dc.description |
[1] I. D. Rudinskiy, Fuzzy knowledge evaluation model as a methodological basis for automation of pedagogical testing, IEEE Transactions on Education 50 (2007) 68–73.
doi:10.1109/TE.2006.888904.
[2] O. Cherednichenko, O. Yangolenko, Towards quality monitoring and evaluation methodology: Higher education case-study, Lecture Notes in Business Information Processing 137
(2013) 120–127. doi:10.1007/978-3-642-38370-0_11.
[3] L. He, W. He, Study on the construction of internal monitoring system of chinese independent colleges’ education quality, Genova, 2009, pp. 191–194.
[4] E. Igbape, P. Idogho, N-dimension data visualization spaces for academic programmes
quality monitoring in nigeria higher education, volume 2019-October, Newswood Limited,
2019, pp. 238–242.
[5] M. Leontev, N. Bondarenko, T. Shebzuhova, S. Butko, L. Egorova, Improving the efficiency
of university management: Teacher’s performance monitoring as a tool to promote the
quality of education, European Research Studies Journal 21 (2018) 527–540. doi:10.35808/
ersj/1020.
[6] Y. Li, P. Li, F. Zhu, R. Wang, Design of higher education quality monitoring and evaluation
platform based on big data, Institute of Electrical and Electronics Engineers Inc., 2017, pp.
337–342. doi:10.1109/ICCSE.2017.8085513.
[7] N. Muhd Nor, M. Azlan, S. Kiong, F. Mohamad, A. Ismail, A. Kasmin, M. Ahmad,
S. Yokoyama, Development of course management and monitoring system as a quality tools in engineering education, Applied Mechanics and Materials 465-466 (2014)
395–400. doi:10.4028/www.scientific.net/AMM.465-466.395.
[8] F. Qin, W. Zeng, L. Li, R. Zhao, Construction of big data monitoring platform for teaching
quality under intelligent education, Institute of Electrical and Electronics Engineers Inc.,
2020, pp. 1594–1597. doi:10.1109/IWCMC48107.2020.9148224.
[9] A. Sorour, A. Atkins, C. Stanier, F. Alharbi, Comparative frameworks for monitoring quality
assurance in higher education institutions using business intelligence, Institute of Electrical
and Electronics Engineers Inc., 2020. doi:10.1109/ICCIT-144147971.2020.9213808.
[10] C. Wei, Higher vocational education quality monitoring system, Lecture Notes in Electrical
Engineering 217 LNEE (2013) 55–60. doi:10.1007/978-1-4471-4850-0_8.
[11] Z. Zhi, Z. Nan, Study on the construction of teaching quality monitoring system for the
undergraduate physical education majors, Jilin, 2011, pp. 758–761. doi:10.1109/HHBE.
2011.6028937.
[12] A. Anohina-Naumeca, M. Strautmane, J. Grundspenkis, Development of the scoring
mechanism for the concept map based intelligent knowledge assessment system, volume
471, Sofia, 2010, pp. 376–381. doi:10.1145/1839379.1839446.
[13] A. Anohina-Naumeca, J. Grundspenkis, Evaluating students’ concept maps in the concept map based intelligent knowledge assessment system, Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics) 5968 LNCS (2010) 8–15. doi:10.1007/978-3-642-12082-4_2.
[14] K. Gierłowski, K. Nowicki, A novel architecture for e-learning knowledge assessment
systems, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics) 4823 LNCS (2008) 276–287. doi:10.1007/
978-3-540-78139-4_25.
[15] J. Grundspenkis, Intelligent knowledge assessment systems: Myth or reality,
Frontiers in Artificial Intelligence and Applications 315 (2019) 31–46. doi:10.3233/
978-1-61499-941-6-31.
[16] B. Schmuck, D. Sima, S. Szöllosi, The design space of the implementation of knowledge assessment systems, Sydney, NSW, 2006, pp. 587–593. doi:10.1109/ITHET.2006.339672.
[17] S. Szöllosi, D. Sima, B. Schmuck, The design space of the services of knowledge assessment
systems, Sydney, NSW, 2006, pp. 571–578. doi:10.1109/ITHET.2006.339816.
[18] V. Bespalko, Requirements of educational films for professional and technical education,
Soviet Education 2 (1960) 17–19. doi:10.2753/RES1060-9393020317.
