dc.description |
1. Albert, R., Barabási, A.-L.: Statistical Mechanics of Complex Networks. Rev. Mod. Phys.
74, 47–97 (2002). doi:10.1103/RevModPhys.74.47
2. Albuquerque, Y., de Sá, J., Padula, A., Montenegro, M.: The best of two worlds:
Forecasting high frequency volatility for cryptocurrencies and traditional currencies with
Support Vector Regression. Expert Systems With Applications 97, 177–192. (2018)
https://doi.org/10.1016/j.eswa.2017.12.004
3. Alessandretti, L., ElBahrawy, A., Aiello, L.M., Baronchelli, A.: Machine Learning the
Cryptocurrency Market. https://ssrn.com/abstract=3183792 (2018).
doi:10.2139/ssrn.3183792. Accessed 15 Sep 2018
4. Anderson, P.W.: Absence of Diffusion in Certain Random Lattices. Phys. Rev. 109(5),
1492–1505 (1958). doi:10.1103/PhysRev.109.1492
5. Andrews, B., Calder, M., Davis, R.A.: Maximum Likelihood Estimation for α-Stable
Autoregressive Processes. The Annals of Statistics 37(4), 1946–1982 (2009).
doi:10.1214/08-AOS632
6. Bielinskyi, A., Soloviev, V., Semerikov, S., Solovieva, V.: Detecting Stock Crashes Using
Levy Distribution. In: Kiv, A., Semerikov, S., Soloviev, V., Kibalnyk, L., Danylchuk, H.,
Matviychuk, A. (eds.) Experimental Economics and Machine Learning for Prediction of
Emergent Economy Dynamics, Proceedings of the Selected Papers of the 8th International
Conference on Monitoring, Modeling & Management of Emergent Economy (M3E2 2019),
Odessa, Ukraine, May 22-24, 2019. CEUR Workshop Proceedings 2422, 420–433.
http://ceur-ws.org/Vol-2422/paper34.pdf (2019). Accessed 1 Aug 2019
7. Chen, T., Guestrin, C.: XGBoost: A Scalable Tree Boosting System. In: KDD '16
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, San Francisco, August 13-17, 2016, pp. 785-794 (2016).
doi:10.1145/2939672.2939785
8. Dassios, A., Li, L.: An Economic Bubble Model and Its First Passage Time.
arXiv:1803.08160v1 [q-fin.MF]. https://arxiv.org/pdf/1803.08160.pdf (2018). Accessed 21
Mar 2019
9. Dyson, F.J.: Statistical Theory of the Energy Levels of Complex Systems. Journal of
Mathematical Physics 3, 140–156 (1962). doi:10.1063/1.1703773
10. Guo, T., Antulov-Fantulin, N.: An experimental study of Bitcoin fluctuation using machine
learning methods. arXiv:1802.04065v2 [stat.ML]. https://arxiv.org/pdf/1802.04065.pdf
(2018). Accessed 25 Oct 2018
11. Halvin, S., Cohen, R.: Complex networks. Structure, robustness and function. Cambridge
University Press, New York (2010)
12. Jiang, S., Guo, J., Yang, C., Tian, L.: Random Matrix Analysis of Cross-correlation in
Energy Market of Shanxi, China. International Journal of Nonlinear Science 23(2), 96–101.
http://www.internonlinearscience.org/upload/papers/IJNS%20Vol%2023%20%20No%20
2%20Paper%206-%20Random%20Matrix.pdf (2017). Accessed 25 Oct 2019
13. Kennis, M.A.: Multi-channel discourse as an indicator for Bitcoin price and volume
movements. arXiv:1811.03146v1 [q-fin.ST]. https://arxiv.org/pdf/1811.03146.pdf (2018).
