dc.description |
1. Podobnik, B., Valentinčič, A., Horvatić, D., Stanley,
H.E.: Asymmetric Lévy flight in financial ratios.
Proceedings of the National Academy of Sciences of
the United States of America. 108(44), 17883–
17888 (2011). doi:10.1073/pnas.1113330108
2. Baruník, J., Vácha, L., Vošvrda, M.: Tail behavior
of the Central European stock markets during the
financial crisis. AUCO Czech Economic Review.
4(3), 281–295 (2010)
3. Bachelier, L.: Théorie de la spéculation. Annales
scientifiques de l'École Normale Supérieure, Série 3.
17, 21–86 (1900). doi:10.24033/asens.476
4. Gopikrishnan, P., Plerou, V., Amaral, L.A.N.,
Meyer, M., Stanley, H.E.: Scaling of the distribution
of fluctuations of financial market indices. Physical
Review E - Statistical Physics, Plasmas, Fluids, and
Related Interdisciplinary Topics. 60(3), 5305–5316
(1999). doi:10.1103/PhysRevE.60.5305
5. Gabaix, X., Gopikrishnan, P., Plerou, V., Stanley,
H.E.: A Theory of Power Law Distributions in
Financial Market Fluctuations. Nature. 423(6937),
267–270 (2003)
6. Gabaix, X., Gopikrishnan, P., Plerou, V., Stanley,
H.E.: Institutional Investors and Stock Market Volatility. Quarterly Journal of Economics. 121(2),
461–504 (2006). doi:10.3386/w11722
7. Mandelbrot, B.: The variation of certain speculative
prices. The Journal of Business. 36(4), 394–419
(1963). doi:10.1086/294632
8. Levy, P.: Théorie des erreurs. La loi de Gauss et les
lois exceptionnelles. Bulletin de la Société
Mathématique de France. 52, 49–85 (1924)
9. Gnedenko, B.V., Kolmogorov, A.N.: Limit
Distributions for Sums of Independent Random
Variables. Addison-Wesley, Cambridge (1954)
10. Fama, E.F.: The Behavior of Stock-Market Prices.
The Journal of Business. 38(1), 34–105 (1965).
11. Mantegna, R.N., Stanley, H.E.: Scaling behaviour in
the dynamics of an economic index. Nature. 376,
46–49 (1995).
12. Weron, R.: Levy-stable distributions revisited: tail
index > 2 does not exclude the Levy-stable regime.
International Journal of Modern Physics C. 12(2),
209–223 (2001).
13. Koutrouvelis, I.A.: Regression-Type Estimation of
the Parameters of Stable Laws. Journal of the
American Statistical Association. 75(372), 918–928
(1980)
14. Brorsen, B.W., Yang, S.R.: Maximum Likelihood
Estimates of Symmetric Stable Distribution
Parameters. Communications in Statistics -
Simulation and Computation. 19(4), 1459–1464
(1990). doi:10.1080/03610919008812928
15. Nolan, J.P.: Maximum likelihood estimation of
stable parameters. In: Barndorff-Nielsen, O.E.,
Mikosch, T., Resnick, S.I. (eds.) Lévy Processes:
Theory and Applications, pp. 379–400. Springer
Science+Business Media, Boston (2001)
16. Fama, E.F., Roll, R.: Parameter estimates for
symmetric stable distributions. Journal of the
American Statistical Association. 66(334), 331–338
(1971). doi:10.2307/2283932
17. McCulloch, J.H.: Simple consistent estimators of
stable distribution parameters. Communications in
Statistics - Simulation and Computation. 15(4),
1109–1136 (1986)
18. Shao, M., Nikias, C. L.: Signal processing with
fractional lower order moments: stable processes
and their application. Proceedings of the IEEE.
81(7), 986–1010 (1993). doi: 10.1109/5.231338
19. Ma, X., Nikias, C.L.: Joint estimation of time delay
and frequency delay in impulsive noise using
fractional lower order statistics. IEEE Transactions
on Signal Processing. 43(11), 2669–2687 (1996).
doi:10.1109/78.542175
20. Nicolas, J.-M., Anfinsen, S. N.: Introduction to
second kind statistics: Application of log-moments
and log-cumulants to the analysis of radar image
distributions. Traitement du Signal. 19(3), 139–167
(2002)
21. Kuruoğlu, E.E.: Density parameter estimation of
skewed α-stable distributions. IEEE Transactions on Signal Processing. 49(10), 2192–2201 (2001).
doi:10.1109/78.950775
22. DuMouchel, W.H.: On the Asymptotic Normality of
the Maximum Likelihood Estimate When Sampling
from a Stable Distribution. The Annals of Statistics
1(5), 948–957 (1973)
23. Zolotarev, V.M.: One-dimensional Stable
Distributions. American Mathematical Society,
Providence (1986)
24. Chambers, J.M., Mallows, C.L., Stuck, B.W.: A
Method for Simulating Stable Random Variables:
Journal of the American Statistical Association.
71(354), 340–344 (1976).
25. Koutrouvelis, I.A.: An iterative procedure for the
estimation of the parameters of stable laws: An
iterative procedure for the estimation.
Communications in Statistics - Simulation and
Computation. 10(1), 17–28 (1981).
doi:10.1080/03610918108812189
26. Arnold, V.I., Avez, A.: Ergodic problems of
classical mechanics. Benjamin, New York (1968).
doi:zamm.19700500721
27. Umeno, K.: Ergodic transformations on R
preserving Cauchy laws. Nonlinear Theory and Its
Applications. 7(1), 14–20 (2016).
doi:10.1587/nolta.7.14
28. Charles, A., Darné, O.: Large shocks in the volatility
of the Dow Jones Industrial Average index: 1928–
2013. Journal of Banking & Finance. 43(C), 188–
199 (2014). doi:10.1016/j.jbankfin.2014.03.022
29. Duarte, F.B., Tenreiro Machado, J.A., Monteiro
Duarte, G.: Dynamics of the Dow Jones and the
NASDAQ stock indexes. Nonlinear Dynamics.
61(4), 691–705 (2010). doi:10.1007/s11071-010-
9680-z
30. Soloviev, V.M., Chabanenko, D.M.: Dynamika
parametriv modeli Levi dlia rozpodilu
prybutkovostei chasovykh riadiv svitovykh
fondovykh indeksiv (Dynamics of parameters of the
Levy model for distribution of profitability of time
series of world stock indexes). In: Pankratova, E.D.
(ed.) Proceedings of 16-th International Conference
on System Analysis and Information Technologies
(SAIT 2014), Kyiv, Ukraine, May 26-30, 2014. ESC
“IASA” NTUU “KPI”, Kyiv (2014)
31. Soloviev, V., Solovieva, V., Chabanenko, D.:
Dynamics of α-stable Levi process parameters for
returns distribution of the financial time series. In:
Chernyak, O.I., Zakharchenko, P.V. (eds.)
Contemporary concepts of forecasting the
development of complex socio-economic systems,
pp. 257–264. FO-P Tkachuk O.V, Berdyansk (2014)
32. Fukunaga, T., Umeno, K.: Universal Lévy's stable
law of stock market and its characterization.
https://arxiv.org/pdf/1709.06279 (2018). Accessed
21 Mar 2019 |
|