DSpace Repository

Comparisons of performance between quantum-enhanced and classical machine learning algorithms on the IBM Quantum Experience

Show simple item record

dc.contributor.author Zahorodko, P. V.
dc.contributor.author Семеріков, Сергій Олексійович
dc.contributor.author Соловйов, Володимир Миколайович
dc.contributor.author Striuk, A. M.
dc.contributor.author Striuk, M. I.
dc.contributor.author Shalatska, H. M.
dc.date.accessioned 2021-06-21T15:29:57Z
dc.date.available 2021-06-21T15:29:57Z
dc.date.issued 2021-03-19
dc.identifier.citation Zahorodko P. V. Comparisons of performance between quantum-enhanced and classical machine learning algorithms on the IBM Quantum Experience / P. V. Zahorodko, S. O. Semerikov, V. N. Soloviev, A. M. Striuk, M. I. Striuk, H. M. Shalatska // XII International Conference on Mathematics, Science and Technology Education (ICon-MaSTEd 2020) 15-17 October 2020, Kryvyi Rih, Ukraine / Eds. : A. E. Kiv, V. N. Soloviev, S. O. Semerikov // Journal of Physics: Conference Series. – 2021. – Vol. 1840. – Iss. 1. – Article 012021. – DOI : 10.1088/1742-6596/1840/1/012021 uk
dc.identifier.issn 1742-6596
dc.identifier.uri https://doi.org/10.1088/1742-6596/1840/1/012021
dc.identifier.uri http://elibrary.kdpu.edu.ua/xmlui/handle/123456789/4362
dc.description [1] Arunachalam S and de Wolf R 2017 A Survey of Quantum Learning Theory Preprint arXiv:1701.06806 [quant-ph] [2] Cambridge Quantum Computing 2020 Technology URL https://cambridgequantum.com/technology/ [3] Cheng C H and Wei L Y 2007 New entropy clustering analysis method based on adaptive learning Proc. of the 10th Joint Conf. on Information Sciences 2007 ed P P Wang pp 1196– 1202 URL https://doi.org/10.1142/9789812709677_0169 [4] Clark J and Stepney S 2002 Quantum Software Engineering Workshop on Grand Challenges for Computing Research (Edinburgh: e-Science Institute) URL http://www.ukcrc.org.uk/press/news/call/a5.cfm [5] Dunjko V and Wittek P 2020 A non-review of Quantum Machine Learning: trends and explorations Quantum Views 4 32 doi:10.22331/qv-2020-03-17-32 [6] D-Wave Systems Inc 2021 D-Wave Ocean Software Documentation URL https://ocean.dwavesys.com/ [7] Gartner 2021 Quantum Computing Gartner Glossary URL https://www.gartner.com/en/information-technology/glossary/quantum-computing [8] Google 2016 Quantum Computing Playground URL http://www.quantumplayground.net [9] Lehka L V and Shokaliuk S V 2018 Quantum programming is a promising direction of IT development CEUR Workshop Proceedings 2292 76–82 [10] Microsoft 2021 Microsoft Quantum Documentation and Q# API Reference - Microsoft Quantum URL https://docs.microsoft.com/en-us/quantum/ [11] Microsoft Research 2016 Language-Integrated Quantum Operations: LIQUi|> URL https://www.microsoft.com/en-us/research/project/language-integrated-quantum-operationsliqui/ [12] Murali P, Linke N M, Martonosi M, Javadi-Abhari A, Nguyen N H and Alderete C H 2019 Full-Stack, Real-System Quantum Computer Studies: Architectural Comparisons and Design Insights ISCA'19: Proc. 46th Int. Symp. on Computer Architecture pp 527–40 URL https://doi.org/10.1145/3307650.3322273 [13] Panetta K 2019 The CIO’s Guide to Quantum Computing Smarter With Gartner URL https://www.gartner.com/smarterwithgartner/the-cios-guide-to-quantum-computing/ [14] Phillipson F 2020 Quantum Machine Learning: Benefits and Practical Examples CEUR Workshop Proceedings 2561 51–6 [15] Piattini M, Peterssen G, Perez-Castillo R, Hevia J L, Serrano M A, Hernández G, de Guzmán I G R, Paradela C A, Polo M, Murina E, Jiménez L, Marqueño J C, Gallego R, Tura J, Phillipson F, Murillo J M, Niño A and Rodríguez M 2020 The Talavera Manifesto for Quantum Software Engineering and Programming CEUR Workshop Proceedings 2561 1–5 [16] Pistoia M and Gambetta J 2018 Qiskit Aqua – A Library of Quantum Algorithms and Applications Medium URL https://medium.com/qiskit/qiskit-aqua-a-library-of-quantumalgorithms-and-applications-33ecf3b36008 [17] Qiskit 2021 Qiskit URL https://qiskit.org/ [18] Qiskit 2021 Qiskit/openqasm: Gate and operation specification for quantum circuits GitHub URL https://github.com/Qiskit/openqasm [19] Q-SE2020 2020 First International Workshop on Quantum Software Engineering (Q-SE 2020) co-located with ICSE 2020 URL https://q-se.github.io/qse2020/ [20] Rahaman M amd Islam M M 2015 A Review on Progress and Problems of Quantum Computing as aService (QCaas) in the Perspective of Cloud Computing Global Journal of Computer Science and Technology: B Cloud and Distributed 15 URL https://globaljournals.org/GJCST_Volume15/3-Cloud-Data-Storage.pdf [21] Rigetti Computing 2020 Rigetti QCS URL https://qcs.rigetti.com/sdk-downloads [22] Steiger D and Häner T 2017 ProjectQ – Open Source Software for Quantum Computing URL https://projectq.ch/ [23] Wittek P 2016 Quantum Machine Learning: What Quantum Computing Means to Data Mining (San Diego: Academic Press) p 176
dc.description.abstract Machine learning is now widely used almost everywhere, primarily for forecasting. In the broadest sense, the machine learning objective may be summarized as an approximation problem, and the issues solved by various training methods can be reduced to finding the optimal value of an unknown function or restoring a function. At the moment, we have only experimental samples of quantum computers based on classical-quantum logic, when quantum gates are used instead of ordinary logic gates, and probabilistic quantum bits are used instead of deterministic bits. Namely, the probabilistic nature problems that provide for the determination of a certain optimal state from a large set of possible ones on which quantum computers can achieve "quantum supremacy" – an extraordinary (by many orders of magnitude) reduction in the time required to solve the task. The main idea of the work is to identify the possibility of achieving, if not quantum supremacy, then at least a quantum advantage when solving machine learning problems on a quantum computer. uk
dc.language.iso en uk
dc.publisher IOP Publishing uk
dc.subject machine learning uk
dc.subject IBM Quantum Experience uk
dc.title Comparisons of performance between quantum-enhanced and classical machine learning algorithms on the IBM Quantum Experience uk
dc.type Article uk


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account

Statistics