dc.description |
1. Abelson, H., Sussman, G. J., Sussman, J.: Structure and Interpretation
of Computer Programs. 2nd edn. MIT Press, Cambridge (1996).
2. Abraham, T. H.: (Physio)logical circuits: The intellectual origins of
the McCulloch-Pitts neural networks. Journal of the History of the
Behavioral Sciences. 38 (1), 3–25 (2002). doi: 10.1002/jhbs.1094
3. Ayed, A. S.: Parametric Cost Estimating of Highway Projects using
Neural Networks. Master thesis, Memorial University (1997).
4. Buergermeister, J. J.: Using Computer Spreadsheets for Instruction
in Cost Control Curriculum at the Undergraduate Level. In: Dalton,
D.W. (ed.) Restructuring Training and Education through Technology,
Proceedings of the 32nd Annual Conference of the Association for the
Development of Computer-Based Instructional Systems, San Diego,
California, October 29 — November 1, 1990, pp. 214–220. ADCIS
International, Columbus (1990).
5. Cowan, J. D. Interview with J. A. Anderson and E. Rosenfeld. In:
Anderson, J. A., Rosenfeld, E. (eds.) Talking nets: An oral history
of neural networks, pp. 97–124. MIT Press, Cambridge (1998).
6. Cull P.: The mathematical biophysics of Nicolas Rashevsky. BioSystems.
88 (3), 178–184 (2007). doi: 10.1016/j.biosystems.2006.11.003
7. Eberhart, R. C., Dobbins, R.W.: CHAPTER 1 — Background and
History. In: Eberhart, R. C., Dobbins, R.W. (eds.) Neural Network PC
Tools: A Practical Guide, pp. 9–34. Academic Press, San Diego (1990).
8. Freedman, R. S., Frail, R. P., Schneider, F. T., Schnitta, B.: Expert
Systems in Spreadsheets: Modeling the Wall Street User Domain. In:
Proceedings First International Conference on Artificial Intelligence
Applications on Wall Street, Institute of Electrical and Electronics
Engineers, New York, 9–11 Oct. 1991.
9. Hegazy, T., Ayed, A.: Neural Network Model for Parametric Cost
Estimation of Highway Projects. Journal of Construction Engineering
and Management. 124 (3), 210–218 (1998). doi: 10.1061/(ASCE)0733-
9364(1998)124:3(210)
10. Hewett, T. T.: Teaching Students to Model Neural Circuits and
Neural Networks Using an Electronic Spreadsheet Simulator. Behavior
Research Methods, Instruments, & Computers. 17 (2), 339–344 (1985).
doi: 10.3758/BF03214406
11. Hewett, T. T.: Using an Electronic Spreadsheet Simulator to Teach
Neural Modeling of Visual Phenomena (Report No. MWPS–F–85–1).
Drexel University, Philadelphia (1985).
12. Householder, A. S., Landahl, H. D.: Mathematical Biophysics of the
Central Nervous System. Principia Press, Bloomington (1945).
13. Householder, A. S.: A neural mechanism for discrimination: II.
Discrimination of weights. Bulletin of Mathematical Biophysics. 2 (1),
1–13 (1940). doi: 10.1007/BF02478027
14. Householder, A. S.: A theory of steady-state activity in nervefiber networks III: The simple circuit in complete activity.
Bulletin of Mathematical Biophysics. 3 (4), 137–140 (1941).
doi: 10.1007/BF02477933
15. Householder, A. S.: A theory of steady-state activity in nervefiber networks IV. N circuits with a common synapse. Bulletin of
Mathematical Biophysics. 4 (1), 7–14 (1942). doi: 10.1007/BF02477933
16. Householder, A. S.: A theory of steady-state activity in nervefiber networks I: Definitions and Preliminary Lemmas. Bulletin of
Mathematical Biophysics. 3 (2), 63–69 (1941). doi: 10.1007/BF02478220
17. Householder, A. S.: A theory of steady-state activity in nerve-fiber
networks II: The simple circuit. Bulletin of Mathematical Biophysics.
3 (3), 105–112 (1941). doi: 10.1007/BF02478168
18. Hryshchenko, N. V., Chernov, Ye. V., Semerikov, S. O.: Fizychni modeli
v kursi “Osnovy kompiuternoho modeliuvannia” (Physical models in
the course “Fundamentals of computer simulation”). In: Methodological
and organizational aspects of the use of the INTERNET network in the
institutions of science and education (INTERNET — EDUCATION —
SCIENCE — 98), 1st international scientific and practical conference,
Vinnytsia, 1998, vol. 2, pp. 341–348. UNIVERSUM-Vinnytsia, Vinnytsia
(1998).
