dc.description |
1. Andriienko, T. L. (compiler), & Perehrym, M. M. (compiler) (2012). Ofitsiini pereliky rehionalno ridkisnykh roslyn administratyvnykh terytorii Ukrainy (dovidkove vydannia) [Official lists of regional rare plants of administrative territories of Ukraine (reference book)]. Alterpress. (in Ukraine). 2. Avera, B. N., Strahm, B. D., Burger, J. A., & Zipper, C. E. (2015). Development of ecosystem structure and function on reforested surfacemined lands in the Central Appalachian Coal Basin of the United States. New Forests, 46, 683–702. https://doi.org/10.1007/s11056-015-9502-8 3. Berger, A., Brown, C., Kousky, C., & Zeckhauser, R. (2011). The challenge of degraded environments: how common biases impair effective policy. Risk Analyses, 31 (9). https://doi.org/10.1111/j.1539- 6924.2010.01477.x 4. Bielyk, Yu. V., Savosko, V. M., & Lykholat, Yu. V. (2019). Taksonomichnyi sklad ta synantropna kharakterystyka derevnochaharnykovykh uhrupovan Petrovskoho vidvalu (Kryvorizhzhia). [Taxonomic composition and synanthropic characteristic of woody plant community on Petrovsky waste rock dumps (Kryvorizhzhya)]. Ekolohichnyi visnyk Kryvorizhzhia [Ecological Bulletin of Kryvyi Rih District], 4, 104–113. https://doi.org/10.31812/eco-bulletinkrd.v4i0.2565 (in Ukrainian). 5. Boiral, O., & Heras-Saizarbitoria, I. (2017). Corporate commitment to biodiversity in mining and forestry: Identifying drivers from GRI reports. Journal of Cleaner Production, 162 (20), 153–161. https://doi.org/10.1016/j.jclepro.2017.06.037 6. Byrne, C. F., Stormont, J. C., & Stone, M. C. (2017). Soil water balance dynamics on reclaimed mine land in the southwestern United States. Journal of Arid Environments, 136, 28–37. https://doi.org/10.1016/j.jaridenv.2016.10.003 7. Ciria, C. S., Sanz, M., Carrasco, J., & Ciria, P. (2019). Identification of arable marginal lands under rainfed conditions for bioenergy purposes in Spain. Sustainability, 11, 1833. https://doi.org/10.3390/su110718338. Costanza, R. (2012). Ecosystem health and ecological engineering. Ecological Engineering, 45, 24–29. https://doi.org/10.1016/j.ecoleng .2012.03.023 9. Donald, A. F. (2017). Restoration ecology, resilience, and the axes of change. Annals of the Missouri Botanical Garden, 102, 201–216. https://doi.org/10.3417/2017006 10. Dorr de Quadros, P. D., Zhalnina, K., Davis-Richardson, A. G., Drew, J. C., Menezes, F. B., de O. Camargo, F. A. , & Triplett, E. W. (2016). Coal mining practices reduce the microbial biomass, richness and diversity of soil. Applied Soil Ecology, 98, 195–203. https://doi.org/10.1016/j.apsoil.2015.10.016 11. Dumroese, R. K., Williams, M. I., Stanturf, J. A., & Clair, J. B. S. (2015). Considerations for restoring temperate forests of tomorrow: forest restoration, assisted migration, and bioengineering. New Forest, 45, 813–828. https://doi.org/10.1007/s11056-015-9504-6 12. Giam, X., Olden, J. D., & Simberloff, D. (2018). Impact of coal mining on stream biodiversity in the US and its regulatory implications. Nature Sustainability, 1, 176–183. https://doi.org/10.1038/s41893-018-0048-6 13. Hor´aˇckov´a, M., Rehounkov´a, K., ˇ & Prach, K. (2015) Are seed and dispersal characteristics of plants capable of predicting colonization of postmining sites? Science and Pollution Research, 23 (14), 13617–13625. https://doi.org/10.1007/s11356-015-5415-5 14. Horodecki, P., & Jagodzi´nski, A. M. (2017). Tree species effects on litter decomposition in pure stands on afforested post-mining sites. Forest Ecology and Management, 406, 1–11. http://dx.doi.org/ 10.1016/j.foreco.2017.09.059 15. Macdonald, S. E., Landh¨ausser, S. M., Skousen, J., Franklin, J., Frouz, J., Hall, S., Jacobs, D. F., & Quideau, S. (2015). Forest restoration following surface mining disturbance: challenges and solutions. New Forests, 46, 703–732. https://doi.org/10.1007/s11056-015-9506-4 16. Malenko, Ya. V. (2019). Spetsyfika spektriv vydiv davnoseredzemnomorskoi hrupy arealiv uhrupovan’ roslyn tekhnohennykh ekotopiv [The specificity of spectra of ancient mediterranean species of the group of habitats of plant groups of Kryvyi Rih region technogenic ecotypes]. Ekolohichnyi visnyk Kryvorizhzhia [Ecological Bulletin of Kryvyi Rih District], 4, 22–40. https://doi.org/10.31812/eco-bulletin-krd.v4i0.2558 (in Ukrainian). 