dc.description |
1. Tikhonov V.I., Mironov V.A. Markov processes. - Moscow.:
Soviet Radio, 1977. - 488 p.
2. Saptsin V., Experience of application genetically complex
Markov chains for neural networks technology prediction, Visnyk
Krivoriz`kogo ekonomichnogo institutu KNEU, Kriviy Rig, 2(18), 56-
66 (2009).
3. Saptsin V., Soloviev V. Relativistic quantum econophysics – new
paradigms in complex systems modeling // arXiv:physics/0907.1142
[physics.soc-ph],7 Jul 2009.
4. Bookinham M. Noizes in electronic devices and systems. -
Moscow., Mir, 1986.
5. Wasserman P. D., Neural computing: theory and practice (Van
Nostrand Reinhold, New York, 1989).
6. Surovcev I. S., Klyukin V. I. and Pivovarova R. P., Neural
networks (VGU, Voronezh, 1994) [in Russian].
7. Ezhov A. A. and Shumskiy S. A., Neurocomputing and his
applications in an economy and business (MIFI, Moscow, 1998) [in
Russian].
8. Mandelbrot B., The fractal geometry of nature (Freeman, San
Francisco, 1982).
9. Rabiner R L (1989), A Tutorial on Hidden Markov Models and
Selected Applications in Speech Recognition, Proceedings of the
IEEE, Vol. 77(2), pp. 257-286.
10.Weigend A. S., Gershenfeld N.A. Time Series Prediction:
Forecasting the Future and Understanding the past. Addison-Wesley,
1993.
11.Zhang Y. «Prediction of Financial Time Series with Hidden
Markov Models», in School of Computer Science, vol. Master of
Applied Science: Simon Fraser University, 2004
12.Soloviev V., Saptsin V. and Chabanenko D. Prediction of financial
time series with the technology of high-order Markov chains, Working
Group on Physics of Socio-economic Systems (AGSOE).-Drezden,
2009, URL http://www.dpg-verhandlungen.de/2009/dresden/agsoe.pdf
Appendix. |
|