Description:
[1] A. A. Samarskii and A. P. Mikhailov. Mathematical Modelling: Ideas. Methods. Examples.
Fizmatlit, Moscow, 2001.
[2] V. V. Bohoboyaschyy, K. R. Kurbanov, P.B. Paly, and V.M. Shmandiy. Principles of Forecasting in Ecology: Textbook (in Ukrainian). Center navchalnoji literaturi, Kyiv, 2004.
[3] O. G. Ivakhnenko. Grouping method of data handling - the concurrent of stochastic approximation methods (in ukrainian) Automatika, 3(3):58–72, 1968.
[4] J. V. Andersen, S. Gluzman, and D. Sornette. Fundamental framework for “technical analysis”
of market prices. European Physical Journal B, 14:579–601, March 2000.
[5] D. Horvath and R. Pincak. From the currency rate quotations onto strings and brane world
scenarios. arXiv:1104.4716 , April 2011.
[6] M. Repasan and R. Pincak. The string prediction models as application to financial forex
market. arXiv:1109.0435 , September 2011.
[7] P. V. Elyutin and V. D. Krivchenkov. Quantum Mechanics with tasks. Nauka, Moscow, 1976.
[8] L.D. Landau and E.M. Lifshitz. Quantum mechanics: non-relativistic theory. Teoreticheskafizika (Izd. 3-e) (Landau, L. D, 1908-1968). Butterworth-Heinemann, 1977.
[9] J. Sapir. K Ekonomitcheskoj teorii neodnorodnyh sistem - opyt issledovanija decentralizovannoj
ekonomiki. GU VShE, Moskov, 2001.
[10] L. von Bertalanffy. General system theory—a critical review. “General Systems”, VII:1–20,
1962.
[11] K. R. Kurbanov and V. M. Saptsin. Markov chains as technology for social, economic and ecological processes forecasting. In “Problemy ta perspectivy rozvitku regonalno rinkovo ekonomki”
Conference proceedings (in Russian), pages 10 – 14, Kremenchuk, May, 11-13 2007. [12] V. M. Saptsin. Experience of using genetically complex Markov chains for the neural network
technology forecasting. Visnyk Krivorizkogo ekonomichnogo institutu KNEU, 2 (18):56 – 66,
2009.
[13] Y. P. Lukashin. Adaptive Methods of Time Series Forecasting: Textbook. Finance and Statistics, Moscow, 2003.
[14] Y. P. Zaichenko. Fuzzy models and techniques in intelligent systems. Monograph(in Russian).
Slovo, Kiev, 2008.
[15] A. A. Ezhov and S. A. Shumsky. Neurocomputing and its application in economics and business
(Series “Textbooks” of Economic-Analytical Institute MEPI) / Ed. prof. V. V. Kharitonov.
MEPI, Moscow, 1998.
[16] I. V. Zayencev. Neural networks: basic models. Textbook for the course “Neural networks”
for 5-th grade students (in Russian) Physical Electronics Department, Faculty of Voronezh
State University Voronezh State University, Voronezh.
[17] D. M. Chabanenko. Detection of short- and long-term memory and time series prediction methods of complex Markov chains. In Visnyk Natsionalnogo tehnichnogo universitetu
“Kharkivsky politehnichny institut”. Zbirnik Naukovyh pratz. Tematichny vypusk: Informatika
i modelyuvannya (in Ukrainian), number 31, pages 184 – 190. NTU KHPI, Kharkov, 2010.
http://www.pim.net.ua/ARCH F/V pim 10.pdf
[18] S. L. Sobolev. Selected topics from the theory of functional spaces and generalized functions.
Nauka, Moscow, 1989.
[19] J. Hale. Theory of Functional Differential Equations. Springer-Verlag, New York, Heidelberg,
Berlin, 1977.
[20] M.J. Buckingham. Noise in electronic devices and systems. Ellis Horwood series in electrical
and electronic engineering. E. Horwood, 1983.
[21] Hanz-Valter Lorenz. Nonlinear Dynamical Economics and Chaotic Motion. Springer-Verlag,
1989.
[22] E.E. Peters. Chaos and order in the capital markets: a new view of cycles, prices, and market
volatility. Wiley finance editions. Wiley, 1996.
[23] J. Feder. Fractals. Physics of solids and liquids. Plenum Press, 1988.
[24] V. I. Tikhonov and V. A. Mironov. Markov Processes. Soviet Radio, Moscow, 1977.
[25] G.A. Korn and T.M. Korn. Mathematical handbook for scientists and engineers: definitions, theorems, and formulas for reference and review. Dover books on mathematics. Dover Publications, 2000.
[26] Andrian E. Raftery. A model for high-order markov chains. Journal of the Royal Statistical
Society., 1985.
[27] Adrian Raftery and Simon Tavare. Estimation and modelling repeated patterns in high order
markov chains with the mixture transition distribution model. Appl. Statist., 43(1):179–199,
1994.
[28] V. M. Saptsin and V. N. Soloviev. Relativistic Quantum Econophysics. New paradigms of Complex systems modeling: Monograph. http://kafek.at.ua/sol sap monogr.rar Brama-Ukraine,
Cherkassy, 2009.
[29] V. Saptsin and V. Soloviev. Relativistic quantum econophysics - new paradigms in complex
systems modelling. arXiv:0907.1142v1 [physics.soc-ph].
[30] V. D. Derbentsev, A. A. Serdyuk, V. N. Soloviev, and O. D. Sharapov. Synergetical and econophysical methods for the modeling of dynamic and structural characteristics of economic systems. