dc.description |
1. Arloon: Arloon Chemistry. https://play.google.com/store/apps/details?id=com.Arloon.Chemistry.AR (2017). Accessed 31 Dec 2017
2. Artırılmış Gerçeklik Element Kartları: AR Bilim Kartları (Augmented Reality Element
Cards: AR Science Cards). Ders Zamanı Yayınları (2017)
3. Azuma, R., Baillot, Y., Behringer, R., Feiner, S., Julier, S., MacIntyre, B.: Recent Advances
in Augmented Reality. IEEE Computer Graphics and Applications. 21(6), 34–47 (2001)
4. Azuma, R.T.: A Survey of Augmented Reality. Presence: Teleoperators and Virtual Environments. 6(4), 355–385 (1997). doi:10.1162/pres.1997.6.4.355
5. Cai, S., Wang, X., Chiang, F.-K.: A case study of Augmented Reality simulation system
application in a chemistry course. Computers in Human Behavior. 37, 31–40 (2014).
doi:https://doi.org/10.1016/j.chb.2014.04.018
6. DAQRI: Elements 4D by DAQRI. https://play.google.com/store/apps/details?id=com.daqri.elements4dbydaqri&utm_source=www.apk4fun.com (2013). Accessed
31 Dec 2017
7. Dáskalos: Dáskalos Chemistry: interactive science teacher for augmented reality.
https://prefrontalcortex.de/labs/daskalos/periodicSystem.pdf (2015). Accessed 25 Dec
2017
8. EligoVision: EV Toolbox. http://evtoolbox.ru/ (2018). Accessed 30 Jan 2018
9. Fjeld, M., Fredriksson, J., Ejdestig, M., Duca, F., Botschi, K., Voegtli, B., Juchli, P.: Tangible user interface for chemistry education: comparative evaluation and re-design. In:
CHI’07: Proceedings of the SIGCHI conference on Human factors in computing systems,
San Jose, April 28 – May 3 2007, pp. 805–808 (2007). doi:10.1145/1240624.1240745
10. Hryshchenko, M. (ed.): Nova ukrainska shkola: kontseptualni zasady reformuvannia
serednoi shkoly (New Ukrainian School: Conceptual Principles for Reforming the Secondary School). Ministerstvo osvity i nauky Ukrayiny. https://mon.gov.ua/storage/app/media/zagalna%20serednya/nova-ukrainska-shkola-compressed.pdf (2016). Accessed 28 June
2017
11. Iordache, D.D., Pribeanu, C., Balog, A.: Influence of specific AR capabilities on the learning effectiveness and efficiency. Studies in Informatics and Control. 21(3), 233–240 (2012).
doi:10.24846/v21i3y201201
12. Larngear Technology: Atomic Structure AR Learning Gear. http://larngeartech.com/products/atomic-structure-ar-learning-gear/ (2012). Accessed 31 Dec 2017
13. Maier, P., Klinker, G.: Augmented chemical reactions: An augmented reality tool to support
chemistry teaching. In: Proceedings 2013 2nd Experiment@ International Conference
(exp.at'13), University of Coimbra, Coimbra, 18-20 Sept. 2013, pp. 164–165 (2013).
doi:10.1109/ExpAt.2013.6703055
14. Maier, P., Tönnis, M., Klinker, G.: Dynamics in Tangible Chemical Reactions. World
Academy of Science, Engineering and Technology International Journal of Chemical and
Molecular Engineering. 3(9), 442–448 (2009)
15. McCormack, P.: Augmented Reality. Innovative Education.org. http://www.innovativeeducation.org/blog/augmented-reality (2014). Accessed 29 Jan 2018
16. Medina, E., Chen, Y.-C., Weghorst, S.: Understanding Biochemistry with Augmented reality. In: Montgomerie, C., Seale, J. (eds.) Proceedings of ED-MEDIA 2007 – World Conference on Educational Multimedia, Hypermedia & Telecommunications, Vancouver, 25
Jun 2007, pp. 4235–4239. Association for the Advancement of Computing in Education
(AACE), Waynesville (2007)
17. MEL Science: MEL Chemistry. https://melscience.com/en/app/ (2018). Accessed 19 Jan
2018
18. Modlo, E.O., Echkalo, Yu.V., Semerikov, S.O., Tkachuk, V.V.: Vykorystannia tekhnolohii
dopovnenoi realnosti u mobilno oriientovanomu seredovyshchi navchannia VNZ (Using
technology of augmented reality in a mobile-based learning environment of the higher educational institution). Naukovi zapysky, Seriia: Problemy metodyky fizyko-matematychnoi
i tekhnolohichnoi osvity. 11(1), 93–100 (2017)
19. Musio, B., Mariani, F., Śliwiński, E.P., Kabeshov, M.A., Odajima, H., Ley, S.V.: Combination of Enabling Technologies to Improve and Describe the Stereoselectivity of WolffStaudinger Cascade Reaction. Synthesis. 48(20), 3515–3526 (2016)
20. Nechypurenko, P.P., Semerikov, S.O., Selivanova, T.V, Shenayeva, T.O.: Information and
communication tools for pupils’ research competence formation at chemistry profile learning. Information Technologies and Learning Tools. 56(6), 10–29 (2016)
21. Nechypurenko, P.P., Semerikov, S.O., Tomilina, L.I.: Teoretyko-metodychni zasady vykorystannia informatsiino-komunikatsiinykh tekhnolohii yak zasobu formuvannia doslidnytskykh kompetentnostei starshoklasnykiv u profilnomu navchanni khimii (Theoretical
and methodical foundations of using ICT as a tools of forming the senior pupils’ research
competencies in the chemistry profile learning). Publishing Department of the SIHE
“Kryvyi Rih National University”, Kryvyi Rih (2018)
22. Nechypurenko, P.P., Semerikov, S.O.: VlabEmbed – the New Plugin Moodle for the Chemistry Education. In: Ermolayev, V., Bassiliades, N., Fill, H.-G., Yakovyna, V., Mayr, H.C.,
Kharchenko, V., Peschanenko, V., Shyshkina, M., Nikitchenko, M., Spivakovsky, A. (eds.)
