DSpace Repository

Financial time series prediction with the technology of complex Markov chains

Show simple item record

dc.contributor.author Соловйов, Володимир Миколайович
dc.contributor.author Saptsin, V.
dc.contributor.author Chabanenko, D.
dc.date.accessioned 2017-09-01T18:39:21Z
dc.date.available 2017-09-01T18:39:21Z
dc.date.issued 2014
dc.identifier.citation Soloviev V. N. Financial time series prediction with the technology of complex Markov chains / V. Soloviev, V. Saptsin, D. Chabanenko // Моделювання та інформаційні технології в економіці : монографія / за заг. ред. В. М. Соловйова. – Черкаси, 2014. – С. 62-71. uk
dc.identifier.uri http://elibrary.kdpu.edu.ua/handle/0564/1305
dc.identifier.uri https://doi.org/10.31812/0564/1305
dc.description 1. Tikhonov V.I., Mironov V.A. Markov processes. - Moscow.: Soviet Radio, 1977. - 488 p. 2. Saptsin V., Experience of application genetically complex Markov chains for neural networks technology prediction, Visnyk Krivoriz`kogo ekonomichnogo institutu KNEU, Kriviy Rig, 2(18), 56- 66 (2009). 3. Saptsin V., Soloviev V. Relativistic quantum econophysics – new paradigms in complex systems modeling // arXiv:physics/0907.1142 [physics.soc-ph],7 Jul 2009. 4. Bookinham M. Noizes in electronic devices and systems. - Moscow., Mir, 1986. 5. Wasserman P. D., Neural computing: theory and practice (Van Nostrand Reinhold, New York, 1989). 6. Surovcev I. S., Klyukin V. I. and Pivovarova R. P., Neural networks (VGU, Voronezh, 1994) [in Russian]. 7. Ezhov A. A. and Shumskiy S. A., Neurocomputing and his applications in an economy and business (MIFI, Moscow, 1998) [in Russian]. 8. Mandelbrot B., The fractal geometry of nature (Freeman, San Francisco, 1982). 9. Rabiner R L (1989), A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition, Proceedings of the IEEE, Vol. 77(2), pp. 257-286. 10.Weigend A. S., Gershenfeld N.A. Time Series Prediction: Forecasting the Future and Understanding the past. Addison-Wesley, 1993. 11.Zhang Y. «Prediction of Financial Time Series with Hidden Markov Models», in School of Computer Science, vol. Master of Applied Science: Simon Fraser University, 2004 12.Soloviev V., Saptsin V. and Chabanenko D. Prediction of financial time series with the technology of high-order Markov chains, Working Group on Physics of Socio-economic Systems (AGSOE).-Drezden, 2009, URL http://www.dpg-verhandlungen.de/2009/dresden/agsoe.pdf Appendix.
dc.description.abstract In this research the technology of complex Markov chains, i.e. Markov chains with a memory is applied to forecast financial time-series. The main distinction of complex or high-order Markov Chains and simple first-ord yer ones is the existing of aftereffect or memory. The high-order Markov chains can be simplified to first-order ones by generalizing the states in Markov chains. Considering the «generalized state» as the sequence of states makes a possibility to model high-order Markov chains like first-order ones. The adaptive method of defining the states is proposed, it is concerned with the statistic properties of price returns. uk
dc.language.iso en uk
dc.publisher Брама-Україна uk
dc.subject complex Markov chains uk
dc.subject financial time-series uk
dc.subject price returns uk
dc.title Financial time series prediction with the technology of complex Markov chains uk
dc.type Article uk


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account

Statistics