[19] R. Linn, Validating inferences from national assessment of educational progress
achievement-level reporting, Applied Measurement in Education 11 (1998) 23–47.
doi:10.1207/s15324818ame1101_2.
[20] C. Clotfelter, H. Ladd, J. Vigdor, Teacher-student matching and the assessment of teacher
effectiveness, Journal of Human Resources 41 (2006) 778–820. doi:10.3368/jhr.xli.4.
778.
[21] N. Falchikov, D. Boud, Student self-assessment in higher education: A meta-analysis,
Review of Educational Research 59 (1989) 395–430. doi:10.3102/00346543059004395.
[22] N. Falchikov, J. Goldfinch, Student peer assessment in higher education: A meta-analysis
comparing peer and teacher marks, Review of Educational Research 70 (2000) 287–322.
doi:10.3102/00346543070003287.
[23] M. Host, B. Regnell, C. Wohlin, Using students as subjects - a comparative study of students
and professionals in lead-time impact assessment, Empirical Software Engineering 5 (2000)
201–214. doi:10.1023/A:1026586415054.
[24] G.-J. Hwang, H.-F. Chang, A formative assessment-based mobile learning approach to
improving the learning attitudes and achievements of students, Computers and Education
56 (2011) 1023–1031. doi:10.1016/j.compedu.2010.12.002.
[25] D. Newble, K. Jaeger, The effect of assessments and examinations on the learning of
medical students, Medical Education 17 (1983) 165–171. doi:10.1111/j.1365-2923.
1983.tb00657.x.
[26] V. V. Osadchyi, K. P. Osadcha, H. B. Varina, S. V. Shevchenko, I. S. Bulakh, Specific features
of the use of augmented reality technologies in the process of the development of cognitive
component of future professionals’ mental capacity, Journal of Physics: Conference Series
(2021).
[27] C. Rust, M. Price, O. Berry, Improving students’ learning by developing their understanding
of assessment criteria and processes, Assessment and Evaluation in Higher Education 28
(2003) 147–164. doi:10.1080/02602930301671.
[28] K. Scouller, The influence of assessment method on students’ learning approaches: Multiple
choice question examination versus assignment essay, Higher Education 35 (1998) 453–472.
doi:10.1023/A:1003196224280.
[29] K. Topping, Peer assessment between students in colleges and universities, Review of
Educational Research 68 (1998) 249–276. doi:10.3102/00346543068003249.
[30] D. Wiliam, C. Lee, C. Harrison, P. Black, Teachers developing assessment for learning:
Impact on student achievement, Assessment in Education: Principles, Policy and Practice
11 (2004) 49–65. doi:10.1080/0969594042000208994.
[31] T. Barker, An automated feedback system based on adaptive testing: Extending the model,
International Journal of Emerging Technologies in Learning 5 (2010) 11–14. doi:10.3991/
ijet.v5i2.1235.
[32] M. Phankokkruad, K. Woraratpanya, An automated decision system for computer adaptive
testing using genetic algorithms, Phuket, 2008, pp. 655–660. doi:10.1109/SNPD.2008.
118.
[33] B. Buyak, I. Tsidylo, V. Repskyi, V. Lyalyuk, Stages of conceptualization and formalization
in the design of the model of the neuro-fuzzy expert system of professional selection of
pupils, CEUR Workshop Proceedings 2257 (2018) 112–121.
[34] H. V. Tereshchuk, I. M. Tsidylo, Automated system of fuzzy identification of expert’s
competence for assessing the quality of pedagogical phenomena and processes, Information
Technologies and Learning Tools 64 (2018) 234–244. URL: https://journal.iitta.gov.ua/index.
php/itlt/article/view/2079. doi:10.33407/itlt.v64i2.2079.
[35] A. Taylor, Fuzzy Logic With Matlab: Analyzing, Designing, and Simulating Systems,
CreateSpace Independent Publishing Platform, 2017.
[36] I. Lutsyk, Y. Franko, V. Rak, I. Lutsyk, R. Leshchii, O. Potapchuk, Mathematical modeling of
energy-efficient active ventilation modes of granary, in: 2019 9th International Conference
on Advanced Computer Information Technologies (ACIT), 2019, pp. 105–108. doi:10.
1109/ACITT.2019.8780109.
