DSpace Repository

Heisenberg uncertainty principle and economic analogues of basic physical quantities

Show simple item record

dc.contributor.author Соловйов, Володимир Миколайович
dc.contributor.author Saptsin, V.
dc.date.accessioned 2017-08-01T14:34:56Z
dc.date.available 2017-08-01T14:34:56Z
dc.date.issued 2011-11-10
dc.identifier.citation Soloviev V. N. Heisenberg uncertainty principle and economic analogues of basic physical quantities [Electronic resource] / Soloviev V., Saptsin V. – 10 Nov 2011. – arXiv:1111.5289v1 [physics.gen-ph]. – Access mode : https://arxiv.org/pdf/1111.5289 uk
dc.identifier.uri http://elibrary.kdpu.edu.ua/handle/0564/1194
dc.identifier.uri https://doi.org/10.48550/arXiv.1111.5289
dc.description [1] V. N. Soloviev and V. M. Saptsin. Quantum econophysics - a physical substantiation of system concepts in socio-economic processes modeling. In Analysis, modeling, management, development of economic systems Proceedings of the II International Symposium of the School-AMUR-2008 Sebastopol Sept. 12-18. 2008 / ed. O. Koroleva, A. Segal., Simferopol, 2008. [2] V. M. Saptsin and V. N. Soloviev. Relativistic Quantum Econophysics. New paradigms of Complex systems modeling: Monograph. http://kafek.at.ua/sol sap monogr.rar Brama-Ukraine, Cherkassy, 2009. [3] V. Saptsin and V. Soloviev. Relativistic quantum econophysics - new paradigms in complex systems modelling. arXiv:0907.1142v1 [physics.soc-ph]. [4] B. E. Baaquie. Quantum Finance. Cambridge University Press, Cambridge, 2004. [5] V. Maslov. Quantum Economics. Science, Moscow, 2006. [6] E. Guevara. Quantum Econophysics. arXiv:physics/0609245 , September 2006. [7] W.-X. Zhou and D. Sornette. Self-organizing Ising model of financial markets. Eur. Phys. J. B, 55(2):175–181, 2007. [8] C. P. Goncalves. Quantum Financial Economics - Risk and Returns. arXiv:1107.2562 , July 2011. [9] R. N. Mantegna and H. E. Stanley. An Introduction to Econophysics: Correlations and Complexity in Finance. Cambridge Univ. Press, Cambridge UK, 2000. [10] M. Yu Romanovsky and Yu. M. Romanovsky. An introduction to econophysics. Statistical and dynamical models. IKI, Moscow, 2007. [11] V. N. Soloviev. Mathematical economics. A textbook for self-study (in Ukrainian). CHNU, Cherkassy, 2008. http://kafek.at.ua/Posibnyk Soloviev.rar [12] V. D. Derbentsev, A. A. Serdyuk, and V. N. Solovievand O. D. Sharapov. Synergetical and econophysical methods for the modeling of dynamic and structural characteristics of economic systems. Monograph (in Ukrainian). Brama-Ukraine, Cherkassy, 2010. http://kafek.at.ua/Monogr.pdf [13] V. M. Saptsin. Genetically complex Markov chains – a new neural network approach for forecasting of socio-economic and other poorly formalized processes. In Monitoring, modelyuvannya i management emerdzhentnoyi ekonomiki: Conference Proceedings., pages 196 – 198, Cherkassy, 13-15 may 2008. Brama. [14] V. M. Saptsin. Experience of using genetically complex Markov chains for the neural network technology forecasting. Visnyk Krivorizkogo ekonomichnogo institutu KNEU, 2 (18):56 – 66, 2009. [15] Vladimir Soloviev, Vladimir Saptsin, and Dmitry Chabanenko. Prediction of financial time series with the technology of high-order Markov chains. In Working Group on Physics of Socio-economic Systems (AGSOE), Drezden, 2009. http://www.dpg-verhandlungen.de/2009/dresden/agsoe.pdf [16] D. M. Chabanenko. Financial time series prediction algorithm, based on complex Markov chains. Visnyk Cherkasskogo Universitetu (in Ukrainian), 1(173):90 – 102, 2009. http://www.nbuv.gov.ua/portal/Soc Gum/Vchu/N173/N173p090-102.pdf [17] D. M. Chabanenko. Detection of short- and long-term memory and time series prediction methods of complex Markov chains. In Visnyk Natsionalnogo tehnichnogo universitetu “Kharkivsky politehnichny institut”. Zbirnik Naukovyh pratz. Tematichny vypusk: Informatika i modelyuvannya (in Ukrainian), number 31, pages 184 – 190. NTU KHPI, Kharkov, 2010. http://www.pim.net.ua/ARCH F/V pim 10.pdf [18] V. Soloviev, V. Saptsin, and D. Chabanenko. Financial time series prediction with the technology of complex Markov chains. Computer Modelling and New Technologies, 14(3):63 – 67, 2010. http://www.tsi.lv/RSR/vol14 3/14 3-7.pdf [19] V. N. Soloviev, V. M. Saptsin, and D. N. Chabanenko. Prognozuvannya sotsialno-ekonomichnih protsesiv: suchasni pidhody ta perspektivy. Monograph (in Ukrainian), chapter Financial and economic time series forecasting using Markov chains and Fourier-continuation, pages 141–155. 2011. [20] V. N. Soloviev, V. M. Saptsin, and D. N. Chabanenko. Modern methods of analysis and prediction of oscillatory processes in complex systems. The scientific heritage of Simon Kuznets and prospects of the global and national economies in the XXI Century, 2011. CD-ROM. [21] V. N. Soloviev, V. M. Saptsin, and D. N. Chabanenko. Fourier-based forecasting of economic dynamics. In Informatsiyni tehnologiyi modelyuvannya v ekonomitsi: Conference proceedings (in Ukrainian), page 204, Cherkassy, 19-21 may 2009. Brama-Ukraine. [22] V. M. Saptsin and D. N. Chabanenko. Fourier-based forecasting of low-frequency components of economical dynamic’s time series. In Problemy ekonomichnoyi kibernetiki: Tezy dopovidey XIV Vseukrayinskoyi Naukovo-praktichnoyi konferentsiyi.(in Ukrainian), page 132, Kharkiv, Oct 8-9, 2009 2009. KhNU imeni VN Karazina. [23] D. M. Chabanenko. Discrete Fourier-based forecasting of time series. Sistemni tehnologii. Regionalny mizhvuzivsky zbirnik naukovyh pratz (in Ukrainian), 1(66):114 – 121, 2010. http://www.nbuv.gov.ua/portal/natural/syte/2010 1/15.pdf [24] V. M. Saptsin. Two-phase nonlinear discrete second-order system of logistical type: the local stability condition and classification. In Kompyuterne modeluvannya ta informatsiyni tehnologii v nautsi, ekonomitsi i osviti. Conference procceedings (in Ukrainian), pages 194 – 195, Krivy Rig, 2005. KEI KNEU. [25] Y. A. Olkhovaya and V. M. Saptsin. The relationship of concurence, cooperation and dominance in network models with discrete-time. In Electromechanical and energetic systems, simulation and optimization methods: Conference proceedings (in Russian), pages 302–305., Kremenchuk, Apr 8-9 2010. KDU. [26] V. M. Saptsin and A. N. Chabanenko. Analysis of the stability limit of the nonlinear two-agent model with dominance in the space of parameters. In Kompyuterne modelyuvannya i informatsiyni tehnologiyi v nautsi, ekonomitsi i osviti: Conference proceedings (in Ukrainian), pages 143–146, Cherkassy, 2011. Brama. [27] V. M. Saptsin, V. N. Soloviev, and A. Batyr. Nonlinear concurence in two-agent systems. In 2 volumes, editor, Tezy dopovidey VII Vseukryinskoyi Naukova-praktichnoyi koferentsiyi “Informatsiyni tehnologiyi in osviti, nautsi i tehnitsi” (ITONT 2010)., volume 1, page 101, Cherkassy, 2010. Cherkassy State Technological University. [28] V. N. Soloviev and V. M. Saptsin. Dynamical network mathematics - a new look at the problems of complex systems mathematical modeling. In Analysis, modeling, management, development of economic systems: collection of scientific papers of the IV International Symposium school - AMUR-2010, (in Russian), pages 340–342, Simferopol, Sep 13-19 2010. TNU