19. James W.: Psychology. Henry Holt and Company, New York (1892).
20. James W.: The Principles of Psychology. Henry Holt and Company,
New York (1890).
21. Johnston S. J.: Promised Land Comes Through With Braincel for Excel
3.0. InfoWorld. 13 (7), 14 (1991).
22. Kendrick, D. A., Mercado P. R., Amman H. M.: Computational
Economics. Princeton University Press, Princeton (2006).
23. Landahl, H. D., McCulloch, W. S., Pitts W.: A statistical consequence of
the logical calculus of nervous nets. Bulletin of Mathematical Biophysics.
5 (4), 135–137 (1943). doi: 10.1007/BF02478260
24. Landahl, H. D., Runge, R.: Outline of a matrix calculus for neural
nets. Bulletin of Mathematical Biophysics. 8 (2), 75–81 (1946).
doi: 10.1007/BF02478464
25. Landahl, H. D.: A matrix calculus for neural nets: II.
Bulletin of Mathematical Biophysics. 9 (2), 99–108 (1947).
doi: 10.1007/BF02478296
26. McCulloch, W. C., Pitts, W.: A logical calculus of the ideas immanent
in nervous activity. Bulletin of Mathematical Biophysics. 5 (4), 115–133
(1943). doi: 10.1007/BF02478259
27. Mintii, I. S., Tarasov, I. V., Semerikov S. O.: Meta navchannia ta
zmist kursu “Vstup do prohramuvannia” dlia maibutnikh uchyteliv
informatyky (The purpose of the teaching and the contents of the
course “Introduction in programming” for future computer science
teacher). Visnyk Cherkaskoho universytetu. Seriia pedahohichni nauky.
279, 57–63 (2013).
28. Mintii, I. S., Tarasov, I. V., Semerikov S. O.: Metodyka formuvannia u
maibutnikh uchyteliv informatyky kompetentnostei z prohramuvannia
na prykladi temy “Ekspertna systema” (Methods of forming
of future informatics teachers competencies in programming by
example the theme “Expert system”). Naukovyi chasopys NPU
im. M. P. Drahomanova. Seriia №2. Kompiuterno-oriientovani systemy
navchannia. 14 (21), 91–96 (2014).
29. Permiakova, O. S., Semerikov, S. O.: Zastosuvannia neironnykh merezh
u zadachakh prohnozuvannia (The use of neural networks in forecasting
problems). In: Materials of the International Scientific and Practical
Conference “Young scientist of the XXI century”, KTU, Kryviy Rih,
17–18 November 2008.
30. Pitts, W., McCulloch, W. S.: How we know universals the perception of
auditory and visual forms. Bulletin of Mathematical Biophysics. 9 (3),
127–147 (1947). doi: 10.1007/BF02478291
31. Pitts, W.: A general theory of learning and conditioning: Part I.
Psychometrika. 8 (1), 1–18 (1943). doi: 10.1007/BF02288680
32. Pitts, W.: A general theory of learning and conditioning: Part II.
Psychometrika. 8 (2), 131–140 (1943). doi: 10.1007/BF02288697
33. Pitts, W.: Some observations on the simple neuron circuit.
Bulletin of Mathematical Biophysics. 4 (3), 121–129 (1942).
doi: 10.1007/BF02477942
34. Pitts, W.: The linear theory of neuron networks: The dynamic
problem. Bulletin of Mathematical Biophysics. 5 (1), 23–31 (1943).
doi: 10.1007/BF02478116
35. Pitts, W.: The linear theory of neuron networks: The static
problem. Bulletin of Mathematical Biophysics. 4 (4), 169–175 (1942).
doi: 10.1007/BF02478112
36. Rapoport, A., Shimbel, A.: Steady states in random nets:
I. Bulletin of Mathematical Biophysics. 10 (4), 211–220 (1948).
doi: 10.1007/BF02477503
37. Rapoport, A.: Contribution to the probabilistic theory of neural
nets: I. Randomization of refractory periods and of stimulus
intervals. Bulletin of Mathematical Biophysics. 12 (2), 109–121 (1950).
doi: 10.1007/BF02478248
38. Rapoport, A.: Contribution to the probabilistic theory of neural nets:
II. Facilitation and threshold phenomena. Bulletin of Mathematical
Biophysics. 12 (3), 187–197 (1950). doi: 10.1007/BF02478318
39. Rapoport, A.: Contribution to the probabilistic theory of neural nets:
III. Specific inhibition. Bulletin of Mathematical Biophysics. 12 (4),
317–325 (1950). doi: 10.1007/BF02477902
40. Rapoport, A.: Contribution to the probabilistic theory of neural nets:
IV. Various models for inhibition. Bulletin of Mathematical Biophysics.
12 (4), 327–337 (1950). doi: 10.1007/BF02477903
41. Rapoport, A.: Steady states in random nets: II. Bulletin
of Mathematical Biophysics. 10 (4), 221–226 (1948).