[37] S. Shtovba, O. Pankevich, A. Nagorna, Analyzing the criteria for fuzzy classifier learning, Automatic Control and Computer Sciences 49 (2015) 123–132. doi:10.3103/
S0146411615030098.
[38] A. Rotshtein, S. Shtovba, Predicting the reliability of algorithmic processes with fuzzy input
data, Cybernetics and Systems Analysis 34 (1998) 545–552. doi:10.1007/BF02666999.
[39] A. Rotshtein, S. Shtovba, Fuzzy multicriteria analysis of variants with the use of paired
comparisons, Journal of Computer and Systems Sciences International 40 (2001) 499–503.
[40] A. Rótshtein, S. Stovba, Managing a dynamic system by means of a fuzzy knowledge base,
Automatic Control and Computer Sciences 35 (2001) 16–22.
[41] A. Rotshtein, S. Shtovba, I. Mostav, Fuzzy rule based innovation projects estimation,
volume 1, Vancouver, BC, 2001, pp. 122–126.
[42] A. Rotshtejn, S. Shtovba, Influence of methods of defuzzification on speed of tuning the
fuzzy model, Kibernetika i Sistemnyj Analiz (2002) 169–176.
[43] A. Rotshtejn, S. Shtovba, Fuzzy rule based control of a dynamic system, Avtomatika i
Vychislitel’naya Tekhnika (2001) 23–31.
[44] A. Rotshteina, S. Shtovbab, Identification of a nonlinear dependence by a fuzzy knowledgebase in the case of a fuzzy training set, Cybernetics and Systems Analysis 42 (2006)
176–182. doi:10.1007/s10559-006-0051-1.
[45] S. Shtovba, Fuzzy identification on the basis of regression models of parametric membership
function, Journal of Automation and Information Sciences 38 (2006) 36–44. doi:10.1615/
JAutomatInfScien.v38.i11.40.
[46] S. Shtovba, E. Shtovba, Prediction of competitive position of brand product by fuzzy
knowledge base, Journal of Automation and Information Sciences 38 (2006) 69–80. doi:10.
1615/JAutomatInfScien.v38.i8.70.
[47] S. Shtovba, Ensuring accuracy and transparency of Mamdani fuzzy model in learning
by experimental data, Journal of Automation and Information Sciences 39 (2007) 39–52.
doi:10.1615/JAutomatInfScien.v39.i8.50.
[48] S. Shtovba, Fuzzy model tuning based on a training set with fuzzy model output values, Cybernetics and Systems Analysis 43 (2007) 334–340. doi:10.1007/s10559-007-0054-6.
[49] A. Rotshtein, S. Shtovba, Modeling of the human operator reliability with the aid of
the Sugeno fuzzy knowledge base, Automation and Remote Control 70 (2009) 163–169.
doi:10.1134/S0005117909010123.
[50] S. Shtovba, O. Pankevych, Fuzzy technology-based cause detection of structural cracks of
stone buildings, volume 2105, CEUR-WS, 2018, pp. 209–218.
[51] I. Khvostina, V. Oliinyk, S. Semerikov, V. Solovieva, V. Yatsenko, O. Kohut-Ferens, Hazards
and risks in assessing the impact of oil and gas companies on the environment, IOP
Conference Series: Earth and Environmental Science 628 (2021) 012027. doi:10.1088/
1755-1315/628/1/012027.
[52] S. V. Duplik, Model of adaptive testing on fuzzy mathematics, Computer science and
education (2004) 57–65.
[53] S. D. Danilova, Evaluation of test results in an adaptive automated testing system, Bulletin
of VSSTU (2008) 12–20.
[54] E. A. Belov, Development of a method and algorithms for testing knowledge based on
intelligent processing of answers in natural language, Ph.D. thesis, Bryansk, 2006.
[55] P. Nechypurenko, S. Semerikov, VlabEmbed - the new plugin Moodle for the chemistry
education, CEUR Workshop Proceedings 1844 (2017) 319–326.
[56] I. A. Hameed, C. G. Sorensen, Fuzzy systems in education: A more reliable
system for student evaluation, in: A. T. Azar (Ed.), Fuzzy Systems, IntechOpen, 2010, pp. 1–17. URL: https://www.intechopen.com/books/fuzzy-systems/
fuzzy-systems-in-education-a-more-reliable-system-for-student-evaluation.
doi:10.5772/7216. |
|