dc.contributor.author |
Соловйов, Володимир Миколайович |
|
dc.contributor.author |
Соловйова, Вікторія Володимирівна |
|
dc.date.accessioned |
2018-12-26T12:50:19Z |
|
dc.date.available |
2018-12-26T12:50:19Z |
|
dc.date.issued |
2018 |
|
dc.identifier.citation |
Soloviev V. M. Universal tools of modeling different nature complex systems / Soloviev Volodymyr Mykolayovych, Solovyova Viktoriya Volodymyrivna // Інформаційні технології в освіті та науці : збірник наукових праць.- Випуск 10. - Мелітополь : ФОП Однорог Т.В., 2018. - С. 283-288. |
uk |
dc.identifier.isbn |
978-617-7566-33-4 |
|
dc.identifier.uri |
http://elibrary.kdpu.edu.ua/xmlui/handle/123456789/2865 |
|
dc.identifier.uri |
https://doi.org/10.31812/123456789/2865 |
|
dc.description |
1. Saptsin V., Soloviev V. «Relativistic quantum econophysics - new paradigms in complex systems modeling» / arXiv:0907.1142vl [physics.soc- Ph], 2009.
2. Prigogine I., Stengers I. Order out of chaos. Mans new dialogue with Nature / Heinemann. London. - 1984. - 432 p.
3. Vito Latora. Structural measures for multiplex networks / arxiv.org/pdf/1308.3182v3,2013.
4. Soloviev V. M. Network measures of complexity of socio-economic systems // Herald of Cherkasy University, ser. «Applied Mathematics. Computer Science». – 2015, № 38 (371). P. 67-79.
5. Marsh P. The new industrial revolution: consumers, globalization and the end of mass production. / Yale University Press. - 2012. - 420 p.
6. Derbentsev V. D. Synergetic and econophysical methods of studying the dynamic and structural characteristics of economic systems: [Monograph] / V. D. Derbentsev, O. A. Serdyuk, V. M. Soloviev, O. D. Sharapov. - Cherkasy: Brama-Ukraine, 2010. – 300 p.
7. Soloviev V. M. Modeling of complex systems / V. M. Soloviev, O. A. Serdyuk, G. B. Danilchuk // Educational and methodical manual for independent study of discipline. - Cherkasy: Publisher O. Yu.Vovchok
2016. - 204 p. |
|
dc.description.abstract |
It is shown that there is а powerful set of tools for the study of self-organization in complex systems, both natural and artificial origin. They characterize the multidimensional nature of complexity - multifractality, irreversibility, non-linearity, recurrence, nonstability, emeregence, etc., and quantitative evaluation of individual dynamical measures of complexity allows for monitoring, predicting and preventing unwanted critical or crisis. Particular attention is paid to measures of network complexity, which are fully applicable to build synergistic network of pedagogical systems. |
uk |
dc.language.iso |
en |
uk |
dc.publisher |
ФОП Однорог Т. В. |
uk |
dc.subject |
complex systems |
uk |
dc.subject |
complexity measures |
uk |
dc.subject |
networks |
uk |
dc.subject |
synergistic network pedagogy |
uk |
dc.subject |
visibility graphs |
uk |
dc.subject |
recurrent networks |
uk |
dc.subject |
network dynamics modeling |
uk |
dc.subject |
складні системи |
uk |
dc.subject |
міри складності |
uk |
dc.subject |
мережі |
uk |
dc.subject |
синергетична мережна педагогіка |
uk |
dc.subject |
графи видимості |
uk |
dc.subject |
рекурентні динаміки |
uk |
dc.subject |
моделювання мережної динаміки |
uk |
dc.title |
Universal tools of modeling different nature complex systems |
uk |
dc.type |
Article |
uk |