doi: 10.1007/BF02477504
42. Rashevsky, N.: Mathematical biophysics of abstraction and logical
thinking. Bulletin of Mathematical Biophysics. 7 (3), 133–148 (1945).
doi: 10.1007/BF02478314
43. Rashevsky, N.: Outline of a physico-mathematical theory of
excitation and inhibition. Protoplasma. 20 (1), 42–56 (1933).
doi: 10.1007/BF02674811
44. Rashevsky, N.: Some remarks on the boolean algebra of nervous nets
in mathematical biophysics. Bulletin of Mathematical Biophysics. 7 (4),
203–211 (1945). doi: 10.1007/BF02478425
45. Rashevsky, N.: The neural mechanism of logical thinking. Bulletin of
Mathematical Biophysics. 8 (1), 29–40 (1946). doi: 10.1007/BF02478425
46. Rienzo, T. F., Athappilly, K. K.: Introducing Artificial Neural
Networks through a Spreadsheet Model. Decision Sciences Journal
of Innovative Education. 10 (4), 515–520 (2012). doi: 10.1111/j.1540-
4609.2012.00363.x
47. Ruggiero M. A.: Cybernetic Trading Strategies: Developing a Profitable
Trading System with State-of-the-Art Technologies. John Wiley & Sons,
New York (1997).
48. Ruggiero, M.: Embedding neural networks into spreadsheet applications.
US Patent 5,241,620, 31 Aug 1993.
49. Semerikov, S. O., Teplytskyi I. O.: Shtuchnyi intelekt v kursi
informatyky pedahohichnoho VNZ (Artificial intelligence in teaching
informatics at pedagogical university). In: Materials of the 4th
All-Ukrainian Conference of Young Scientists on the Information
Technologies in Education, Science and Technology ITONT–2004,
Cherkasy, 28–30 April 2004.
50. Shimbel, A., Rapoport, A.: A statistical approach to the theory of the
central nervous system. Bulletin of Mathematical Biophysics. 10 (2),
41–55 (1948). doi: 10.1007/BF02478329
51. Soloviov, V. M., Semerikov, S. O., Teplytskyi, I. O.: Instrumentalne
zabezpechennia kursu kompiuternoho modeliuvannia (Instrumental
computer simulation courseware). Kompiuter u shkoli ta simi. 4, 28–31
(2000).
52. Soloviov, V. M., Semerikov, S. O., Teplytskyi, I. O.: Osnovy
kompiuternoho modeliuvannia v serednii shkoli ta pedahohichnomu
vuzi (Fundamentals of computer simulation in secondary school and
higher pedagogical institutions). In: Collection of scientific and practical
materials of the All-Ukrainian conference on the Pre-professional
training of pupils in the context of the implementation of the target
comprehensive program “Teacher”, vol. 2, pp. 53–56. Dnipropetrovsk
(1997).
53. Sussman, G. J., Wisdom, J.: Structure and interpretation of classical
mechanics. 2nd edn. MIT Press, Cambridge (2015).
54. Teplytskyi, I., Semerikov, S.: Kompiuterne modeliuvannia
mekhanichnykh rukhiv u seredovyshchi elektronnykh tablyts
(Computer modeling of mechanical movements in an spreadsheets
environment). Fizyka ta astronomiia v shkoli. 5, 41–46 (2002).
55. Teplytskyi, I. O., Semerikov, S. O.: Kompiuterna navchalna fizychna
hra “Miaka posadka” (Computer training physical game “Soft
landing”). Naukovi zapysky: zbirnyk naukovykh statei Natsionalnoho
pedahohichnoho universytetu imeni M. P. Drahomanova. 53, 347–355
(2003).
56. Teplytskyi, I. O., Semerikov, S. O.: Kompiuterne modeliuvannia
absoliutnykh ta vidnosnykh rukhiv planet Soniachnoi systemy
(Computer simulation of absolute and relative motions of the planets
the Solar system). Zbirnyk naukovykh prats Kamianets-Podilskoho
natsionalnoho universytetu. Seriia pedahohichna. 13, 211–214 (2007).