Accessed 25 Oct 2019
14. Kiv, A., Semerikov, S., Soloviev, V., Kibalnyk, L., Danylchuk, H., Matviychuk, A.:
Experimental Economics and Machine Learning for Prediction of Emergent Economy
Dynamics. In: Kiv, A., Semerikov, S., Soloviev, V., Kibalnyk, L., Danylchuk, H.,
Matviychuk, A. (eds.) Experimental Economics and Machine Learning for Prediction of
Emergent Economy Dynamics, Proceedings of the Selected Papers of the 8th International Conference on Monitoring, Modeling & Management of Emergent Economy (M3E2 2019),
Odessa, Ukraine, May 22-24, 2019. CEUR Workshop Proceedings 2422, 1–4. http://ceurws.org/Vol-2422/paper00.pdf (2019). Accessed 1 Aug 2019
15. Kodama, O., Pichl, L., Kaizoji, T.: Regime Change and Trend Prediction for Bitcoin Time
Series Data. In: Hájek P., Vít O., Bašová P., Krijt M., Paszeková H., Součková O., Mudřík
R. (eds.) CBU International Proceedings 2017: Innovations in Science and Education,
Prague, 22–24 March 2017, pp. 384–388. Central Bohemia University Prague (2017).
doi:10.12955/cbup.v5.954
16. Laloux, L., Cizeau, P., Bouchaud, J.-P., Potters, M.: Noise dressing of financial correlation
matrices. Physical Review Letters 83(7), 1467–1470 (1999).
doi:10.1103/PhysRevLett.83.1467
17. Mantegna, R.N., Stanley, H.E.: An Introduction to Econophysics: Correlations and
Complexity in Finance. Cambridge University Press, Cambridge (2000)
18. Mehta, L.M.: Random Matrices, 3
rd edn. Academic Press, San Diego (2004)
19. Newman, M., Barabási A.-L., Watts D.J. (eds.): The Structure and Dynamics of Networks.
Princeton University Press, Princeton and Oxford (2006)
20. Newman, M.E.J.: The Structure and Function of Complex Networks. SIAM Reviews 45(2),
167–256 (2003). doi:10.1137/S003614450342480
21. Nikolis, G., Prigogine, I.: Exploring Complexity: An Introduction. St. Martin’s Press, New
York (1989)
22. Pharasi, H.K., Sharma, K., Chakraborti, A., Seligman, T.H.: Complex Market Dynamics in
the Light of Random Matrix Theory. In: Abergel F., Chakrabarti B., Chakraborti A., Deo
N., Sharma K. (eds.) New Perspectives and Challenges in Econophysics and Sociophysics,
pp. 13–34. New Economic Windows. Springer, Cham (2019). doi:10.1007/978-3-030-
11364-3_2
23. Plerou, V., Gopikrishnan, P., Rosenow, B., Amaral, L.A.N., Guhr, T., Stanley, H.E.:
Random matrix approach to cross correlations in financial data. Phys. Rev. E 65, 066126
(2002)
24. Saptsin, V., Soloviev, V.: Relativistic quantum econophysics – new paradigms in complex
systems modelling. arXiv:0907.1142v1 [physics.soc-ph].
https://arxiv.org/pdf/0907.1142.pdf (2009). Accessed 25 Oct 2019
25. Shah, D., Zhang, K.: Bayesian regression and Bitcoin. In: 2014 52nd Annual Allerton
Conference on Communication, Control, and Computing (Allerton), Monticello, 30 Sept. –
3 Oct. 2014. IEEE (2014). doi:10.1109/ALLERTON.2014.7028484
26. Shen, J., Zheng, B.: Cross-correlation in financial dynamics. EPL (Europhysics Letters)
86(4), 48005 (2009). doi:10.1209/0295-5075/86/48005
27. Soloviev, V., Belinskij, A.: Methods of nonlinear dynamics and the construction of
cryptocurrency crisis phenomena precursors. In: Ermolayev, V., Suárez-Figueroa, M.C.,
Yakovyna, V., Kharchenko, V., Kobets, V., Kravtsov, H., Peschanenko, V., Prytula, Y.,
Nikitchenko, M., Spivakovsky, A. (eds.) Proceedings of the 14th International Conference
on ICT in Education, Research and Industrial Applications. Integration, Harmonization and
Knowledge Transfer. Volume II: Workshops, Kyiv, Ukraine, May 14-17, 2018. CEUR
Workshop Proceedings 2014, 116–127. http://ceur-ws.org/Vol-2104/paper_175.pdf (2018).
