring complexity: an introduction (W.H. Freeman, 1989), ISBN 9780716718598 [6] A. Rai, A. Mahata, M. Nurujjaman, O. Prakash, Statistical properties of the aftershocks of stock market crashes: evidence based on the 1987 crash, 2008 financial crisis and COVID-19 pandemic (2020), arXiv:2012.03012 [q-fin.ST] [7] E. Mnif, A. Jarboui, K. Mouakhar, Finance Research Letters 36, 101647 (2020) [8] A. Ammy-Driss, M. Garcin, Efficiency of the financial markets during the COVID-19 crisis: timevarying parameters of fractional stable dynamics (2020), arXiv:2007.10727 [q-fin.ST] [9] R. Cerqueti, V. Ficcadenti, Anxiety for the pandemic and trust in financial markets (2020), arXiv:2008.01649 [q-fin.ST] [10] M. Costola, M. Iacopini, C.R.M.A. Santagiustina, Public Concern and the Financial Markets during the COVID-19 outbreak (2020), arXiv:2005.06796 [q-fin.ST] [11] M. Feldkircher, F. Huber, M. Pfarrhofer, Measuring the Effectiveness of US Monetary Policy during the COVID-19 Recession (2020), arXiv:2007.15419 [econ.EM] [12] M. Garcin, J. Klein, S. Laaribi, Estimation of timevarying kernel densities and chronology of the impact of COVID-19 on financial markets (2020), arXiv:2007.09043 [q-fin.ST] [13] M. Pagano, C. Wagner, J. Zechner, Disaster resilience and asset prices (2020), arXiv:2005.08929 [q-fin.GN] [14] A.A. Toda, Susceptible-Infected-Recovered (SIR) Dynamics of COVID-19 and Economic Impact (2020), arXiv:2003.11221 [q-bio.PE] [15] S. Dro˙zd˙z, J. Kwapien, P. O ´ swie¸, T. Stanisz, ´ M. Wa¸torek, Entropy 22 (2020) [16] R.K.K. Pang, O. Granados, H. Chhajer, E.F. Legara, An analysis of network filtering methods to sovereign bond yields during COVID-19 (2021), arXiv:2009.13390 [q-fin.ST] [17] S. Semerikov, S. Chukharev, S. Sakhno, A. Striuk, V. Osadchyi, V. Solovieva, T. Vakaliuk, P. Nechypurenko, O. Bondarenko, H. Danylchuk, E3S Web of Conferences 166 (2020) [18] H. Danylchuk, L. Kibalnyk, O. Kovtun, A. Kiv, O. Pursky, G. Berezhna, CEUR Workshop Proceedings 2713, 352 (2020) [19] A. Kaminskyi, M. Nehrey, N. Rizun, CEUR Workshop Proceedings 2713, 204 (2020) [20] N. Maksyshko, O. Vasylieva, I. Kozin, V. Perepelitsa, CEUR Workshop Proceedings 2713, 219 (2020) [21] S. Semerikov, H. Kucherova, V. Los, D. Ocheretin, CEUR Workshop Proceedings 2845, 22 (2021) [22] G. Malinetsky, Modeling and Analysis of Information Systems 19, 5 (2015) [23] V. Soloviev, N. Moiseienko, O. Tarasova, CEUR Workshop Proceedings 2393, 905 (2019) [24] S. Somin, Y. Altshuler, G. Gordon, A. Pentland, E. Shmueli, Scientific Reports 10, 4587 (2020) [25] P. Grau, C. Jaureguizar, D. Jaureguizar, Esic Market Economics and Business Journal 49, 569 (2018) [26] J. Liang, L. Li, D. Zeng, PLOS ONE 13, 1 (2018) [27] S. Thurner, P. Klimek, R. Hanel, Introduction to the theory of complex systems (Oxford University Press, Oxford, 2018) [28] S. Dro˙zd˙z, L. Minati, P. Oswie¸cimka, ´ M. Stanuszek, M. Wa¸torek, Chaos: An Interdisciplinary Journal of Nonlinear Science 30, 023122 (2020) [29] M. Wa¸torek, S. Dro˙zd˙z, J. Kwapien, L. Minati, ´ P. Oswie¸cimka, M. Stanuszek, Physics Reports ´ 901, 1 (2021), multiscale characteristics of the emerging global cryptocurrency market [30] A.O. Bielinskyi, I. Khvostina, A. Mamanazarov, A. Matviychuk, S. Semerikov, O. Serdyuk, V. Solovieva, V.N. Soloviev, IOP Conference Series: Earth and Environmental Science 628, 012019 (2021) [31] M. Ausloos, D. Grech, T.D. Matteo, R. Kutner, C. Schinckus, H.E. Stanley, Physica A: Statistical Mechanics and its Applications 531, 136 (2020) [32] W.B. Arthur, Nature Reviews Physics 3, 136 (2021) [33] R. Kutner, M. Ausloos, D. Grech, T. Di Matteo, C. Schinckus, H. Eugene Stanley, Physica A: Statistical Mechanics and its Applications 516, 240 (2019) [34] R. Mantegna, H. Stanley, An Introduction to Econophysics: Correlations and Complexity in Finance, Vol. 53 (2000) [35] Z.Q. Jiang, W.J. Xie, W.X. Zhou, D. Sornette, Reports on Progress in Physics 82, 125901 (2019) [36] J. Kwapien, S. Dro˙zd˙z, Physics Reports ´ 515, 115 (2012), physical approach to complex systems [37] B.E. Baaquie, Quantum Finance: Path Integrals and Hamiltonians for Options and Interest Rates ] M. Schaden, Physica A: Statistical Mechanics and its Applications 316, 511–538 (2002) [39] V.P. Maslov, V.E. Nazaikinskii, Mathematics underlying the 2008 financial crisis, and a possible remedy (2009), arXiv:0811.4678 [q-fin.GN] [40] C. Schinckus, A Methodological Call for a Quantum Econophysics, in Selected Papers of the 7th International Conference on Quantum Interaction - Volume 8369 (Springer-Verlag, Berlin, Heidelberg, 2013), QI 2013, p. 308–316 [41] V. Saptsin, V. Soloviev, Relativistic quantum econophysics - new paradigms in complex systems modelling (2009), arXiv:0907.1142 [physics.soc-ph] [42] V. Soloviev, V. Saptsin, Heisenberg uncertainty principle and economic analogues of basic physical quantities (2011), arXiv:1111.5289 [physics.gen-ph] [43] D. Sornette, Why Stock Markets Crash: Critical Events in Complex Financial Systems (Princeton University Press, 2003) [44] Y. Peng, P. Albuquerque, J. Camboim de Sá, A.J. Padula, M. Montenegro, Expert Systems with Applications 97 (2017) [45] Q. Zhao, A deep learning framework for predicting digital asset price movement from trade-by-trade data (2020), arXiv:2010.07404 [q-fin.ST] [46] M. Amjad, D. Shah, Trading Bitcoin and Online Time Series Prediction, in Proceedings of the Time Series Workshop at NIPS 2016, edited by O. Anava, A. Khaleghi, M. Cuturi, V. Kuznetsov, A. Rakhlin (PMLR, Barcelona, Spain, 