DSpace Repository

Modern Environmental Technologies of Healthy Soils Contaminated by Heavy Metals and Radionuclides

Show simple item record

dc.contributor.author Савосько, Василь Миколайович
dc.contributor.author Подоляк, Олександр
dc.contributor.author Комарова, Ірина Олександрівна
dc.contributor.author Карпенко, Олексій
dc.date.accessioned 2020-05-02T06:02:04Z
dc.date.available 2020-05-02T06:02:04Z
dc.date.issued 2020
dc.identifier.citation Savosko, V., Podolyak, A., Komarova, I., & Karpenko, A. (2020). Modern environmental technologies of healthy soils contaminated by heavy metals and radionuclides. In E3S Web of Conferences (Vol. 166 The International Conference on Sustainable Futures: Environmental, Technological, Social and Economic Matters (ICSF 2020), 01007). https://doi.org/10.1051/e3sconf/202016601007 uk_UA
dc.identifier.uri http://elibrary.kdpu.edu.ua/xmlui/handle/123456789/3784
dc.identifier.uri https://doi.org/10.31812/123456789/3784
dc.description 1. M. Ahmad, S.S. Lee, S.E. Lee, M.I. Al-Wabel, D.C.W. Tsang, Y.S. Ok, Biochar-induced changes in soil properties affected immobilization/mobilization of metals/metalloids in contaminated soils. J. Soils Sediment. 17, 717–730 (2017). doi:10.1007/s11368-015-1339-4 2. R. Alexakhin, S. Firsakova, G. Rauret, N. Arkhipov, Fluxes of radionuclides in agricultural environments: main results and still unsolved problems, in Abstract of the 1st International conference “The radiological consequences of the Chernobyl accident”, vol. 1 (1996), pp. 39–47 3. A.Z. Al-Hamdan, K.R. Reddy, Transient behavior of heavy metals in soils during electrokinetic remediation. Chemosphere 71, 860–871 (2008). doi:10.1016/j.chemosphere.2007.11.028 4. H. Ali, E. Khan, M.A. Sajad, Phytoremediation of heavy metals – concepts and applications. Chemosphere 91, 869–881 (2013). doi:10.1016/j.chemosphere.2013.01.0755. B.J. Alloway, Heavy metal in soil (Blackie Academic & Professional, London, 1994) 6. M.A. Ashraf, I. Hussain, R. Rasheed, M. Iqbal, M. Riaz, A.M. Saleem, Advances in microbe-assisted reclamation of heavy metal contaminated soils over the last decade: A review. J. Environ. Manage 198, 132–143 (2017). doi:10.1016/j.jenvman.2017.04.060 0301-479 7. S. Askbrant, J. Melin, J. Sandalls, R. Vallejo, T. Hinton, A. Cremers, C. Vandecasteele, N. Lewyckyj, Yu. Ivanov, S. Firsakova, N. Arkhipov R. Alexakhin, Mobility of radionuclides in undisturbed and cultivated soils in Ukraine, Belarus and Russia six years after the Chemobyl fallout. J. Environ Radioact. 31(3), 287–312 (1996) 8. A. Aysen, Problem solving in soil mechanics (Swets & Zeitlinger, Lisse, 2003). 9. J. Bell, T.H. Bates, Distribution coefficients of radionuclides between soils and groundwater’s and their dependence test parameters. Sci. Total. Environ. 69, 297–317 (1998) 10. N. Bolan, A. Kunhikrishnan, R. Thangarajan, J. Kumpiene, T. Makino, M. B. Kirkham, K. Scheckel, Remediation of heavy metal(loid)s contaminated soils – to mobilize or to immobilize? J. Hazard. Mater. 266, 141–166 (2014). doi:10.1016/jhazmat.2013.12.018 11. D.A. Cafaldo, M. Fadden, T.R. Larland, Radionuclide complexation in soils and plants. Special. Fission. and Activ. Prod. Environ. Proc. 85, 398–408 (1986) 12. H.D. Foth, Fundamentals of soil science (John Wiley & Sons Inc, New York, 1991) 13. C. Garbisu, I. Alkorta, Basic concepts on heavy metal soil bioremediation: review. The European journal of mineral processing and environmental protection 3(1), 58–66 (2003) 14. K.K. Gedroyts, Selected scientific works (Science, Moscow, 1975) 15. M.H. Gerzabek, Wir verhalten sich radioaktive Stoffe im Boden? Agrozucker 4, 9–10 (1996) 16. M.H. Gerzabek, S.A. Mohamad, K. Muck, Cesium137 in soil texture fractions and impact on cesium137 soil-to-plant transfer. Commun. Soil Sci. Plant. Anal. 23, 321–330 (1992) 17. Guidelines for agricultural countermeasures following an accidental release of radionuclides. Technical reports series No. 363 (International Atomic Energy Agency, Vienna, 1994) 18. K. Harmsen, Behavior of heavy metals in soils (Centre for Agriculture Publishing and Documentation, Wageningen, 1977) 19. H. Hu, Q. Jin, Ph. Kavan, A study of heavy metal pollution in China: current status, pollution-control policies and countermeasures. Sustainability 6, 5820–5838 (2014). doi:10.3390/su609582020. A. Kabata-Pendias, Trace elements in soils and plants (Taylor and Francis Group, Roca Raton, 2011) 21. J. Kiepul, J. Sieukiewicz, Pobieranie 90Sr i 137Cs przez niektore rosliny ukrawne z gleb o roznym skladzie mechanicznym. Pamietnik Pulaw 83, 105– 115 (1994) 22. W. Kuhn, I. Handl, P. Schuller, The influence of soil parameters on 137Cs uptake by plants from long-term fallout on forest clearings and grassland. Health Physics 46(5), 1083–1093 (1984) 23. M. Lu, Z.-Z. Zhang, Phytoremediation of soil cocontaminated with heavy metals and deca-BDE by co-planting of Sedum alfredii with tall fescue associated with Bacillus cereus. Plant Soil 382 (1-2), 89–102 (2014). doi:10.1007/s11104-014-2147-0 24. A. Mahar, P. Wang, R. Li, Z. Zhang, Immobilization of lead and cadmium in contaminated soil using amendments: a review. Pedosphere 25(4), 555–568 (2015) 25. M.M. Mikha, J.G. Benjamin, P.W. Stahlman, P.W.I. Geier, Remediation/restoration of degraded soil: I. impact on soil chemical properties. Agron. J. 106, 252–260 (2014). doi:10.2134/agronj2013.0278 26. J. Paz-Ferreiro, H. Lu, S. Fu, A. Méndez, G. Gascó, Use of phytoremediation and biochar to remediate heavy metal polluted soils: a review. Solid Earth 5, 65–75, (2014). doi:10.5194/se-5-65-2014 27. A.G. Podolyak, S. Tagai, E. Nilova, V. Averin, Assessment of committed doses received by agricultural workers in grain harvesting operations in the areas of radioactive contamination. Radioprotection 52 (1), 37–43 (2017). doi:10.1051/radiopro/2017001 28. A.G. Podolyak, A.F. Karpenko, Copper in arable and meadow soils of Gomel region. Ecological Bulletin of Kryvyi Rih District 4, 56–66 (2019). doi:10.31812/eco-bulletin-krd.v4i0.2560 29. V.M. Savosko, Land melioration and phytorecultivation (Dionat, Kryvyi Rih, 2011) 30. V.M. Savosko, Heavy Metals in Soils at Kryvbas (Dionat, Kryvyi Rih, 2016) 31. T. Sawidis, Uptake of radionuclides by plants after the Chernobyl accident. Environ. Pollut. 50(4), 317– 324 (1988) 32. H.M. Selim, D.L. Sparks (eds.), Heavy metals release in soils (Lewis Publishers, Boca Raton, 2001) 33. D.L. Sparks (ed.), Soil physical chemistry (CRC, Boca Raton, 1999) 34. D.L. Sparks, Environmental soil chemistry (Elsevier Science, San Diego, 2003) 35. G. Sposito, The chemistry of soils (Oxford University Press, New York, 2008) 36. W. Steffens, W. Mittelsstaedt, G. Klaes, F. Fuhr, Radionuclide transfer of 90Sr, 137Cs, 60Co and 54Mn, to plants grown on soils with different physical and chemical properties and from different sites at Eschweilv, in Abstract of the 6th International congress “Radiation, risk, protection”, 1984, ed. by A. Kaul et al., vol. 1, pp. 193–196 37. C. Su, L.Q. Jiang, W.J. Zhang, A review on heavy metal contamination in the soil worldwide: situation, impact and remediation techniques. Environ. Skep. Crit. 3(2), 24–38 (2014) 38. T. Szabova, S. Bartha, Stanovenie prechodovych koeficientov pre stroncium v systeme voda-roslina v localitach vystavby. Radioactiv. Zivot. Presorted. 8(1), 17-32 (1985) 39. N.V. Timofeev-Resovsky, V.I. Ivanov, V.I. Korogodin, Application of the hit principle in radiobiology (Atomizdat, Moscow, 1968) 40. N.V. Timofeev-Resovsky, A.V. Savich, M.I. Shalnov, Introduction to molecular radiobiology (Medicine, Moscow, 1981) 41. М. Vidal, М. Campas, N. Grebenshikova, N. Sanzharova, Y. Ivanov, A. Rigol, S. Firsakova, S. Fesenko, S. Levchuk, T. Sauras, A. Podolyak, G. Rauret, Effectiveness of agricultural practices in decreasing radionuclide transfer to plants in natural meado. Radiat. Prot. Dosim. 