dc.description |
1. Rutten, N., van Joolingen, W.R., van der Veen, J.T.: The learning effects of computer
simulations in science education. Computers & Education. 58(1), 136–153 (2012).
doi:10.1016/j.compedu.2011.07.017
2. Lamb, R., Premo, J.: Computational Modeling of Teaching and Learning through
Application of Evolutionary Algorithms. Computation. 3(3), 427–443 (2015).
doi:10.3390/computation3030427
3. Mayor, J., Gomez, P. (ed.): Proceedings of the 13th Neural Computation and Psychology
Workshop (NCPW13) on Computational models of cognitive processes. World Scientific
Publishing, Singapore (2014) 4. Nikolis, G., Prigogine, I.: Exploring complexity: An introduction. W. H. Freeman and
Company, New York (1989)
5. Kapitsa, S.P., Kurdyumov, S.P., Malinetsky, G.G.: Sinergetika i prognozy buduschego
(Synergetics and prognoses of the future). Editorial URSS, Moscow (2003)
6. Arnold, V.I.: Matematika i matematicheskoe obrazovanie v sovremennom mire
(Mathematics and mathematical education in the modern world). Matematicheskoe
obrazovanie. 2, 109–112 (1997)
7. Harasim, L.: Shift happens: online education as a new paradigm in learning. The Internet
and Higher Education. 3(1–2), 41–61 (2000). doi:10.1016/S1096-7516(00)00032-4
8. Goh, W.P., Kwek, D., Hogan, D., Cheong, S.A.: Complex network analysis of teaching.
EPJ Data Science. 3:36 (2014). doi:10.1140/epjds/s13688-014-0034-9
9. The Future of Jobs Report 2018. http://www3.weforum.org/docs/WEF_Future_of_Jobs
_2018.pdf (2018). Accessed 24 Mar 2019
10. Solovjov, V.M., Serdyuk O.A., Danilchuk, G.B.: Modelyuvannya skladnih system
(Modelling of complex systems). Vydavec' О.Yu. Vovchok, Cherkasy (2016)
11. Hausdorff, J., Zemany, L., Peng, C.-K., Goldberger, A.L.: Maturation of gait dynamics:
stride-to-stride variability and its temporal organization in children. Journal of Applied
Physiology. 86(3), 1040–1047 (1999). doi:10.1152/jappl.1999.86.3.1040
12. Delignieres, D., Torre, K.: Fractal dynamics of human gait: a reassessment of the 1996
data of Hausdorff et al. Journal of Applied Physiology. 106(4), 1272–1279 (2009).
doi:10.1152/japplphysiol.90757.2008
13. Van Rooij, M.M.J.W, Nash, B.A., Rajaraman, S., Holden, J.G.: A fractal approach to
dynamic inference and distribution analysis. Frontier in Physiology. 4(1), 1–16 (2013).
doi:10.3389/fphys.2013.00001
14. Ausloos, M.: Generalized Hurst exponent and multifractal function of original and
translated texts mapped into frequency and length time series. Physical Review E. 86(3).
031108 (2012). doi:10.1103/PhysRevE.86.031108
15. Liu, X.F., Tse, C.K., Small, M.: Complex network structure of musical compositions:
Algorithmic generation of appealing music. Physica A: Statistical Mechanics and its
Applications. 389(1), 126–132 (2010). doi:10.1016/j.physa.2009.08.035
16. CompEngine. A self-organizing database of time-series data. http://www.comp-engine.org
(2019). Accessed 24 Mar 2019
17. Schmid, U., Ragni, M., Gonzalez, C., Funke, J.: The challenge of complexity for cognitive
systems. Cognitive Systems Research. 12(3–4), 211–218 (2011).
doi:10.1016/j.cogsys.2010.12.007
18. Bentz, C., Alikaniotis, D., Cysouw, M., Ferrer-i-Cancho, R: The Entropy of Words –
Learnability and Expressivity across More Than 1000 Languages. Entropy. 19(6), 275–279
(2017). doi:10.3390/e19060275
19. Hernandez-Gomez, C., Basurdo-Flores, R., Obregon-Quintana, B., Guzman-Vargas, L.:
Evaluating the Irregularity of Natural Languages. Entropy. 19(10), 521–621 (2017).
