DSpace Repository

Island photonic structures: Properties and application in sensing and metrology

Show simple item record

dc.contributor.author Степанюк, Олександр Миколайович
dc.contributor.author Глушко, Євген Якович
dc.date.accessioned 2020-01-04T13:11:37Z
dc.date.available 2020-01-04T13:11:37Z
dc.date.issued 2019
dc.identifier.citation Glushko E. Ya. Island photonic structures: Properties and application in sensing and metrology / E. Ya. Glushko, A. N. Stepanyuk // Semiconductor Physics, Quantum Electronics & Optoelectronics. – 2019. – Vol. 22. – N. 4. – P. 430-436. – DOI : 10.15407/spqeo22.04.430 uk_UA
dc.identifier.issn 1605-6582
dc.identifier.uri http://elibrary.kdpu.edu.ua/xmlui/handle/123456789/3610
dc.identifier.uri https://doi.org/10.15407/spqeo22.04.430
dc.description 1. Dongarra J.J. Performance of Various Computers Using Standard Linear Equations Software. Oak Ridge National Laboratory. 2014. P. 1–110. http://netlib.org/benchmark/performance.pdf. 2. Rayleigh J.W.S. On the maintenance of vibrations by forces of double frequency and on the propagation of waves through a medium endowed with a periodic structure. Phil. Mag. 1887. 24(147). P. 145 –159. https://doi.org/10.1080/14786448708628074. 3. Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 1987. 58, No 20. P. 2059–2062. https://doi.org/10.1103/PhysRevLett.58.2059. 4. John S. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 1987. 58, No 23. P. 2486–2489. https://doi.org/10.1103/PhysRevLett.58.2486. 5. Werber A., Zappe H. Tunable, membrane-based, pneumatic micro-mirrors. J. Opt. A: Pure Appl. Opt. 2006. 8. P. 313–317. https://doi.org/10.1109/OMEMS.2005.1540115. 6. Pervak V., Ahmad I., Trubetskov M.K., Tikhonravov A.V., Krausz F. Double-angle multilayer mirrors with smooth dispersion characteristics. Opt. Exp. 2009. 17, No 10. P. 7943–7951. https://doi.org/10.1364/OE.17.007943. 7. Tokranova N., Xu B., Castracane J. Fabrication of flexible one-dimensional porous silicon photonic band-gap structures. MRS Proc. 2004. 797. https://doi.org/10.1557/PROC-797-W1.3. 8. Grzybowski B., Qin D., Haag R., Whitesides G.M. Elastomeric optical elements with deformable surface topographies: applications to force measurements, tunable light transmission and light focusing. Sensors and Actuators. 2000. 86, No 1–2. P. 81–85. https://doi.org/10.1016/S0924-4247(00)00421-0. 9. Ouellette J. Seeing the future in photonic crystals. The Industrial Physicist. 2002. 7, No 6. P. 14–17. 10. Sakoda K. Optical Properties of Photonic Crystals. Berlin. Springer Verlag, 2001. 11. Winn N.Y., Fink S., Fan Y., and Joannopoulos J.D. Omnidirectional reflection from a one-dimensional photonic crystal. Opt. Lett. 1998. 23. P. 1573–1575. https://doi.org/10.1364/OL.23.001573. 12. Deopura M., Ullal C.K., Temelkuran B., and Fink Y. Dielectric omnidirectional visible reflector. Opt. Lett. 2001. 26. P. 1197–1199. https://doi.org/10.1364/OL.26.001197. 13. Loncar M., Doll T., Vuchkovich J., Scherer A. Design and fabrication of silicon photonic crystal optical waveguides. J. Lightwave Technol. 2000. 18. P. 1402. http://resolver.caltech.edu/ CaltechAUTHORS:LONjlt00. 14. Loncar M., Nedeljkovic D., Doll T., Vuckovjc J., Scherer A., and Pearsall T.P. Waveguiding in planar photonic crystals. Appl. Phys. Lett. 2000. 77, No 13. P. 1937–1939. https://doi.org/10.1063/1.1311604. 