2017), Vol. 55 of Proceedings of Machine Learning Research [47] T. Chen, C. Guestrin, Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2016) [48] V. Derbentsev, A. Matviychuk, V. Soloviev, Forecasting of Cryptocurrency Prices Using Machine Learning (Springer, 2020), pp. 211–231, 1st edn., ISBN 978-981-15-4498-9 [49] A.H. Dyhrberg, Finance Research Letters 16, 85 (2016) [50] M. Ortu, N. Uras, C. Conversano, G. Destefanis, S. Bartolucci, On technical trading and social media indicators in cryptocurrencies’ price classification through deep learning (2021), arXiv:2102.08189 [q-fin.ST] [51] N. Uras, L. Marchesi, M. Marchesi, R. Tonelli, Forecasting bitcoin closing price series using linear regression and neural networks models (2020), arXiv:2001.01127 [q-fin.ST] [52] A. Hachicha, F. Hachicha, Review of Quantitative Finance and Accounting 56, 647 (2021) [53] J. Kaminski, Nowcasting the bitcoin market with twitter signals (2016), arXiv:1406.7577 [cs.SI] [54] M.A. Kennis, Multi-channel discourse as an indicator for bitcoin price and volume movements (2018), arXiv:1811.03146 [q-fin.ST] [55] O. Kodama, L. Pichl, T. Kaizoji, CBU International Conference Proceedings 5, 384 (2017) [56] D. Shah, K. Zhang, Bayesian regression and bitcoin (2014), arXiv:1410.1231 [cs.AI] [57] V. Soloviev, S. V., in Modern problems of forecasting socio-economic processes: concepts, models, applied aspects (Tkachuk O. V., 2012), pp. 174– 188 [58] M. Tarnopolski, Modeling the price of bitcoin with geometric fractional brownian motion: a monte carlo approach (2017), arXiv:1707.03746 [q-fin.CP] [59] N. Courtois, M. Grajek, R. Naik, Optimizing SHA256 in Bitcoin Mining (2014), Vol. 448 of Communications in Computer and Information Science, pp. 131–144, ISBN 978-3-662-44892-2 [60] L. Kristoufek, Frontiers in Physics 8 (2020) [61] D. Broomhead, G.P. King, Physica D: Nonlinear Phenomena 20, 217 (1986) [62] V.I. Ponomarenko, M.D. Prokhorov, Phys. Rev. E 66, 026215 (2002) [63] M. Rajkovic, Physica A: Statistical Mechanics and ´ its Applications 287, 383 (2000) [64] G.M. Caporale, L.A. Gil-Alana, A. Plastun, CESifo Working Paper Series 6811, CESifo (2017), https://ideas.repec.org/p/ces/ceswps/ _6811.html [65] A.F. Bariviera, M.J. Basgall, W. Hasperué, M. Naiouf, Physica A: Statistical Mechanics and its Applications 484, 82–90 (2017) [66] A.F. Bariviera, Economics Letters 161, 1–4 (2017) [67] J. Wang, G. Meric, Z. Liu, I. Meric, Journal of Banking & Finance 33, 1563 (2009) [68] S. Lleo, W.T. Ziemba, Financial Markets, Institutions & Instruments 26, 61 (2017) [69] H. Hong, J. Stein, Review of Financial Studies 16, 487 (2003) [70] M. Shu, W. Zhu, Physica A: Statistical Mechanics and its Applications 548, 124477 (2020) [71] T. Klein, H. Pham Thu, T. Walther, International Review of Financial Analysis 59, 105 (2018) [72] K. Gkillas, F. Longin, SSRN Electronic Journal pp. 1–85 (2019) [73] Y. Liu, A. Tsyvinski, X. Wu, NBER Working Papers 25882, National Bureau of Economic Research, Inc (2019) [74] L. Kristoufek, PLOS ONE 10, 1 (2015) [75] X. Li, C. Wang, Decision Support Systems 95, 49 (2017) [76] A. Bielinskyi, V. Soloviev, S. Semerikov, V. Solovieva, CEUR Workshop Proceedings 2422, 420 (2019) [77] A. Bielinskyi, S. Semerikov, V. Solovieva, V. Soloviev, SHS Web Conf. 65, 06006 (2019) [78] V. Derbentsev, S. Semerikov, O. Serdyuk, V. Solovieva, V. Soloviev, E3S Web Conf. 166, 13031 (2020) [79] V. Soloviev, A. Belinskiy, Complex Systems Theory and Crashes of Cryptocurrency Market (Springer, Cham, 2019), Vol. 1007 of ICTERI 2018, pp. 276– 297, ISBN 978-3-030-13928-5 [80] V. Soloviev, A. Belinskiy, CEUR Workshop Proceedings 2104, 116 (2018) [81] V. Soloviev, A. Bielinskyi, O. Serdyuk, V. Solovieva, S. Semerikov, CEUR Workshop Proceedings 2732, 455 (2020) [82] V. Soloviev, S. Yevtushenko, V. Batareyev, CEUR Workshop Proceedings 2393, 434 (2019) [83] V. Soloviev, V. Solovieva, A. Tuliakova, M. Ivanova, Construction of crisis precursors in multiplex networks, in Proceedings of the 2019 7th International Conference on Modeling, Development and Strategic Management of Economic System (MDSMES 2019) (Atlantis Press, 2019/10), pp. 361–366, ISBN 978-94-6252-800-0, ISSN 2352-5428, https: //doi.org/10.2991/mdsmes-19.2019.68 [84] V. Soloviev, O. Serdiuk, S. Semerikov, O. KohutFerens, Recurrence entropy and financial crashes, in Proceedings of the 2019 7th International Conference on Modeling, Development and Strategic Management of Economic System (MDSMES 2019) (Atlantis Press, 2019/10), pp. 385–388, ISBN 978- 94-6252-800-0, ISSN 2352-5428, https://doi. org/10.2991/mdsmes-19.2019.73 [85] V. Soloviev, A. Bielinskyi, N. Kharadzjan, CEUR Workshop Proceedings 2832, 24 (2020) [86] M.S. Kanwal, J.A. Grochow, N. Ay, Entropy 19 (2017) [87] D. Bonchev, Information Theoretic Complexity Measures (Springer, 2009), pp. 4820–4838 [88] L. Lovász, The Emergence of Complexity in Mathematics, Physics, Chemistry and Biology, Pontifical Academy of Sciences p. 12 (1996) [89] L.T. Lui, G. Terrazas, H. Zenil, C. Alexander, N. Krasnogor, Artificial Life 21, 205 (2015) [90] C.E. Shannon, Bell System Technical Journal 27, 379 (1948) [91] G. Sommazzi, Ph.D. thesis (2016) [92] J.L. Blanc, L. Pezard, A. Lesne, Phys. Rev. E 84, 036214 (2011) [93] S. Zozor, P. Ravier, O. Buttelli, Physica A: Statistical Mechanics and its Applications 345, 285 (2005) [94] E. Estevez-Rams, R. Lora Serrano, B. Aragón Fernández, I. Brito Reyes, Chaos: An Interdisciplinary Journal of Nonlinear Science 23, 