17. Murgu´ıa, D. I., Bringezu, S., & Schaldach, R. (2016). Global direct pressures on biodiversity by large-scale metal mining: Spatial distribution and implications for conservation. Journal of Environmental Management, 180 (15), 409–420. https://doi.org/10.1016/j.jenvman.2016.05.040 18. Prach, K., & Tolvanen, A. (2016). How can we restore biodiversity and ecosystem services in mining and industrial sites? Environmental Science and Pollution Research, 23, 13587–13590. https://doi.org/10.1007/s11356-016-7113-3 19. Rehounkov´a, K., ˇ C´ıˇzek, L., ˇ Rehounek, J., ˇ Sebel´ıkov´a, L., Tropek, R., ˇ Lencov´a, K., Bogusch, P., Marhoul, P., & M´aca, J. (2016). Additional disturbances as a beneficial tool for restoration of post-mining sites: a multi-taxa approach. Environmental Science and Pollution Research, 23 (14), 13745–137536. http://dx.doi.org/10.1007/s11356-016-6585-5 20. Rich, K., Ridealgh, M., West, S. E., Cinderby, S., & Ashmore, M. (2015). Exploring the links between post-industrial landscape history and ecology through participatory methods. PLOS ONE, 10 (8), e0136522. https://doi.org/10.1371/journal.pone.0136522 21. Rolfe, J. (2000). Mining and biodiversity: rehabilitating coal mine sites. Policy, 16, 8–12. 22. Savosko, V. M., Lykholat, Y. V., Bielyk, Yu. V., & Lykholat, T. Y. (2019). Ecological and geological determination of the initial pedogenesis on devastated lands in the Kryvyi Rih Iron Mining & Metallurgical District (Ukraine). Journal of Geology, Geography and Geoecology, 28 (4), 738–746. https://doi.org/10.15421/111969 23. Savosko, V., Lykholat, Yu., Domshyna, K., & Lykholat, T. (2018). Ekolohichna ta heolohichna zumovlenist poshyrennia derev i chaharnykiv na devastovanykh zemliakh Kryvorizhzhia [Ecological and geological determination of trees and shrubs’ dispersal on the devastated lands at Kryvorizhya]. Journal of Geology, Geography and Geoecology, 27 (1), 116–130. https://doi.org/10.15421/111837 (in Ukraine). 24. Sonja, K. (2017). Sustainable post-mining land use: are closed metal mines abandoned or re-used space? Sustainability, 9 (10), 1705. https://doi.org/10.3390/su9101705 25. Sonter, L. J., Ali, S. H., & Watson, James E. M. (2018). Mining and biodiversity: key issues and research needs in conservation science. Proceedings of the Royal Society B: Biological Sciences, 285 (1892), 20181926. https://doi.org/10.1098/rspb.2018.192626. Vasquez, E. A., & Sheley, R. L. (2018). Developing diverse, effective, and permanent plant communities on reclaimed surface coal mines: restoring ecosystem function. Journal American Society of Mining and Reclamation, 7 (1), 77–109. http://doi.org/10.21000/JASMR18010077 27. Waterhouse, B. R., Adair, K. L., Boyer, S., & Wratten, S. D. (2014). Advanced mine restoration protocols facilitate early recovery of soil microbial biomass, activity and functional diversity. Basic Applied Ecology, 15, 599–606. https://doi.org/10.1016/j.baae.2014.09.001 28. Yevtushenko, E. O., & Shanda, V. I. (2017). Kultur- ta ahrofitotsenoz: geneza poniattia, oznaky, struktura, funktsii [Cultural and agrophytocenosis: genesis of the concept, features, structure, functions]. In E. O. Yevtushenko (Eds.) & V. M. Savosko (Eds.), Struktura ta rozvytok kulturfitotsenoziv Kryvorizhzhia [Structure and development of cultural phytocenoses at Kryvyi Rih District] (pp. 21–35). Dionat. (in Ukrainian). 29. Yevtushenko, E. O., Komarova, I. O., Pozdniy, Y. V., & Kovalenko, L. H. (2019). Vplyv rozchynu bishofitu na reproduktyvnu sferu ambrozii polynolystoi v mezhakh prommaidanchyka PRAT INHZK [Influence of bischofite solution on the reproductive sphere of Ambrosia artemisiifolia within the limits of industrial ground of Private joint stock company “Inguletsky Ore mining and processing plant”]. Ekolohichnyi visnyk Kryvorizhzhia [Ecological Bulletin of Kryvyi Rih District], 4, 67–75. https://doi.org/10.31812/eco-bulletin-krd.v4i0.2561 (in Ukrainian). 30. Yevtushenko, E. O., Pozdnii, Y. V., Komarova, I. O., & Kovalenko, L. H. (2019). Ekoloho-taksonomichna struktura derevno-chaharnykovykh roslynnykh uhrupovan promyslovykh maidanchykiv PrAT «Tsentralnyi hirnycho-zbahachuvalnyi kombinat» [Ecologyсal-taxonomic structure of wood and shower plants of industrial pads of pjsc «central iron ore enrichment works»]. Pytannia stepovoho lisoznavstva ta lisovoi rekultyvatsii zemel [Issues of steppe forestry and forest reclamation of soils], 48, 47–61. https://doi.org/10.15421/441905 (in Ukrainian). 31. Zhang, Z. F., Bugosh, N., Tesfa, T., McDonald, M. J., & Kretzmann, J. A. (2018). Conceptual model for hydrology-based geomorphic evapo transpiration covers for reclamation of mine. Journal American Society of Mining and Reclamation, 7 (2), 61–88. http://doi.org/10.21000/JASMR18010077 |
|