Abstract:
Structural and biomechanical parameters of Edible Frog, Pelophylax
esculentus (Linnaeus, 1758), limb bones, namely, mass, linear dimensions, parameters of the
shaft ’s cross-sectional shape (cross-sectional area, moments of inertia, radiuses of inertia) were investigated.
Some coeffi cients were also estimated: diameters ratio (df/ds), cross-sectional index (ik), principal
moments of inertia ratio (Imax/Imin). Coeffi cients of variation of linear dimensions (11.9–20.0 %) and
relative bone mass (22–35 %) were established. Moments of inertia of various bones are more variable
(CV = 41.67–56.35 %) in relation to radii of inertia (CV = 9.68–14.67 %). Shaft ’s cross-sectional shape
is invariable in all cases. However, there is high individual variability of structural and biomechanical
parameters of P. esculentus limb bones. Variability of parameters was limited by the certain range. We
suggest the presence of stable norm in bone structure. Stylopodium bones have the primary biomechanical
function among the elements of limb skeleton, because their parameters most clearly responsive
to changes in body mass.
Description:
Alexander, R. McN. Allometry of the limbs of antelopes (Bovidae) // J. Zool., Lond. — 1977. — 183. —
P. 125–146.
Gans, C., Parsons, T. S. On the origin of jumping mechanism in frogs // Evolution. — 1966. — 20, N 1. — P. 92–99.
Griffi ths, I. Th e phylogeny of the Salientia // Biol. Revs. — 1963. — 38, N 2. — P. 241–292.
Hammer, Ø., Harper, D. A. T., Ryan, P. D. PAST: Paleontological Statistics soft ware package for education and
data analysis // Palaeontologia Electronica. — 2001. — 4, N 1. — 9 p.
Inger, R. F. On the terrestrial origin of frogs // Copeia. — 1962. — 4. — P. 835–836.
Jolicoeur, P. Th e multivariate generalization of the allometry equation // Biometrics. — 1963. — 19, N 3. —
P. 497–499.
Jolicoeur, P. Principal components, factor analysis, and multivariate allometry: a small-sample direction test //
Biometrics. — 1984. —40. — P. 685–690.
Kovalenko, E. E. Properties of norm and variability // Russian J. Developmental Biology. — 2011. — 42, N 5. —
P. 363–377. — Russian : Коваленко Е. Е. Свойства нормы и изменчивости.
McMahon, T. A. Using body size to understand the structural design of animals: quadrupedal locomotion // J.
Appl. Physiol. — 1975. — 39. — P. 619–627.
Melnik, K. P., Klykov, V. I. Locomotor apparatus of mammals. Aspects of morphology and biomechanics of the
skeleton. — Kyiv : Naukova dumka, 1991. — 208 p. — Russian : Мельник К. П., Клыков В. И. Локомоторный аппарат млекопитающих. Вопросы морфологии и биомеханики скелета.
Nauwelaerts, S., Aerts, P. Propulsive impulse as a covarying performance measure in the comparison of the
kinematics of swimming and jumping in frogs // J. Exp. Biol. — 2003. — 206. — P. 4341–4351.
Nauwelaerts, S., Aerts, P. Take-off and landing forces in jumping frogs // J. Exp. Biol. — 2006. — 209. —
P. 66–77.
Nauwelaerts, S., Ramsay, J., Aerts, P. Morphological correlates of aquatic and terrestrial locomotion in a semiaquatic frog, Rana esculenta: no evidence for a design confl ict // J. Anat. — 2007. — 210. — P. 304–317.
Nauwelaerts, S., Stamhuis, E. J., Aerts, P. Propulsive force calculations in swimming frogs. I. A momentum–impulse approach // J. Exp. Biol. — 2005. — 208. — P. 1435–1443. Schmalhausen, I. I. Th e origin of terrestrial vertebrates. — Moscow : Nauka, 1964. — 717 p. — Russian : Шмальгаузен И. И. Происхождение наземных позвоночных.
Schmidt-Nielsen, K. Scaling: Why is animal size so important? — Moscow : Mir, 1987. — 259 p. — Russian :
Шмидт-Ниельсен К. Размеры животных: почему они так важны?
Sukhanov, V. B. General system of symmetrical locomotion of terrestrial vertebrates and some features of
movement of lower tetrapods. — Leningrad : Nauka, 1968. — 225 p. — Russian : Суханов В. Б. Общая
система симметричной локомоции наземных позвоночных и особенности передвижения низших
тетрапод.
Yablokov, A. V. Variability of mammals. — Moscow : Nauka, 1966. — 364 p. — Russian : Яблоков А. В. Изменчивость млекопитающих.