named after V. I. Vernadsky. [29] V. N. Soloviev, V. M. Saptsin, and A. N Chabanenko. Dynamical network mathematics - a new look at the problems of complex systems mathematical modeling. In Visnyk Cherkaskogo universitetu. Seriya pedagogichni nauki, Vypusk 191. Part 1., pages 121–127. CHNU, 2010. [30] V. M. Saptsin. Econophysical analysis of the network nature of the low-frequency noise in socio-economic systems. In “Monitoring, modelyuvannya i management emerdzhentnoyi ekonomiki”, conference proceedings (in Ukrainian), pages 184–189, Cherkassy, 2010. Brama-Ukraine. [31] V. M. Saptsin. Econophysical analysis of network nature of low-frequency noise in socio-economic systems. Visnyk Cherkaskogo universitetu, 187:108–115., 2010. [32] V. N Soloviev, V. M. Saptsin, and Shokotko L. N. The Heisenberg’s principle and financial markets. In Systemny analiz. Informatika. Upravlinnya (SAIU-2011): Conference proceedings, pages 197–198, Zaporizhzhya, 2011. Classical Private University. [33] V.N. Soloviev, V. M. Saptsin, and L. N. Shokotko. Heisenberg uncertainty principle and financial markets. In The 9-th International conference “Information technologies and management 2011”, pages 135–136, Riga, Latvia, April 14-15 2011. Information Systems Management Institute. [34] L.D. Landau and E.M. Lifshitis. The classical theory of fields. Course of theoretical physics. Butterworth Heinemann, 1975. [35] John G. Cramer. The transactional interpretation of quantum mechanics. Rev. Mod. Phys., 58:647 – 687, Jul 1986. [36] M. Kaku. Introduction to superstrings and M-theory. Graduate texts in contemporary physics. Springer, 1999. [37] V. Balasubramanian. What we don’t know about time. Foundations of Physics, page 139, sep 2011. [38] Y. S. Vladimirov. A relational theory of space-time interactions. Part 1. MGU, Moscow, 1996. [39] Y. S. Vladimirov. A relational theory of space-time interactions. Part 2. MGU, Moscow, 1996. [40] M. Kaku. Parallel worlds: a journey through creation, higher dimensions, and the future of the cosmos. Anchor Books, 2006. [41] M. Kaku. Physics of the impossible: a scientific exploration into the world of phasers, force fields, teleportation, and time travel. Doubleday, 2008. [42] V. M. Saptsin and D. M. Chabanenko. The complexity problem and non-linear time in socio-economic processes forecasting. In Problemy ekonomichnoyi kibernetiki: Tezi dopovidey XIV Vseukrayinskoyi Naukova-praktichnoyi konferentsiyi, pages 130–131, Kharkiv, 2009. KNU imeni V. N. Karazina.
dc.description.abstract From positions, attained by modern theoretical physics in understanding of the universe bases, the methodological and philosophical analysis of fundamental physical concepts and their formal and informal connections with the real economic measurings is carried out. Procedures for heterogeneous economic time determination, normalized economic coordinates and economic mass are offered, based on the analysis of time series, the concept of economic Plank's constant has been proposed. The theory has been approved on the real economic dynamic's time series, including stock indices, Forex and spot prices, the achieved results are open for discussion. uk
dc.language.iso en uk
dc.subject economic coordinates uk
dc.subject economic time uk
dc.subject economic mass uk
dc.subject time series uk
dc.subject economic Plank's constant uk
dc.subject economic dynamic uk
dc.subject stock indices uk
dc.title Heisenberg uncertainty principle and economic analogues of basic physical quantities uk
dc.type Article uk


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account

Statistics