57. Teplytskyi, I. O., Semerikov, S. O.: Modeliuvannia za dopomohoiu
vypadkovykh chysel (Simulation using random numbers). Zbirnyk
naukovykh prats Kamianets-Podilskoho natsionalnoho universytetu.
Seriia pedahohichna. 17, 248–252 (2011).
58. Teplytskyi, I. O., Semerikov, S. O.: Na perekhresti ekolohii, matematyky,
informatyky y fizyky (At the intersection of ecology, mathematics,
computer science and physics). Zbirnyk naukovykh prats KamianetsPodilskoho natsionalnoho universytetu. Seriia pedahohichna. 18, 34–37
(2012).
59. Teplytskyi, I. O.: Elementy kompiuternoho modeliuvannia (Elements
of computer simulation). 2nd edn. KSPU, Kryvyi Rih (2010).
60. Teplytskyi, I. O.: Kompiuterne modeliuvannia v shkilnomu kursi
informatyky (Computer simulation in the school informatics course).
Nyva znan. Informatsiini tekhnolohii v osviti. 1, 63–74 (1994).
61. Teplytskyi, I. O.: Vykorystannia elektronnykh tablyts u kompiuternomu
modeliuvanni (Using spreadsheets in computer simulation). Kompiuter
u shkoli ta simi. 2, 27–32 (1999).
62. Wei, T.: On matrices of neural nets. Bulletin of Mathematical
Biophysics. 10 (2), 63–67 (1948). doi: 10.1007/BF02477433
63. Weinberg, A. M.: Gale J. Young. Physics Today. 45 (1), 84 (1992).
doi: 10.1063/1.2809507
64. Werbos, P. J.: Maximizing long-term gas industry profits in two minutes
in Lotus using neural network methods. Transactions on Systems Man
and Cybernetics. 19 (2), 315–333 (1989). doi: 10.1109/21.31036
65. Yechkalo, Yu .V., Teplytskyi, I. O.: Kompiuterne modeliuvannia doslidu
Rezerforda v seredovyshchi elektronnykh tablyts (Computer simulation
of Rutherford’s experiment in a spreadsheet environment). In:
Collection of scientific papers on the Modern technologies in science
and education, vol. 2, pp. 56–59. KSPU Publishing department, Kryvyi
Rih (2003).
66. Yechkalo, Yu. V.: Kompiuterne modeliuvannia brounivskoho rukhu
(Computer simulation of the Brownian motion). Pedahohichnyi poshuk.
5, 97–100 (2010).
67. Yechkalo, Yu. V.: Kompiuterne modeliuvannia rukhu zariadzhenoi
chastynky v mahnitnomu poli v seredovyshchi elektronnykh tablyts
(Computer simulation of motion of a charged particle in a magnetic field
in the environment of spreadsheets). Problemy suchasnoho pidruchnyka.
5 (2), 66–72 (2004).
68. Yechkalo, Yu. V.: Kompiuterne modeliuvannia yak zasib realizatsii
mizhpredmetnykh zviazkiv kursu fizyky (Computer modeling as a
means of realizing interdisciplinary connections in the physics course).
Theory and methods of learning mathematics, physics, informatics.
5 (2), 125–128 (2005).
69. Yechkalo, Yu. V.: Tekhnolohiia navchannia kompiuternoho
modeliuvannia fizychnykh protsesiv i yavyshch u starshii shkoli
(Tech of learning of computer simulation of physical processes and
phenomena in school). In: Abstracts of the 6th All-Ukrainian scientific
and methodical workshop on the Computer modeling in education,
Kryvyi Rih, 12 April 2013.
70. Yechkalo, Yu. V.: Vybir seredovyshcha modeliuvannia fizychnykh
protsesiv (Selection of environment for simulation of physical processes).
Theory and methods of learning mathematics, physics, informatics.
7 (2), 11–14 (2008).
71. Yechkalo, Yu. V.: Vykorystannia Dokumentiv Google dlia orhanizatsii
spilnoi roboty zi stvorennia kompiuternoi modeli (The use of Google
Docs to collaborate on the creation of computer model). In: Abstracts
of the 5th All-Ukrainian scientific and methodical workshop on the
Computer modeling in education, Kryvyi Rih, 6 April 2012.
72. Young, G.: On reinforcement and interference between stimuli.
Bulletin of Mathematical Biophysics. 3 (1), 5–12 (1941).
doi: 10.1007/BF02478102
73. Zaremba T.: CHAPTER 12 — Case Study III: Technology in Search
of a Buck. In: Eberhart, R. C., Dobbins, R.W. (eds.) Neural Network
PC Tools: A Practical Guide, pp. 251–283. Academic Press, San Diego
(1990). |
|