doi:10.3390/e19100521
20. Keshmiri, S., Sumioka, H., Yamazaki, R., Ishiguro, H.: Multiscale Entropy Quantifies the
Differential Effect of the Medium Embodiment on Older Adults Prefrontal Cortex during
the Story Comprehension: A Comparative Analysis. Entropy. 21(2), 199–215 (2019).
doi:10.3390/e21020199
21. Wu, M., Liao. L., Luo, X., Ye, X., Yao, Y., Chen, P., Shi, L., Huang, H., Wu, Y.: Children
Development Using Gait Signal Dynamics Parameters and Ensemble Learning
Algorithms. BioMed Research International. 9246280 (2016). doi:10.1155/2016/9246280 22. Jiang, Z.-Q., Xie, W.-J., Zhou, W.-X., Sornette, D.: Multifractal analysis of financial
markets. arXiv:1805.04750 [q-fin.ST]. https://arxiv.org/pdf/1805.04750.pdf (2018).
Accessed 24 Mar 2019
23. Wijnants, M.L: A Review of Theoretical Perspectives in Cognitive Science on the
Presence of 1/f Scaling in Coordinated Physiological and Cognitive Processes. Journal of
Nonlinear Dynamics. 2014. 962043 (2014). doi:10.1155/2014/962043
24. Fan, C., Guo, J.-L., Zha, Y.-L.: Fractal analysis on human dynamics of library loans.
Physica A: Statistical Mechanics and its Applications. 391(24), 6617–6625 (2012).
doi:10.1016/j.physa.2012.06.063
25. Albert, R., Barabasi, A.-L.: Statistical Mechanics of Complex Networks. Reviews of
Modern Physics. 74, 47–97 (2002). doi:10.1103/RevModPhys.74.47
26. Chen, H., Chen, X., Liu, H.: How does language change as a lexical network? An
investigation based on written Chinese word co-occurrence networks. PLOS One. 13(2).
e0192545 (2018). doi:10.1371/journal.pone.0192545
27. Donner, R.V., Small, M., Donges, J.F., Marwan, N., Zou, Y., Xiang, R., Kurths, J.:
Recurrence-based time series analysis by means of complex network methods.
International Journal of Bifurcation and Chaos. 21(4), 1019–1046 (2011).
doi:10.1142/S0218127411029021
28. Webber, C.L., Ioana, C., Marwan, N. (eds.): Recurrence Plots and Their Quantifications:
Expanding Horizons. Proceedings of the 6th International Symposium on Recurrence Plots
2015, Grenoble, France, 17-19 June 2015. Springer Proceedings in Physics, vol. 180.
Springer International Publishing, Heidelberg (2016). doi:10.1007/978-3-319-29922-8
29. Soloviev, V., Belinskij, A.: Methods of nonlinear dynamics and the construction of
cryptocurrency crisis phenomena precursors. In: Ermolayev, V., Suárez-Figueroa, M.C.,
Yakovyna, V., Kharchenko, V., Kobets, V., Kravtsov, H., Peschanenko, V., Prytula, Y.,
Nikitchenko, M., Spivakovsky, A. (eds.) Proceedings of the 14th International Conference
on ICT in Education, Research and Industrial Applications. Integration, Harmonization
and Knowledge Transfer. Volume II: Workshops, Kyiv, Ukraine, May 14-17, 2018. CEUR
Workshop Proceedings, vol. 2014, pp. 116–127. http://ceur-ws.org/Vol2104/paper_175.pdf. Accessed 24 Mar 2019
30. Soloviev, V.N, Belinskiy, A.: Complex Systems Theory and Crashes of Cryptocurrency
Market. In: Ermolayev V., Suárez-Figueroa M., Yakovyna V., Mayr H., Nikitchenko M.,
Spivakovsky A. (eds) Information and Communication Technologies in Education,
Research, and Industrial Applications. ICTERI 2018. Communications in Computer and
Information Science, vol. 1007, pp. 276–297 (2019). doi:10.1007/978-3-030-13929-2_14 |
|