Accessed 25 Oct 2019
28. Soloviev, V., Moiseienko, N., Tarasova, O.: Modeling of cognitive process using
complexity theory methods. In: Ermolayev V., Mallet F., Yakovyna V., Kharchenko V.,
Kobets V., Korniłowicz A., Kravtsov H., Nikitchenko M., Semerikov S., Spivakovsky A.
(eds.) Proceedings of the 15th International Conference on ICT in Education, Research and
Industrial Applications. Integration, Harmonization and Knowledge Transfer. Volume II Workshops. Kherson, Ukraine, June 12-15, 2019. CEUR Workshop Proceedings, vol. 2393,
pp. 905–918. http://ceur-ws.org/Vol-2393/paper_356.pdf (2019). Accessed 25 Oct 2019
29. Soloviev, V., Serdiuk, O., Semerikov, S., Kohut-Ferens, O.: Recurrence entropy and
financial crashes. In: Horal L., Soloviev V., Matviychuk A., Khvostina I. (eds.).
Proceedings of the 2019 7th International Conference on Modeling, Development and
Strategic Management of Economic System (MDSMES 2019). Advances in Economics,
Business and Management Research, vol. 99, pp. 385–388. Atlantis Press, Paris (2019).
doi:10.2991/mdsmes-19.2019.73
30. Soloviev, V., Solovieva, V., Tuliakova, A., Ivanova, M.: Construction of crisis precursors
in multiplex networks. In: Horal L., Soloviev V., Matviychuk A., Khvostina I. (eds.).
Proceedings of the 2019 7th International Conference on Modeling, Development and
Strategic Management of Economic System (MDSMES 2019). Advances in Economics,
Business and Management Research, vol. 99, pp. 361–366. Atlantis Press, Paris (2019).
doi:10.2991/mdsmes-19.2019.68
31. Soloviev, V.N., Belinskiy, A.: Complex Systems Theory and Crashes of Cryptocurrency
Market. In: Ermolayev V., Suárez-Figueroa M., Yakovyna V., Mayr H., Nikitchenko M.,
Spivakovsky A. (eds.) Information and Communication Technologies in Education,
Research, and Industrial Applications (14th International Conference, ICTERI 2018, Kyiv,
Ukraine, May 14-17, 2018, Revised Selected Papers). Communications in Computer and
Information Science, vol. 1007, pp. 276-297. Springer, Cham (2019). doi:10.1007/978-3-
030-13929-2_14
32. Song J.Y., Chang W., Song J.W.: Cluster analysis on the structure of the cryptocurrency
market via Bitcoin-Ethereum filtering. Physica A: Statistical Mechanics and its
Applications 527, 121339 (2019). doi:10.1016/j.physa.2019.121339
33. Stosic, Darco, Stosic, Dusan, Ludermir, T.B., Stosic, T.: Collective behavior of
cryptocurrency price changes. Physica A: Statistical Mechanics and its Applications 507,
499–509 (2018). doi:10.1016/j.physa.2018.05.050
34. Tarnopolski, M.: Modeling the price of Bitcoin with geometric fractional Brownian motion:
a Monte Carlo approach. arXiv:1707.03746v3 [q-fin.CP].
https://arxiv.org/pdf/1707.03746.pdf (2017). Accessed 17 Aug 2019
35. Urama, T.C., Ezepue, P.O., Nnanwa, C.P.: Analysis of Cross-Correlations in Emerging
Markets Using Random Matrix Theory. Journal of Mathematical Finance 7(2), 291–307
(2017). doi:10.4236/jmf.2017.72015
36. Wang, M., Zhao, L., Du, R., Wang, C., Chen, L., Tian, L., Stanley, H.E.: A novel hybrid
method of forecasting crude oil prices using complex network science and artificial
intelligence algorithms. Applied Energy 220, 480–495 (2018).
doi:10.1016/j.apenergy.2018.03.148
37. Wigner, E.P.: On a class of analytic functions from the quantum theory of collisions. Annals
of Mathematics Second Series 53(1), 36–67 (1951). doi:10.2307/1969342 |
|