dc.description |
Road traffic regulations (2024). https://autoshkola-navihator.com.ua/pravyla-dorozhnoho-rukhu-ukrayina. Accessed 01 June 2024
Cho, H., Han, Y., Kim, W.H.: Anti-adversarial consistency regularization for data augmentation: applications to robust medical image segmentation. In: Greenspan, H., et al. (eds.) Medical Image Computing and Computer Assisted Intervention – MICCAI 2023, MICCAI 2023, Part IV. LNCS, vol. 14223, pp. 555–566. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-43901-8_53
Chollet, F.: How convolutional neural networks see the world (2016). https://tinyurl.com/3by9pdwt. Accessed 01 June 2024
Chollet, F.: Deep Learning with Python. Manning, 2 edn. (2021)
Google Scholar
Dewi, C., Chen, R., Zhuang, Y., Jiang, X., Yu, H.: Recognizing road surface traffic signs based on yolo models considering image flips. Big Data Cogn. Comput. 7(1), 54 (2023). https://doi.org/10.3390/BDCC7010054
Article
Google Scholar
Ding, X., Zhang, X., Zhou, Y., Han, J., Ding, G., Sun, J.: Scaling up your kernels to 31x31: revisiting large kernel design in CNNs. CoRR abs/2203.06717 (2022). https://doi.org/10.48550/ARXIV.2203.06717
Edward, V.C.P.: Chapter two - Smart crisis management system for road accidents based on modified convolutional neural networks-particle swarm optimization hybrid algorithm. Adv. Comput. 132, 19–31 (2024). https://doi.org/10.1016/BS.ADCOM.2023.07.002
Article
Google Scholar
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, 27–30 June 2016, pp. 770–778. IEEE Computer Society (2016). https://doi.org/10.1109/CVPR.2016.90
Kadunc, N.O.: How to Normalise Satellite Images for Deep Learning (2022). https://tinyurl.com/4je73r8n. Accessed 01 June 2024
Kato, H., Osuge, K., Haruta, S., Sasase, I.: A preprocessing methodology by using additional steganography on CNN-based steganalysis. In: IEEE Global Communications Conference, GLOBECOM 2020, Virtual Event, Taiwan, 7–11 December 2020, pp. 1–6. IEEE (2020). https://doi.org/10.1109/GLOBECOM42002.2020.9322594
Khan, M.J.K.B.M.B., Shah, N.M., Mokhtar, N.: Detection and classification of road signs in raining condition with limited dataset. Signal Image Video Process. 17(5), 2015–2023 (2023). https://doi.org/10.1007/S11760-022-02414-W
Kiv, A., Semerikov, S., Soloviev, V.N., Kibalnyk, L., Danylchuk, H., Matviychuk, A.: Experimental economics and machine learning for prediction of emergent economy dynamics. CEUR Workshop Proc. 2422, 1–4 (2019). https://ceur-ws.org/Vol-2422/paper00.pdf
Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems 25: 26th Annual Conference on Neural Information Processing Systems 2012. Proceedings of a meeting held December 3–6, 2012, Lake Tahoe, Nevada, US, pp. 1106–1114 (2012). https://proceedings.neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998). https://doi.org/10.1109/5.726791
Article
Google Scholar
Lin, Y., Wang, Y.: Modular learning: agile development of robust traffic sign recognition. IEEE Trans. Intell. Veh. 9(1), 764–774 (2024). https://doi.org/10.1109/TIV.2023.3322407
Article
Google Scholar
Pilkevych, I.A., Fedorchuk, D.L., Romanchuk, M.P., Naumchak, O.M.: Approach to the fake news detection using the graph neural networks. J. Edge Comput. 2(1), 24–36 (2023). https://doi.org/10.55056/jec.592
Pullum, L.L., Taylor, B.J., Darrah, M.A.: Guidance for the verification and validation of neural networks. Kybernetes 37(8) (2008). https://doi.org/10.1108/k.2008.06737hae.002
Semerikov, S.O., et al.: Development of the computer vision system based on machine learning for educational purposes. Educ. Dimens. 5, 8–60 (2021). https://doi.org/10.31812/educdim.4717
Sermanet, P., LeCun, Y.: Traffic sign recognition with multi-scale Convolutional Networks. In: The 2011 International Joint Conference on Neural Networks, IJCNN 2011, San Jose, CA, pp. 2809–2813. IEEE (2011). https://doi.org/10.1109/IJCNN.2011.6033589
Sewak, M., Karim, M.R., Pujari, P.: Practical Convolutional Neural Networks. Packt Publishing, Birmingham (2018)
Google Scholar
Sichkar, V.: Traffic Signs Preprocessed (2019). https://www.kaggle.com/datasets/valentynsichkar/traffic-signs-preprocessed. Accessed 01 June 202
Simonyan, K., Zisserman, A.: Very Deep Convolutional Networks for Large-Scale Image Recognition (2015). https://arxiv.org/abs/1409.1556. Accessed 01 June 202
Sroczynski, A., Czyzewski, A.: Examining the impact of distance between VSL road signs on vehicle speed variance. IEEE Access 11, 7521–7529 (2023). https://doi.org/10.1109/ACCESS.2023.3238578
Article
Google Scholar
Stallkamp, J., Schlipsing, M., Salmen, J., Igel, C.: The German traffic sign recognition benchmark: a multi-class classification competition. In: The 2011 International Joint Conference on Neural Networks, IJCNN 2011, San Jose, California, USA, 31 July – 5 August 2011, pp. 1453–1460. IEEE (2011). https://doi.org/10.1109/IJCNN.2011.6033395
United Nations: Convention on Road Signs and Signals. Vienna, 8 November 1968. In: Treaty Series, vol. 1091, p. 3 (1968). https://tinyurl.com/48xysrcw
Zahorodko, P.V., Semerikov, S.O., Soloviev, V.N., Striuk, A.M., Striuk, M.I., Shalatska, H.M.: Comparisons of performance between quantum-enhanced and classical machine learning algorithms on the IBM Quantum Experience. J. Phys. Conf. Ser. 1840(1), 012021 (2021). https://doi.org/10.1088/1742-6596/1840/1/012021
Zhou, P., Feng, J., Ma, C., Xiong, C., Hoi, S.C., Weinan, E.: Towards theoretically understanding why SGD generalizes better than Adam in deep learning. In: Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, 6–12 December 2020, Virtual (2020). https://proceedings.neurips.cc/paper/2020/hash/f3f27a324736617f20abbf2ffd806f6d-Abstract.html |
uk |