dc.description |
1. “If security is required”: engineering and security practices for machine
learning-based IoT devices / N. K. Gopalakrishna [та ін.] // Proceedings of the 4th International Workshop on Software Engineering Research
and Practice for the IoT. — Pittsburgh, Pennsylvania : Association for
Computing Machinery, 2023. — С. 1—8. — (SERP4IoT ’22). — DOI:
10.1145/3528227.3528565.
2. A Joint Study of the Challenges, Opportunities, and Roadmap of MLOps
and AIOps: A Systematic Survey / J. Diaz-de-Arcaya [та ін.] // ACM
Comput. Surv. — New York, NY, USA, 2023. — Жовт. — Т. 56, № 4. —
DOI: 10.1145/3625289.
3. A Multivocal Literature Review of MLOps Tools and Features / G.
Recupito [та ін.] // 2022 48th Euromicro Conference on Software Engineering and Advanced Applications (SEAA). — 2022. — С. 84—91. — DOI:
10.1109/SEAA56994.2022.00021.
4. A Software Ecosystem for Deploying Deep Learning in Gravitational
Wave Physics / A. Gunny [та ін.] // Proceedings of the 12th Workshop
on AI and Scientific Computing at Scale Using Flexible Computing
Infrastructures. — Minneapolis, MN, USA : Association for Computing
Machinery, 2022. — С. 9—17. — (FlexScience ’22). — DOI: 10.1145/3526058.3535454.
5. Automating Tiny ML Intelligent Sensors DevOPS Using Microsoft Azure /
C. Vuppalapati [та ін.] // 2020 IEEE International Conference on
Big Data (Big Data). — 2020. — С. 2375—2384. — DOI: 10.1109/BigData50022.2020.9377755.
6. Bachinger F., Zenisek J., Affenzeller M. Automated Machine Learning
for Industrial Applications – Challenges and Opportunities // Procedia
Computer Science. — 2024. — Т. 232. — С. 1701—1710. — DOI: https://doi.org/10.1016/j.procs.2024.01.168.
7. Bodor A., Hnida M., Daoudi N. Machine Learning Models Monitoring in
MLOps Context: Metrics and Tools // International Journal of Interactive
81Mobile Technologies (iJIM). — 2023. — Груд. — Т. 17, № 23. — pp. 125—139. — DOI: 10.3991/ijim.v17i23.43479.
8. Building Network Domain Knowledge Graph from Heterogeneous YANG
Models / D. Yongqiang [та ін.] // Journal of Computer Research and
Development. — 2020. — Т. 57, № 4. — С. 699—708. — DOI: 10.7544/issn1000-1239.2020.20190882.
9. Calefato F., Lanubile F., Quaranta L. A Preliminary Investigation
of MLOps Practices in GitHub // Proceedings of the 16th ACM /
IEEE International Symposium on Empirical Software Engineering and
Measurement. — Helsinki, Finland : Association for Computing Machinery, 2022. — С. 283—288. — (ESEM ’22). — DOI: 10.1145/3544902.3546636.
10. Characterizing Machine Learning Processes: A Maturity Framework / R.
Akkiraju [та ін.] // Business Process Management. Т. 12168 / за ред.
D. Fahland [та ін.]. — Cham : Springer International Publishing, 2020. —
С. 17—31. — (Lecture Notes in Computer Science). — ISBN 978-3-030-58666-9. — DOI: 10.1007/978-3-030-58666-9_2.
11. Chen H., Babar M. A. Security for Machine Learning-based Software
Systems: A Survey of Threats, Practices, and Challenges // ACM
Comput. Surv. — New York, NY, USA, 2024. — Лют. — Т. 56, № 6. —
DOI: 10.1145/3638531.
12. Chrastina J. Meta-synthesis of qualitative studies: background,
methodology and applications // NORDSCI Conference proceedings. Т.
1. — Saima Consult Ltd, 2018. — (NORDSCI Conference). — DOI: 10.32008/nordsci2018/b1/v1/13.
13. Cohen R. Digital Strategy, Machine Learning, and Industry Survey
of MLOps // Digital Strategies and Organizational Transformation. —
2023. — Гл. 8. С. 137—150. — DOI: 10.1142/9789811271984_0008. —
URL: https://tinyurl.com/33z6zpd3.
14. Czakon J., Kluge K. ML Experiment Tracking: What It Is, Why It
Matters, and How to Implement It. — 05.2024. — URL: https://neptune.ai/blog/ml-experiment-tracking.
8215. Ease.ML: A Lifecycle Management System for MLDev and MLOps / L. A.
Melgar [та ін.] // 11th Conference on Innovative Data Systems Research,
CIDR 2021, Virtual Event, January 11-15, 2021, Online Proceedings. —
2021. — URL: https://www.cidrdb.org/cidr2021/papers/cidr2021_paper26.pdf.
16. Godwin R. C., Melvin R. L. Toward efficient data science: A comprehensive MLOps template for collaborative code development and automation //
SoftwareX. — 2024. — Т. 26. — DOI: 10.1016/j.softx.2024.101723.
17. Haller K. Managing AI in the enterprise: Succeeding with AI projects and
MLOps to build sustainable AI organizations. — 2022. — С. 1—214. —
DOI: 10.1007/978-1-4842-7824-6.
18. Kolltveit A. B., Li J. Operationalizing machine learning models: a
systematic literature review // Proceedings of the 1st Workshop on
Software Engineering for Responsible AI. — Pittsburgh, Pennsylvania :
Association for Computing Machinery, 2023. — С. 1—8. — (SE4RAI
’22). — DOI: 10.1145/3526073.3527584.