ICT in Education, Research and Industrial Applications. Integration, Harmonization and
Knowledge Transfer 2017, 13th International Conference on ICT in Education, Research
and Industrial Applications. Integration, Harmonization and Knowledge Transfer (ICTERI,
2017), Kyiv, Ukraine, 15-18 May 2017. CEUR Workshop Proceedings (CEUR-WS.org),
vol. 1844, pp. 319–326 (2017)
23. Núñez, M., Quirós, R., Núñez, I., Carda, J.B., Camahort, E.: Collaborative Augmented Reality for Inorganic Chemistry Education. In: EE'08 Proceedings of the 5th WSEAS/IASME
international conference on Engineering education, Heraklion, 22–24 July 2008, pp. 271–
277. World Scientific and Engineering Academy and Society (WSEAS), Stevens Point
(2008)
24. Pasaréti, O., Hajdú, H., Matuszka, T., Jámbori, A., Molnár, I., Turcsányi-Szabó M.: Augmented Reality in education. In: INFODIDACT Informatika Szakmódszertani Konferencia.
http://people.inf.elte.hu/tomintt/infodidact_2011.pdf (2011). Accessed 17 Jan 2018
25. Semerikov, S., Teplytskyi, I., Shokaliuk, S.: Mobilne navchannia: istoriia, teoriia, metodyka (Mobile learning: history, theory, methodic). Informatyka ta informatsiini tekhnolohii
v navchalnykh zakladakh. 6, 72–82 (2008)
26. Semerikov, S., Teplytskyi, I., Shokaliuk, S.: Mobilne navchannia: istoriia, teoriia, metodyka (Mobile learning: history, theory, methodic). Informatyka ta informatsiini tekhnolohii
v navchalnykh zakladakh. 1, 96–104 (2009)
27. Singhal, S., Bagga, S., Goyal, P., Saxena V.: Augmented Chemistry: Interactive Education
System. International Journal of Computer Applications. 49(15), 1–5 (2012).
doi:10.5120/7700-1041
28. Sliwinski, E.P., Kabeshov, M.A., Ley, S.V.: HTMoL – AR plugin: A web-based interactive
3D molecular viewer with Augmented Reality & Holographic Display. GitHub.
https://github.com/es605/HTMoLAR (2018). Accessed 21 Jan 2018
29. StudyMarvel AR: StudyMarvel - Chemistry AR. https://play.google.com/store/apps/details?id=com.StudyMarvelAR.ImmersiveChemistryAR (2016). Accessed 31 Dec 2017
30. Taçgin, Z., Uluçay, N., Özüağ, E.: Designing and Developing an Augmented Reality Application: A Sample of Chemistry Education. Journal of the Turkish Chemical Society, Section C: Chemical Education. 1(1), 147–164 (2016)
31. Tintisha Technologies: AR Learning. http://www.arlearning.co.uk/#about (2018). Accessed 21 Jan 2018
32. Tuli, N., Mantri, A.: Augmented Reality as Teaching Aid: Making Chemistry Interactive.
Journal of Engineering Education Transformations. Special Issue, Jan, 187–191 (2015).
doi:http://dx.doi.org/10.16920/jeet%2F2015%2Fv0i0%2F59624
33. Virtual Space LLC: AR VR Molecules Editor Free. https://play.google.com/store/apps/details?id=com.vspaces.molb_free (2017). Accessed 25 Dec 2017
34. Wojciechowski, R., Cellary, W.: Evaluation of learners’ attitude toward learning in ARIES
augmented reality environments. Computers & Education. 68, 570–585 (2013).
doi:10.1016/j.compedu.2013.02.014 |
|