023118 (2013) [95] S.D. Silva, R. Matsushita, R. Giglio, Economics Bulletin 7, 1 (2008) [96] R. Giglio, R. Matsushita, A. Figueiredo, I. Gleria, S.D. Silva, EPL (Europhysics Letters) 84, 48005 (2008) [97] S. Da Silva, MPRA Paper 64497, University Library of Munich, Germany (2015) [98] S. Da Silva, C. Taufemback, R. Giglio, Economics Bulletin 31, 1631 (2011) [99] R. Giglio, S. Da Silva, MPRA Paper 22720, University Library of Munich, Germany (2009) [100] A. Lempel, J. Ziv, IEEE Transactions on Information Theory 22, 75 (1976) [101] O. Brandouy, J.P. Delahaye, L. Ma, H. Zenil, Research in International Business and Finance 30, 336 (2014) [102] P. Fiedor, Risks 3, 219 (2015) [103] J. Gao, Y. Hou, F. Fan, F. Liu, Entropy 22 (2020) [104] H. Cao, Y. Li, Chaos: An Interdisciplinary Journal of Nonlinear Science 24, 013134 (2014) [105] V. Soloviev, S. Semerikov, V. Solovieva, LempelZiv Complexity and Crises of Cryptocurrency Market, in Proceedings of the III International Scientific Congress Society of Ambient Intelligence 2020 (ISC-SAI 2020) (Atlantis Press, 2020), pp. 299–306, ISBN 978-94-6252-933-5, ISSN 2352-5428, https://doi.org/10.2991/ aebmr.k.200318.037 [106] A.N. Kolmogorov, International Journal of Computer Mathematics 2, 157 (1968) [107] M. Costa, C.K. Peng, A. Goldberger, Cardiovascular engineering (Dordrecht, Netherlands) 8, 88 (2008) [108] R. Clausius, T. Hirst, The Mechanical Theory of Heat: With Its Applications to the Steam-Engine and to the Physical Properties of Bodies (Creative Media Partners, LLC, 2017) [109] L. Boltzmann, Weitere Studien über das Wärmegleichgewicht unter Gasmolekülen (Vieweg+Teubner Verlag, 1970), Vol. 67, pp. 115–225 [110] J.W. Gibbs, Elementary principles in statistical mechanics developed with especial reference to the rational foundation of thermodynamics (C. Scribner, New York, 1902) [111] M. Vosvrda, J. Barunik, L. Vacha, M. Vošvrda, Czech Economic Review 4, 281 (2010) [112] J.S. Richman, J.R. Moorman, American Journal of Physiology-Heart and Circulatory Physiology 278, H2039 (2000) [113] R. Sole, S. Valverde, Information Theory of Complex Networks: On Evolution and Architectural Constraints (Springer, 2004), Vol. 207, pp. 189– 207, ISBN 978-3-540-22354-2 [114] V. Soloviev, O. Serdiuk, in Information technologies and modeling in economics: on the way to interdisciplinarity (Gate-Ukraine, 2013), pp. 115– 129 [115] C. Tsallis, Introduction to nonextensive statistical mechanics: Approaching a complex world (Springer, 2009), ISBN 978-0-387-85358-1 [116] A. Delgado-Bonal, A. Marshak, Entropy 21 (2019) [117] S. Pincus, Proceedings of the National Academy of Sciences of the United States of America 88, 2297—2301 (1991) [118] S.M. Pincus, A.L. Goldberger, American Journal of Physiology-Heart and Circulatory Physiology 266, H1643 (1994) [119] K. Yun, H.K. Park, D.H. Kwon, Y.T. Kim, S.N. Cho, H.J. Cho, B.S. Peterson, J. Jeong, Psychiatry Research: Neuroimaging 201, 226 (2012) [120] S.N. Bhaduri, Journal of Emerging Market Finance 13, 43 (2014) [121] C. Eom, G. Oh, W.S. Jung, Physica A: Statistical Mechanics and its Applications 387, 5511 (2008) [122] S. Lahmiri, S. Bekiros, Chaos, Solitons & Fractals 138, 109936 (2020) [123] I. Mahmoud, K. Naoui, H. Jemmali, International Journal of Economics and Financial Issues 3, 683 (2013) [124] S. Pincus, R.E. Kalman, Proceedings of the National Academy of Sciences 101, 13709 (2004) [125] W.Q. Duan, H.E. Stanley, Phys. Rev. E 81, 066116 (2010) [126] A. Delgado-Bonal, Sci. Rep. 9, 2045 (2019) [127] C. Bandt, B. Pompe, Phys. Rev. Lett. 88, 174102 (2002) [128] J. Amigó, Permutation Complexity in Dynamical Systems (Springer-Verlag Berlin Heidelberg, 2010) [129] M. Zanin, L. Zunino, O.A. Rosso, D. Papo, Entropy 14, 1553 (2012) [130] H. Kantz, T. Schreiber, Nonlinear Time Series Analysis, 2nd edn. (Cambridge University Press, 2003) [131] M. Henry, G. Judge, Econometrics 7 (2019) [132] H. Sigaki, M. Perc, H. Ribeiro, Scientific Reports 9 (2019) [133] A. Sensoy, Finance Research Letters 28, 68 (2019) [134] A. Metin Karaka¸s, Asian Journal of Business and Management 7, 10 (2019) [135] D.T. Pele, M. Mazurencu-Marinescu-Pele, Entropy 21 (2019) [136] F. Takens, in Dynamical Systems and Turbulence, Warwick 1980, edited by D. Rand, L.S. Young (Springer, Berlin, 1981), Vol. 898 of Lecture Notes in Mathematics, chap. 21, pp. 366–381 [137] J.P. Eckmann, D. Ruelle, Rev. Mod. Phys. 57, 617 (1985) [138] E. Ott, T. Sauer, J. Yorke, Coping with Chaos, Wiley Series in Nonlinear Science (Wiley, 1994) [139] C. Webber, Jr., J. Zbilut, in Tutorials in Contemporary Nonlinear Methods for the Behavioral Sciences, edited by M.A. Riley, G.C.V. Orden (National Science Foundation (NSF), 2005), chap. 2 [140] R. Gu, Physica A: Statistical Mechanics and its Applications 484, 215 (2017) [141] B.B. Mandelbrot, J.A. Wheeler, American Journal of Physics 51, 286 (1983) [142] H.E. Hurst, Transactions of the American Society of Civil Engineers 116, 770 (1951) [143] H.E. Hurst, Nature 180, 494 (1957) [144] A.W. Lo, Working Paper 2984, National Bureau of Economic Research (1989) [145] C.K. Peng, S.V. Buldyrev, S. Havlin, M. Simons, H.E. Stanley, A.L. Goldberger, Phys. Rev. E 49, 1685 (1994) [146] Z.Q. Jiang, W.J. Xie, W.X. Zhou, Physica A: Statistical Mechanics and its Applications 405, 235 (2014) [147] J.W. Kantelhardt, S.A. Zschiegner, E. KoscielnyBunde, S. Havlin, A. Bunde, H. Stanley, Physica A: Statistical Mechanics and its Applications 316, 87–114 (2002) [148] F. Aslam, W. Mohti, P. Ferreira, International Journal of Financial Studies 8 (2020) [149] R. Hasan, S.M. Mohammad, Physica A: Statistical Mechanics and its Applications 419, 746 (2015) [150] S. Kumar, N. Deo, Physica A: Statistical Mechanics and its Applications 388, 1593 (2009) [151] J. Kwapien, P. O ´ swie¸cimka, S. Dro˙zd˙z, Physica A: ´ Statistical Mechanics and its Applications 350, 466 (2005) [152] S. Lahmiri, Physica A: Statistical Mechanics and its Applications 486, 183 (2017) [153] J.W. Lee, K. Eun Lee, P. Arne Rikvold, Physica A: Statistical Mechanics and its Applications 364, 355 (2006) [154] K. Matia, Y. Ashkenazy, H.E. Stanley, Europhysics Letters (EPL) 61, 422 (2003) [155] P. Suárez-García, D. Gómez-Ullate, Physica A: Statistical Mechanics and its Applications 394, 226 (2014) [156] L. Zunino, A. Figliola, B.M. Tabak, D.G. Pérez, M. Garavaglia, O.A. Rosso, Chaos, Solitons & Fractals 41, 2331 (2009) [157] F. Delbianco, F. Tohmé, T. Stosic, B. Stosic, Physica A: Statistical Mechanics and its Applications 457, 573 (2016) [158] R. Gu, H. Chen, Y. Wang, Physica A: Statistical Mechanics and its Applications 389, 2805 (2010) [159] Z. Li, X. Lu, Energy Procedia 5, 1920 (2011), 2010 International Conference on Energy, Environment and Development - ICEED2010 [160] P. Mali, A. Mukhopadhyay, Physica A: Statistical Mechanics and its Applications 413, 361–372 (2014) [161] S. Zheng, X. Lan, Physica A: Statistical Mechanics and its Applications 444, 547 (2016) [162] G. Lim, S. Kim, H. Lee, K. Kim, D.I. Lee, Physica A: Statistical Mechanics and its Applications 386, 259 (2007) [163] P. Caraiani, E. Haven, Physica A Statistical Mechanics and its Applications 419, 395 (2015) [164] P. Norouzzadeh, B. Rahmani, Physica A: Statistical Mechanics and its Applications 367, 328 (2006) [165] G. Oh, C. Eom, S. Havlin, W.S. Jung, F. Wang, H. Stanley, S. Kim, Eur. Phys. J. B 85, 214 (2012) [166] J. Qin, X. Lu, Y. Zhou, L. Qu, Physica A: Statistical Mechanics and its Applications 421, 443 (2015) [167] D.H. Wang, X.W. Yu, Y.Y. Suo, Physica A: Statistical Mechanics and its Applications 391, 3503 (2012) [168] P. Norouzzadeh, W. Dullaert, B. Rahmani, Physica A: Statistical Mechanics and its Applications 380, 333 (2007) [169] W. Mensi, A.K. Tiwari, S.M. Yoon, Physica A: Statistical Mechanics and its Applications 471, 135 (2017) [170] A.K. Tiwari, C.T. Albulescu, S.M. Yoon, Physica A: Statistical Mechanics and its Applications 483, 182 (2017) [171] Y. Wang, Y. Wei, C. Wu, Physica A: Statistical Mechanics and its Applications 390, 817 (2011) [172] L. Zunino, B. Tabak, A. Figliola, D. Pérez, M. Garavaglia, O. Rosso, Physica A: Statistical Mechanics and its Applications 387, 6558 (2008) [173] B. Podobnik, H.E. Stanley, Phys. Rev. Lett. 100, 084102 (2008) [174] W.X. Zhou, Physical Review E 77 (2008) [175] N. Costa, C. Silva, P. Ferreira, International Journal of Financial Studies 7 (2019) [176] X.Y. Qian, Y.M. Liu, Z.Q. Jiang, B. Podobnik, W.X. Zhou, H.E. Stanley, Phys. Rev. E 91, 062816 (2015) [177] Z.Q. Jiang, W.X. Zhou, Phys. Rev. E 84, 016106 (2011) [178] L. Kristoufek, EPL (Europhysics Letters) 95, 68001 (2011) [179] J. Wang, P. Shang, W. Ge, Fractals 20, 271 (2012) [180] J. Li, X. Lu, Y. Zhou, Physica A: Statistical Mechanics and its Applications 453, 131 (2016) [181] C. Xie, Y. Zhou, G. Wang, X. Yan, Fluctuation and Noise Letters 16, 1750004-226 (2017) [182] F. Ma, Y. Wei, D. Huang, Physica A: Statistical Mechanics and its Applications 392, 1659 (2013) [183] Y. Wang, Y. Wei, C. Wu, Physica A: Statistical Mechanics and its Applications 389, 5468 (2010) [184] P. Yue, H.C. Xu, W. Chen, X. Xiong, W.X. Zhou, Fractals 25, 1750041 (2017) [185] F. Ma, Y. Wei, D. Huang, L. Zhao, Physica A: Statistical Mechanics and its Applications 392, 5356 (2013) [186] F. Ma, Q. Zhang, C. Peng, Y. Wei, Physica A: Statistical Mechanics and its Applications 410, 154 (2014) [187] Y. Wang, Y. Wei, C. Wu, Physica A: Statistical Mechanics and its Applications 390, 864 (2011) [188] X. Zhuang, Y. Wei, F. Ma, Physica A: Statistical Mechanics and its Applications 430, 101 (2015) [189] X. Zhuang, Y. Wei, B. Zhang, Physica A: Statistical Mechanics and its Applications 399, 113 (2014) [190] L. Xinsheng, L. Jianfeng, Z. Ying, Q. Yubo, Physica A: Statistical Mechanics and its Applications 486, 168 (2017) [191] Z. Zhang, Y. Zhang, D. Shen, W. Zhang, Complexity 2018, 1 (2018) [192] Z. Zhang, Y. Zhang, D. Shen, W. Zhang, Physica A: Statistical Mechanics and its Applications 508, 67 (2018) [193] Z. Da, J. Engelberg, P. Gao, Review of Financial Studies 28, 1 (2015) [194] W. Zhang, P. Wang, X. Li, D. Shen, Journal of Behavioral and Experimental Finance 18, 50 (2018) [195] M. Gronwald, C. Sattarhof, Working Paper 5, University of Aberdeen Business School (2018) [196] T. Takaishi, Physica A: Statistical Mechanics and its Applications 506, 507–519 (2018) [197] L. Kirichenko, V. Bulakh, T. Radivilova, 2017 4th International Scientific-Practical Conference Problems of Infocommunications. Science and Technology (PIC S&T) (2017) [198] Y. Jiang, H. Nie, W. Ruan, Finance Research Letters 25, 280 (2018) [199] A. Sensoy, E. Hacihasanoglu, Energy Economics 46, 318 (2014) [200] K.H. Al-Yahyaee, W. Mensi, S.M. Yoon, Finance Research Letters 27, 228 (2018) [201] G. Gajardo, W.D. Kristjanpoller, M. Minutolo, Chaos, Solitons & Fractals 109, 195 (2018) [202] S. Lahmiri, S. Bekiros, A. Salvi, Chaos, Solitons & Fractals 107, 43 (2018) [203] W. Zhang, P. Wang, X. Li, D. Shen, Complexity 2018, 1 (2018) [204] A. Ganchuk, V. Derbentsev, V. Soloviev, Multifractal Properties of the Ukraine Stock Market (2006), arXiv:physics/0608009v1 [physics.data-an] [205] K. Hu, P.C. Ivanov, Z. Chen, P. Carpena, H. Eugene Stanley, Phys. Rev. E 64, 011114 (2001) [206] Z. Chen, P.C. Ivanov, K. Hu, H.E. Stanley, Phys. Rev. E 65, 041107 (2002) [207] J.R. Thompson, J.R. Wilson, Mathematics and Computers in Simulation 126, 63 (2016) [208] D. Clark, L. Tarra, A. Berera, Phys. Rev. Fluids 5, 064608 (2020) [209] R. Engelken, F. Wolf, L.F. Abbott, Lyapunov spectra of chaotic recurrent neural networks (2020), arXiv:2006.02427 [nlin.CD] [210] K. Krishnamurthy, T. Can, D.J. Schwab, Theory of gating in recurrent neural networks (2021), arXiv:2007.14823 [cond-mat.dis-nn] [211] W.S. Lee, S. Flach, Deep learning of chaos classification (2020), arXiv:2004.10980 [cs.LG] [212] M.B. Tayel, E.I. AlSaba, Robust and sensitive method of lyapunov exponent for heart rate variability (2015), arXiv:1508.00996 [cs.SY] [213] H. De Thélin, T. Gauthier, G. Vigny, Bulletin of the London Mathematical Society (2020) [214] M. Cencini, F. Cecconi, A. Vulpiani, Chaos: From Simple Models to Complex Systems, Vol. 17 of Series on Advances in Statistical Mechanics (2010) [215] P. Grassberger, I. Procaccia, Phys. Rev. Lett. 50, 346 (1983) [216] J.C. Sprott, Chaos and Time-Series Analysis (Princeton University Press, 2001), ISBN 978- 0198508403 [217] L.S. Young, Journal of Physics A: Mathematical and Theoretical 46, 254001 (2013) [218] C.J. Gavilán-Moreno, G. Espinosa-Paredes, Nuclear Engineering and Technology 48, 434 (2016) [219] A. Prieto-Guerrero, G. Espinosa-Paredes, Dynamics of BWRs and mathematical models (2019), pp. 193–268 [220] D. Nychka, S. Ellner, A.R. Gallant, D. McCaffrey, Journal of the Royal Statistical Society: Series B (Methodological) 54, 399 (1992) [221] A. Wolf, J. Swift, H.L. Swinney, J. Vastano, Physica D: Nonlinear Phenomena 16, 285 (1985) [222] M. Sano, Y. Sawada, Phys. Rev. Lett. 55, 1082 (1985) [223] J.P. Eckmann, S.O. Kamphorst, D. Ruelle, S. Ciliberto, Phys. Rev. A 34, 4971 (1986) [224] M.T. Rosenstein, J.J. Collins, C.J. De Luca, Physica D: Nonlinear Phenomena 65, 117 (1993) [225] U. Parlitz, International Journal of Bifurcation and Chaos 02, 155 (1992) [226] M. Balcerzak, D. Pikunov, A. Dabrowski, Nonlinear Dynamics 94, 3053 (2018) [227] J. Gao, Y. Cao, W.W. Tung, J. Hu, Multiscale Analysis of Complex Time Series: Integration of Chaos and Random Fractal Theory, and Beyond (Wiley, 2007), ISBN 978-0-470-19164-4 [228] J. Gao, J. Hu, W.W. Tung, Y. Zheng, Quantitative Finance 13, 265 (2013) [229] V. Soloviev, D. Chabanenko, S. I., Using the scaledependent Lyapunov exponent as a measure of complexity, in The banking system of Ukraine in the context of globalization of financial markets: proceedings of VII International scientific and practical conference, edited by M. Gedz (CHIBS UBS NBU, 2012), pp. 469–471 [230] V. Soloviev, I. Stratiychuk, The problems of economics 2, 279 (2013) [231] J.P. Eckmann, S.O. Kamphorst, D. Ruelle, Europhysics Letters (EPL) 4, 973 (1987) [232] J. Scheinkman, B. Lebaron, The Journal of Business 62, 311 (1989) [233] H.D.I. Abarbanel, R. Brown, J.J. Sidorowich, L.S. Tsimring, Rev. Mod. Phys. 65, 1331 (1993) [234] V.S. Kulkarni, Complexity, chaos, and the duffingoscillator model: An analysis of inventory fluctuations in markets (2013), arXiv:1308.1616 [q-fin.GN] [235] O. Bajo-Rubio, F. Fernandez-Rodriguez, S. Sosvilla-Rivero, Economics Letters 39, 207 (1992) [236] W.D. Dechert, R. Gencay, Journal of Applied Econometrics 7, S41 (1992) [237] R. Gençay, Physica D: Nonlinear Phenomena 89, 261 (1996) [238] S. Shreemoyee, C. Vikhyat, Engineering and Technology International Journal of Economics and Management Engineering 13 (2019) [239] S. Srinivasan, S. Prasad, S. Patil, G. Lazarou, J. Picone, Estimation of Lyapunov Spectra from a Time Series, in Proceedings of the IEEE SoutheastCon 2006 (2006), pp. 192–195 [240] L. Mastroeni, P. Vellucci, "Chaos" in energy and commodity markets: a controversial matter (2017), arXiv:1611.07432 [q-fin.ST] [241] V. Plakandaras, R. Gupta, M.E. Wohar, Applied Economics 51, 4477 (2019) [242] G. Chakrabarti, C. Sen, Anatomy of Global Stock Market Crashes, Number 978-81-322-0463-3 in SpringerBriefs in Economics (Springer, 2012) [243] J. Liesen, V. Mehrmann, Linear Algebra, Springer Undergraduate Mathematics Series, 1st edn. (Springer, 2015) [244] C. Touzé, A. Chaigne, Acustica 86, 1 (2000) [245] B. Podobnik, A. Valentinciˇ c, D. Horvati ˇ c, H.E. ´ Stanley, Proceedings of the National Academy of Sciences of the United States of America 108, 17883—17888 (2011) [246] L. Bachelier, Annales scientifiques de l’École Normale Supérieure 3e série, 17, 21 (1900) [247] X. Gabaix, P. Gopikrishnan, V. Plerou, H. Stanley, Nature 423, 267 (2003) [248] M. Kateregga, S. Mataramvura, D. Taylor, Cogent Economics & Finance 5, 1318813 (2017) [249] D. Kr ˛e˙zołek, Studia Ekonomiczne 247, 57–68 (2015) [250] T. Lux, D. Sornette, Journal of Money, Credit and Banking 34, 589 (2002) [251] Y. Malevergne, V. Pisarenko, D. Sornette, Quantitative Finance 5, 379 (2005) [252] Y. Malevergne, V. Pisarenko, D. Sornette, Phys. Rev. E 83, 036111 (2011) [253] N.N. Taleb, International Journal of Forecasting 36, 1228–1240 (2020) [254] N.N. Taleb, Y. Bar-Yam, P. Cirillo, On single point forecasts for fat-tailed variables (2020), arXiv:2007.16096 [physics.soc-ph] [255] P. Gopikrishnan, M. Meyer, L. Amaral, H. Stanley, The European