15. Kawai N., Inoue K., Carlsson N., Ikeda N., Sugimoto Y., Asakawa K., Takemori T. Confined band gap in an air-bridge type of two-dimensional AlGaAs photonic crystal. Phys. Rev. Lett. 2001. 86. P. 2289–2292. https://doi.org/10.1103/PhysRevLett.86.2289. 16. Shi J., Juluri B.K., Lin S.C.S., Lu M., Gao T., Huang T.J. Photonic crystal composites-based wide-band optical collimator. J. Appl. Phys. 2010. 108. P. 043514 (6 p.). https://doi.org/10.1063/1.3468242. 17. Patent WO № 2007094845, USA. All-optical logic gates using nonlinear elements – A1, Aug 23 2007, COVEYTECH LLC (US). 18. Rani P., Kalra Y., Sinha R.K. Design of photonic crystal architecture for optical logic AND gates. Proc. SPIE. 2013. 8847, Photonic Fiber and Crystal Devices: Advances in Materials and Innovations in Device Applications VII. P. 88470X. https://doi.org/10.1117/12.2023855. 19. Glushko E.Ya. All-optical signal processing in photonic structures with nonlinearity. Opt. Commun. 2005. 247. P. 275–280. https://doi.org/10.1016/j.optcom.2004.11.096. 20. Glushko E.Ya. Island kind 2D photonic crystal resonator. Ukr. Phys. J. 2017. 62, No 11. P. 939– 946. 21. Glushko E.Ya. Pneumatic photonic crystals. Opt. Exp. 2010. 18, No 3. P. 3071–3078. https://doi.org/10.1364/OE.18.003071. 22. Glushko E.Ya. The conception of scales echeloning for precise optical indication of pressure and temperature. 11th Intern. Conf. on Laser and FiberOptical Networks Modeling (LFNM), 2011. P. 1–3. https://doi.org/10.1109/LFNM.2011.6144974. 23. Landau L.D., Lifshitz E.M. Theory of Elasticity. New York, Pergamon Press, 1970. 24. Turyshev S.G., Toth V.T. The Pioneer Anomaly. Living Rev. Relativity. 2010. 13. P. 4–175. https://doi.org/10.12942/lrr-2010-4. 25. Glushko E.Ya., Stepanyuk A.N. A pneumatic photonic structure and precise optical indication of pressure over time inside the fluid flow. Int. J. Biosen. & Bioelectron. 2018. 4, No 3. P. 99–102. http://elibrary.kdpu.edu.ua/xmlui/handle/123456789 /2896.
dc.description.abstract In this work, we consider a novel photonic crystal type, island resonator, perspective objects of all-optical processing domain, which can be used in the logic gate and adder architecture. Another kind of novel structures, gas-containing pneumatic photonic crystal, was considered as an optical indicator of pressure uniting several pressure scales of magnitude. This type of device includes layered elastic platform, optical fibers and switching valves, all enclosed into a chamber. We have investigated theoretically distribution of deformation and pressure inside a pneumatic photonic crystal, its bandgap struc-ture and light reflection changes depending on the influence of external pressure and tempe-rature. A method has been proposed to determine the fundamental molar gas constant R with the relative standard uncertainty near 10^–10 that is based on extra accurate volume controlling and high sensitive pressure measurements in the framework of scale echeloning procedure. uk_UA
dc.language.iso en uk_UA
dc.publisher V. E. Lashkaryov Institute of Semiconductor Physics NAS of Ukraine uk_UA
dc.subject pneumatic photonic resonator uk_UA
dc.subject optical devices uk_UA
dc.subject biosensors uk_UA
dc.subject precise pressure measurement uk_UA
dc.subject molar gas constant uk_UA
dc.title Island photonic structures: Properties and application in sensing and metrology uk_UA
dc.type Article uk_UA


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account

Statistics