19. Kreuzberger D., Kühl N., Hirschl S. Machine Learning Operations
(MLOps): Overview, Definition, and Architecture // IEEE Access. —
2023. — Т. 11. — С. 31866—31879. — DOI: 10.1109/ACCESS.2023.3262138.
20. Lima A., Monteiro L., Furtado A. P. MLOps: Practices, Maturity
Models, Roles, Tools, and Challenges – A Systematic Literature Review //
Proceedings of the 24th International Conference on Enterprise Information Systems - Volume 1: ICEIS. — INSTICC. SciTePress, 2022. — С. 308—320. — ISBN 978-989-758-569-2. — DOI: 10.5220/0010997300003179.
21. Lwakatare L. E., Crnkovic I., Bosch J. DevOps for AI – Challenges in
Development of AI-enabled Applications // 2020 International Conference
on Software, Telecommunications and Computer Networks (SoftCOM). —
2020. — С. 1—6. — DOI: 10.23919/SoftCOM50211.2020.9238323.
22. MLOps - Definitions, Tools and Challenges / G. Symeonidis [та ін.] //
2022 IEEE 12th Annual Computing and Communication Workshop and
Conference (CCWC). — 2022. — С. 0453—0460. — DOI: 10.1109/CCWC54503.2022.9720902.
8323. MLOps in Data Science Projects: A Review / C. Haertel [та ін.] //
2023 IEEE International Conference on Big Data (BigData). — 2023. —
С. 2396—2404. — DOI: 10.1109/BigData59044.2023.10386139.
24. MLOps: A Taxonomy and a Methodology / M. Testi [та ін.] // IEEE
Access. — 2022. — Т. 10. — С. 63606—63618. — DOI: 10.1109/ACCESS.2022.3181730.
25. Neptune Labs. MLOps Landscape in 2024: Top Tools and Platforms. —
2024. — URL: https://neptune.ai/blog/mlops-tools-platforms-
landscape.
26. Peltonen E., Dias S. LinkEdge: Open-sourced MLOps Integration with
IoT Edge // Proceedings of the 3rd Eclipse Security, AI, Architecture
and Modelling Conference on Cloud to Edge Continuum. — Ludwigsburg,
Germany : Association for Computing Machinery, 2023. — С. 67—76. —
(ESAAM ’23). — DOI: 10.1145/3624486.3624496.
27. SensiX++: Bringing MLOps and Multi-tenant Model Serving to Sensory
Edge Devices / C. Min [та ін.] // ACM Trans. Embed. Comput. Syst. —
New York, NY, USA, 2023. — Листоп. — Т. 22, № 6. — DOI: 10.1145/3617507. — URL: https://doi.org/10.1145/3617507.
28. Singh P. Systematic review of data-centric approaches in artificial intelligence and machine learning // Data Science and Management. — 2023. —
Т. 6, № 3. — С. 144—157. — DOI: https://doi.org/10.1016/j.dsm.2023.06.001.
29. Sipe T. A., Curlette W. L. A meta-synthesis of factors related to
educational achievement: a methodological approach to summarizing
and synthesizing meta-analyses // International Journal of Educational
Research. — 1996. — Т. 25, № 7. — С. 583—698. — DOI: 10.1016/S0883-0355(96)80001-2.
30. SliceOps: Explainable MLOps for Streamlined Automation-Native 6G
Networks / F. Rezazadeh [та ін.] // IEEE Wireless Communications. —
2024. — С. 1—7. — DOI: 10.1109/MWC.007.2300144.
8431. Software Engineering for Machine Learning: A Case Study / S. Amershi
[та ін.] // 2019 IEEE/ACM 41st International Conference on Software
Engineering: Software Engineering in Practice (ICSE-SEIP). — 2019. —
С. 291—300. — DOI: 10.1109/ICSE-SEIP.2019.00042.
32. Sothilingam R., Pant V., Yu E. S. K. Using i* to Analyze Collaboration Challenges in MLOps Project Teams // Proceedings of the 15th
International iStar Workshop (iStar 2022) co-located with 41th International Conference on Conceptual Modeling (ER 2022), Virtual Event,
Hyderabad, India, October 17, 2022. Т. 3231 / за ред. A. Maté, T.
Li, E. J. T. Gonçalves. — CEUR-WS.org, 2022. — С. 1—6. — (CEUR
Workshop Proceedings). — URL: https://ceur- ws.org/Vol- 3231/
iStar22%5C_paper%5C_1.pdf.
33. Steidl M., Felderer M., Ramler R. The pipeline for the continuous
development of artificial intelligence models—Current state of research
and practice // Journal of Systems and Software. — 2023. — Т. 199. —
С. 111615. — DOI: 10.1016/j.jss.2023.111615.
34. Structure Learning and Hyperparameter Optimization Using an
Automated Machine Learning (AutoML) Pipeline / K. Filippou [та ін.] //
Information. — 2023. — Т. 14, № 4. — С. 232. — DOI: 10 . 3390 /
info14040232.
35. The PRISMA 2020 statement: an updated guideline for reporting
systematic reviews / M. J. Page [та ін.] // BMJ. — 2021. — Т. 372. —
n71. — DOI: 10.1136/bmj.n71.
36. Unlabeled learning algorithms and operations: overview and future trends
in defense sector / E. e Oliveira [та ін.] // Artificial Intelligence Review. —
2024. — Т. 57, № 3. — DOI: 10.1007/s10462-023-10692-0.
37. Who needs to know what, when?: Broadening the Explainable AI (XAI)
Design Space by Looking at Explanations Across the AI Lifecycle / S.
Dhanorkar [та ін.] // Proceedings of the 2021 ACM Designing Interactive
Systems Conference. — Virtual Event, USA : Association for Computing Machinery, 2021. — С. 1591—1602. — (DIS ’21). — DOI: 10.1145/3461778.3462131. |
uk |