Physical Journal B 3, 139–140 (1998) [256] P. Gopikrishnan, V. Plerou, L.A. Nunes Amaral, M. Meyer, H.E. Stanley, Phys. Rev. E 60, 5305 (1999) [257] B. Podobnik, D. Horvatic, A.M. Petersen, H.E. Stanley, Proceedings of the National Academy of Sciences of the United States of America 106, 22079—22084 (2009) [258] B. Podobnik, K. Matia, A. Chessa, P.C. Ivanov, Y. Lee, H.E. Stanley, Physica A Statistical Mechanics and its Applications 300, 300 (2001) [259] X. Gabaix, Annual Review of Economics 1, 255 (2009) [260] Z. Kostanjcar, B. Jeren, Advances in Complex Sys- ˇ tems 16, 1350008 (2013) [261] A. Chakraborty, S. Easwaran, S. Sinha, Deviations from universality in the fluctuation behavior of a heterogeneous complex system reveal intrinsic properties of components: The case of the international currency market (2018), arXiv:1606.06111 [q-fin.ST] [262] T. Takaishi, Recent scaling properties of bitcoin price returns (2020), arXiv:2009.06874 [q-fin.ST] [263] S. Dro˙zd˙z, R. Ge¸barowski, L. Minati, P. Oswie¸cimka, M. Waa¸torek, Chaos: An In- ´ terdisciplinary Journal of Nonlinear Science 28, 071101 (2018) [264] T. Takaishi, PLOS ONE 16, e0246209 (2021) [265] S. Begušic, Z. Kostanj ´ car, H. Eugene Stanley, ˇ B. Podobnik, Physica A: Statistical Mechanics and its Applications 510, 400 (2018) [266] B. Mandelbrot, The Journal of Business 36 (1963) [267] P. Levy, Bulletin de la Société Mathématique de France 52, 49 (1924) [268] B. Mandelbrot, International Economic Review 1, 79 (1960) [269] E.S. Andersen, Mathematica Scandinavica 3, 185 (1955) [270] I.A. Koutrouvelis, Journal of the American Statistical Association 75, 918 (1980) [271] B. Brorsen, S. Yang, Communications in Statistics Part B: Simulation and Computation 19, 1459 (1990) [272] J. Nolan, Maximum Likelihood Estimation and Diagnostics for Stable Distributions (Birkhäuser, Boston, MA, 2001), pp. 379–400 [273] E.F. Fama, R. Roll, Journal of the American Statistical Association 66, 331 (1971) [274] J.H. McCulloch, Communications in Statistics - Simulation and Computation 15, 1109 (1986) [275] X. Ma, C.L. Nikias, IEEE Transactions on Signal Processing 43, 2884 (1995) [276] M. Shao, C.L. Nikias, Proceedings of the IEEE 81, 986 (1993) [277] J.M. Nicolas, Traitement Du Signal 19, 139 (2002) [278] E.E. Kuruoglu, IEEE Transactions on Signal Processing 49, 2192 (2001) [279] W.H. DuMouchel, The Annals of Statistics 1, 948 (1973) [280] V.M. Zolotarev, One-dimensional stable distributions, Vol. 65 of Translations of Mathematical Monographs (American Mathematical Society, Providence, RI, 1986), translated from the Russian by H. H. McFaden, Translation edited by Ben Silver [281] J.M. Chambers, C.L. Mallows, B.W. Stuck, Journal of the American Statistical Association 71, 340 (1976) [282] S. Bianchi, A. Pantanella, International Journal of Trade, Economics and Finance 2, 52 (2011) [283] V.I. Arnold, A. Avez, ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 50, 506 (1970) [284] K. Umeno, Nonlinear Theory and Its Applications, IEICE 7, 14 (2016) [285] I.A. Koutrouvelis, Communications in Statistics - Simulation and Computation 10, 17 (1981) [286] V. Soloviev, V. Solovieva, D. Chabanenko, in Contemporary concepts of forecasting the development of complex socio-economic systems, edited by O. Chernyak, P. Zakharchenko (FO-P Tkachuk O V, Berdyansk, 2014), pp. 257–264 [287] H. Poincaré, The Three-Body Problem and the Equations of Dynamics, Astrophysics and Space Science Library, 1st edn. (Springer, Cham, 2017) [288] P. Faure, H. Korn, Physica D: Nonlinear Phenomena 122, 265 (1998) [289] M. Thiel, M. Romano, J. Kurths, Analytical Description of Recurrence Plots of White Noise and Chaotic Processes, in Applied Nonlinear Dynamics (2003), Vol. 11 [290] M. Thiel, M. Romano, J. Kurths, R. Meucci, E. Allaria, F. Arecchi, Physica D: Nonlinear Phenomena 171, 138 (2002) [291] L. Charles, J. Webber, I. Cornel, M. Norbert, eds., Recurrence Plots and Their Quantifications: Expanding Horizons, Vol. 180 of Springer Proceedings in Physics (Springer, 2015) [292] N. Marwan, M. Carmen Romano, M. Thiel, J. Kurths, Physics Reports 438, 237 (2007) [293] G. Jianbo, C. Huaqing, Physics Letters A 270, 75 (2000) [294] N. Marwan, N. Wessel, U. Meyerfeldt, A. Schirdewan, J. Kurths, Phys. Rev. E 66, 026702 (2002) [295] C.L. Webber, J.P. Zbilut, Journal of Applied Physiology 76, 965 (1994) [296] J.P. Zbilut, C.L. Webber, Physics Letters A 171, 199 (1992) [297] G. Corso, T.L. Prado, G.Z. dos S. Lima, S.R. Lopes, A novel entropy recurrence quantification analysis (2017), arXiv:1707.00944 [stat.OT] [298] M.A. Little, P.E. McSharry, S.J. Roberts, D.A. Costello, I.M. Moroz, BioMedical Engineering OnLine 6, 23 (2007) [299] H. Rabarimanantsoa, L. Achour, C. Letellier, A. Cuvelier, J.F. Muir, Chaos: An Interdisciplinary Journal of Nonlinear Science 17, 013115 (2007) [300] S. Lopes, T. Prado, G. Corso, G. dos S. Lima, J. Kurths, Chaos, Solitons & Fractals 133, 109616 (2020) [301] A.L. Goldberger, L.A.N. Amaral, L. Glass, J.M. Hausdorff, P.C. Ivanov, R.G. Mark, J.E. Mietus, G.B. Moody, C.K. Peng, H.E. Stanley, Circulation 101, e215 (2000) [302] M. Kirchner, P. Schubert, M. Liebherr, C.T. Haas, PLOS ONE 9, 1 (2014) [303] I. Prigogine, From Being to Becoming Time and Complexity in the Physical Sciences, 1st edn. (W.H. Freeman & Co, 1981) [304] M. Costa, A.L. Goldberger, C.K. Peng, Phys. Rev. E 71, 021906 (2005) [305] V. Soloviev, O. Rybchinska, Bulletin of the Kryvyi Rih Economic Institute KEI 2, 52 (2010) [306] S. Daw, C. Finney, M. Kennel, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics 62, 1912 (2000) [307] C. Diks, J. van Houwelingen, F. Takens, J. DeGoede, Physics Letters A 201, 221 (1995) [308] J. F.Donges, R. V. Donner, J. Kurths, EPL (Europhysics Letters) 102, 10004 (2013) [309] P. Guzik, J. Piskorski, T. Krauze, A. Wykretowicz, H. Wysocki, Biomedizinische Technik. Biomedical engineering 51, 272 (2006) [310] M.B. Kennel, Phys. Rev. E 69, 056208 (2004) [311] L. Lacasa, A. Nuñez, E. Roldán, J.M.R. Parrondo, B. Luque, The European Physical Journal B 85 (2012) [312] A. Porta, S. Guzzetti, N. Montano, T. GnecchiRuscone, R. Furlan, A. Malliani, Time reversibility in short-term heart period variability, in Computers in Cardiology (2006), Vol. 33, pp. 77–80, 2006 Computers in Cardiology, CIC ; Conference date: 17-09-2006 Through 20-09-2006 [313] M. Zanin, A. Rodríguez-González, E. Menasalvas Ruiz, D. Papo, Entropy 20 (2018) [314] W. Yao, W. Yao, D. Yao, D. Guo, J. Wang, Applied Physics Letters 116, 014101 (2020) [315] J. Li, P. Shang, X. Zhang, Nonlinear Dynamics 96, 2637 (2019) [316] R. Flanagan, L. Lacasa, Physics Letters A 380, 1689 (2016) [317] J.A. Martín-Gonzalo, I. Pulido-Valdeolivas, Y. Wang, T. Wang, G. Chiclana-Actis, M.d.C. Algarra-Lucas, I. Palmí-Cortés, J. Fernández Travieso, M.D. Torrecillas-Narváez, A.A. Miralles-Martinez et al., Entropy 21, 868 (2019) [318] J.H. Martínez, J.L. Herrera-Diestra, M. Chavez, Chaos: An Interdisciplinary Journal of Nonlinear Science 28, 123111 (2018) [319] Y. Wenpo, J. Dai, M. Perc, J. Wang, D. Yao, D. Guo, Nonlinear Dynamics 100, 907 (2020) [320] W. Yao, W. Yao, J. Wang, Physics Letters A 383, 1764 (2019) [321] G.G. Malinetsky, Computer research and modeling 5, 315 (2013) [322] T.U. Grund, The Journal of Mathematical Sociology 37, 131 (2013) [323] R. Cohen, S. Havlin, Complex Networks: Structure, Robustness and Function (Cambridge University Press, 2010) [324] G. Bianconi, EPL (Europhysics Letters) 111, 56001 (2015) [325] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D.U. Hwang, Physics Reports 424, 175 (2006) [326] Dynamics of graph spectral entropy in financial crisis, in Socio-Economic Aspects of Economics and Managment (Aspekt Publishing of Budget Printing Cente, 2015), pp. 227–234 [327] V. Soloviev, Bulletin of Cherkasy University 38, 67 (2015) [328] V. Soloviev, V. Solovieva, A. Tuliakova, NeuroFuzzy Modeling Techniques in Economics 8, 3 (2019) [329] V. Soloviev, V. Solovieva, A. Tuliakova, A. Hostryk, L. Pichl, CEUR Workshop Proceedings 2713, 53 (2020) [330] S. Boccaletti, G. Bianconi, R. Criado, C. del Genio, J. Gómez-Gardeñes, M. Romance, I. SendiñaNadal, Z. Wang, M. Zanin, Physics Reports 544, 1 (2014), the structure and dynamics of multilayer networks [331] M.C. Qian, Z.Q. Jiang, W.X. Zhou, Journal of Physics A: Mathematical and Theoretical 43, 335002 (2010) [332] J. Birch, Ph.D. thesis (2015) [333] F. Liu, N. Wang, D. Wei, The Open Cybernetics & Systemics Journal 11, 36 (2017) [334] W. Yan, E. van Tuyll van Serooskerken, PLOS ONE 10, 1 (2015) [335] A. Johansen, O. Ledoit, D. Sornette, International Journal of Theoretical and Applied Finance 03, 219 (2000) [336] M.D. Vamvakaris, A.A. Pantelous, K.M. Zuev, Physica A: Statistical Mechanics and its Applications 497, 41 (2018) [337] M. Serafino, A. Gabrielli, G. Caldarelli, G. Cimini, Statistical validation of financial time series via visibility graph (2017), arXiv:1710.10980 [q-fin.RM] [338] C. Coquidé, J. Lages, D.L. Shepelyansky, Lecture Notes in Business Information Processing p. 208–219 (2019) [339] T. Squartini, A. Gabrielli, D. Garlaschelli, T. Gili, A. Bifone, F. Caccioli, Complexity 2018, 1 (2018) [340] L. Lacasa, V. Nicosia, V. Latora, Scientific Reports 5 (2015) [341] L. Bargigli, G. di Iasio, L. Infante, F. Lillo, F. Pierobon, Quantitative Finance 15, 673 (2015) [342] S. Li, S. Wen, Complexity 2017, 1 (2017) [343] C. Stephen, Procedia Computer Science 53, 410 (2015) [344] R.V. Donner, M. Small, J.F. Donges, N. Marwan, Y. Zou, R. Xiang, J. Kurths, International Journal of Bifurcation and Chaos 21, 1019 (2011) [345] L. Lacasa, B. Luque, F. Ballesteros, J. Luque, J.C. Nuño, Proceedings of the National Academy of Sciences 105, 4972–4975 (2008) [346] V. Soloviev, A. Tuliakova, Neuro-fuzzy modeling technologies in economics 5, 152 (2016) [347] J. Iacovacci, L. Lacasa, Physical Review E 94 (2016) [348] A. de la Concha, S. Martinez-Jaramillo, C. Carmona, in Complex Networks & Their Applications VI (Springer International Publishing, 2018), pp. 1135–1148 [349] G. Colangelo, F.M. Ciurana, L.C. Bianchet, R.J. Sewell, M.W. Mitchell, Nature 543, 525–528 (2017) [350] E.G. Hidalgo, Quantum econophysics (2006), arXiv:physics/0609245 [physics.soc-ph] [351] V. Maslov, Math. Notes 72, 811 (2002) [352] V. Soloviev, O. Serdiuk, Bulletin of Cherkasy University 1, 3 (2009) [353] E. Benítez Rodríguez, L. Aguilar, Scientific Reports 8, 4010 (2018) [354] L.A. Rozema, A. Darabi, D.H. Mahler, A. Hayat, Y. Soudagar, A.M. Steinberg, Phys. Rev. Lett. 109, 100404 (2012) [355] M. Berta, M. Christandl, R. Colbeck, J.M. Renes, R. Renner, Nature Physics 6, 659–662 (2010) [356] R. Prevedel, D.R. Hamel, R. Colbeck, K. Fisher, K.J. Resch, Nature Physics 7, 757–761 (2011) [357] L. Landau, E. Lifshitz, Quantum Mechanics: NonRelativistic Theory, Course of Theoretical Physics, 3rd edn. (Butterworth-Heinemann, 1981) [358] V. Soloviev, Y. Romanenko, Economic analog of Heisenberg uncertainly principle and financial crisis, in