92 (1–3), 65–70 (2000) 42. M.H. Wong, Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils. Chemosphere 50(6), 775–780 (2003). doi:10.1016/s0045-6535(02)00232-1 43. M. Zacchini, F. Pietrini, G. S. Mugnozza, V. Iori, L. Pietrosanti, A. Massacci, Metal tolerance, accumulation and translocation in poplar and willow clones treated with cadmium in hydroponics. Water Air Soil Pollut. 197, 23–34 (2009). doi:10.1007/s11270-008-9788-7 44. S. Zaidi, S. Usmani, B. R. Singh, J. Musarrat, Significance of Bacillus subtilis strain SJ-101 as a bioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea. Chemosphere 64, 991–997 (2006). doi:10.1016/j.chemosphere.2005.12.057 45. J. Zhang, J. Liu, R. Liu, Effects of pyrolysis temperature and heating time on biochar obtained from the pyrolysis of straw and lignosulfonate. Bioresour. Technol. 176, 288–291 (2015). doi:10.1016/j.biortech.2014.11.011 46. S. Zhang, M. Chen, T. Li, X. Xu, L. Deng, A newly found cadmium accumulator – Malva sinensis. Cavan. J. Hazard. Mater. 173, 705–709 (2010). doi:10.1016/j.jhazmat.2009.08.142 47. F. Zhao, E.Lombi, S. McGrath, Assessing the potential for zinc and cadmium phytoremediation with the hyperaccumulator Thlaspi caerulescens. Plant Soil. 249(1), 37–43 (2003). doi:10.1023/A:1022530217289 48. R.L. Zheng, C. Cai, J.H. Liang, Q. Huang, Z. Chen, Y.Z. Huang, H.P.H. Arp, G.X. Sun, The effects of biochars from rice residue on the formation of iron plaque and the accumulation of Cd, Zn, Pb, As in rice (Oryza sativa L.) seedlings. Chemosphere 89, 856–863 (2012). doi:10.1016/j.chemosphere.2012.05.008 49. Q.X. Zhou, S. Cui, S.H. Wei, W. Zhang, L. Cao, L.P. Ren, Effects of exogenous chelators on phytoavailability and toxicity of Pb in Zinnia elegans Jacq. J. Hazard. Mater. 146, 341–346, (2007). doi:10.1016/j.jhazmat.2006.12.028 50. F. Zojaji, A.H. Hassani, M.H. Sayadi, Bioaccumulation of chromium by Zea mays in wastewater-irrigated soil: An experimental study. Proc. Int. Acad. Ecol. Environ. Sci. 4(2), 62–67 (2014) 51. M. Zubair, M. Shakir, Q. Ali, N. Rani, N. Fatima, S. Farooq, S. Shafiq, N. Kanwal, F. Ali, I.A. Nasir, Rhizobacteria and phytoremediation of heavy metals. Environ. Technol. Rev. 5, 112–119 (2016). doi:10.1080/ 21622515.2016.1259358
dc.description.abstract Object of research: to systematize (taking into account the possible consequences to biosphere) the known technologies for ecological restoration of soils contaminated by heavy metals and radionuclides. Only a healing technology should be recognized as one possible methodology for solving any soil problems. For soils contaminated by heavy metals and radionuclides healing patterns is conceptually ordered into the following levels: mission, strategy, technology. The mission of healthy soil should be aimed at maintaining the chemical elements content within the optimum interval. The strategy of healthy soil involves the regulation of individual elements content in the soil. Ex-situ a soil healing technology is implemented outside the original pollution site. In-situ, a soil healing technology is carried out directly on the original pollution site. Excavation of the сontaminated soil layer is the first stage for ex-situ soil restoration. In the future it will be possible: 1) storage of contaminated soil at special landfills, 2) treatment of contaminated soil at a special reactor. All technologies for in-situ healthy of heavy metals contaminated soils can be ordered as: 1) localization, 2) deconcentration, 3) inactivation, 4) extraction. uk_UA
dc.language.iso en uk_UA
dc.publisher E3S Web of Conferences uk_UA
dc.subject healthy soils uk_UA
dc.subject heavy metals uk_UA
dc.subject radionuclides uk_UA
dc.subject localization uk_UA
dc.subject deconcentration uk_UA
dc.subject inactivation uk_UA
dc.subject extraction uk_UA
dc.title Modern Environmental Technologies of Healthy Soils Contaminated by Heavy Metals and Radionuclides uk_UA
dc.type Article uk_UA


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account

Statistics