System analysis and information technology : 19-th International conference (ESC "IASA" NTUU "Igor Sikorsky Kyiv Polytechnic Institute", Kyiv, Ukraine, 2017), SAIT 2017, pp. 32–33 [359] V. Soloviev, S. Yevtushenko, V. Batareyev, CEUR Workshop Proceedings 2546, 87 (2019) [360] S. Drozdz, J. Kwapien, P. Oswiecimka, Empirics versus rmt in financial cross-correlations (2007), arXiv:0711.0644 [q-fin.ST] [361] F.J. Dyson, Journal of Mathematical Physics 3, 140 (1962) [362] E.P. Wigner, Annals of Mathematics 53, 36 (1951) [363] P.W. Anderson, Phys. Rev. 109, 1492 (1958) [364] A. Lipton, A. Sardon, F. Schär, C. Schüpbach, From tether to libra: Stablecoins, digital currency and the future of money (2020), arXiv:2005.12949 [cs.CY] [365] C. Karmakar, A. Khandoker, J. Gubbi, M. Palaniswami, Modified Ehlers’ index for improved detection of heart rate asymmetry in Poincaré plot, in 36th Annual Computers in Cardiology Conference (CinC) (IEEE, 2009), Vol. 36, pp. 169 – 172 [366] A. Porta, S. Guzzetti, N. Montano, T. GnecchiRuscone, R. Furlan, A. Malliani, Time reversibility in short-term heart period variability, in 2006 Computers in Cardiology (IEEE, 2006), Vol. 2006, pp. 77 – 80 [367] A. Puglisi, D. Villamaina, EPL 88, 30004 (2009) [368] A. Abhishta, R. Joosten, S. Dragomiretskiy, L. Nieuwenhuis, Impact of Successful DDoS Attacks on a Major Crypto-Currency Exchange, in 2019 27th Euromicro International Conference on Parallel, Distributed and Network-based Processing (PDP) (IEEE, United States, 2019), pp. 379– 384 [369] A.A. Kochkarov, S.D. Osipovich, R.A. Kochkarov, Revista ESPACIOS 41, 29 (2020) [370] M. Conti, E. Sandeep Kumar, C. Lal, S. Ruj, IEEE Communications Surveys & Tutorials 20, 3416–3452 (2018) [371] M. Mirkin, Y. Ji, J. Pang, A. Klages-Mundt, I. Eyal, A. Juels, Bdos: Blockchain denial of service (2020), arXiv:1912.07497 [cs.CR] [372] M. Vasek, M. Thornton, T. Moore, Empirical Analysis of Denial-of-Service Attacks in the Bitcoin Ecosystem, in Financial Cryptography and Data Security. FC 2014. Lecture Notes in Computer Science, edited by R. Böhme, M. Brenner, T. Moore, M. Smith (Springer, 2014), Vol. 8438 of FC 2014, pp. 57–71 [373] U. Hacioglu, ed., Blockchain Economics and Financial Market Innovation, Contributions to Economics, 1st edn. (Springer, 2019), ISBN 978-3-030- 25275-5 [374] S. Nakamoto, Bitcoin: A peer-to-peer electronic cash system (2009), http://www.bitcoin.org/ bitcoin.pdf [375] D. Aggarwal, G. Brennen, T. Lee, M. Santha, M. Tomamichel, Ledger 3 (2018) [376] D. Sapaev, D. Bulychkov, F. Ablayev, A. Vasiliev, M. Ziatdinov, Quantum-assisted blockchain (2018), arXiv:1802.06763 [quant-ph] [377] O. Sattath, International Journal of Information Security 19, 291–302 (2020) [378] L. Tessler, T. Byrnes, Bitcoin and quantum computing (2018), arXiv:1711.04235 [quant-ph] [379] L. Alessandretti, A. ElBahrawy, L.M. Aiello, A. Baronchelli, Complexity 2018, 1–16 (2018) [380] N. Gandal, H. Halaburda, Games 7 (2016) [381] T. Guo, A. Bifet, N. Antulov-Fantulin, 2018 IEEE International Conference on Data Mining (ICDM) (2018) [382] H. Jang, J. Lee, IEEE Access 6, 5427 (2018) [383] O. Sattarov, A. Muminov, C.W. Lee, H.K. Kang, R. Oh, J. Ahn, H.J. Oh, H.S. Jeon, Applied Sciences 10 (2020) [384] D. Zhao, A. Rinaldo, C. Brookins, Cryptocurrency price prediction and trading strategies using support vector machines (2019), arXiv:1911.11819 [q-fin.TR] [385] T.R. Li, A.S. Chamrajnagar, X.R. Fong, N.R. Rizik, F. Fu, Frontiers in Physics 7, 98 (2019) [386] W. Wei, Q. Zhang, L. Liu, Bitcoin transaction forecasting with deep network representation learning (2020), arXiv:2007.07993 [cs.SI] [387] A.H.A. Othman, S. Kassim, R.B. Rosman, N.H.B. Redzuan, Journal of Revenue and Pricing Management 19, 314 (2020) [388] S. McNally, J. Roche, S. Caton, Predicting the Price of Bitcoin Using Machine Learning, in 2018 26th Euromicro International Conference on Parallel, Distributed and Network-based Processing (PDP) (2018), pp. 339–343 [389] S.M. Raju, A.M. Tarif, Real-time prediction of bitcoin price using machine learning techniques and public sentiment analysis (2020), arXiv:2006.14473 [q-fin.ST] [390] Hua, Yiqing, E3S Web Conf. 218, 01050 (2020)
dc.description.abstract Cryptocurrencies refer to a type of digital asset that uses distributed ledger, or blockchain technology to enable a secure transaction. Like other financial assets, they show signs of complex systems built from a large number of nonlinearly interacting constituents, which exhibits collective behavior and, due to an exchange of energy or information with the environment, can easily modify its internal structure and patterns of activity. We review the econophysics analysis methods and models adopted in or invented for financial time series and their subtle properties, which are applicable to time series in other disciplines. Quantitative measures of complexity have been proposed, classified, and adapted to the cryptocurrency market. Their behavior in the face of critical events and known cryptocurrency market crashes has been analyzed. It has been shown that most of these measures behave characteristically in the periods preceding the critical event. Therefore, it is possible to build indicators-precursors of crisis phenomena in the cryptocurrency market. uk
dc.language.iso en uk
dc.publisher EDP Sciences uk
dc.title Econophysics of cryptocurrency crashes: an overview uk
dc.type Article uk


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account

Statistics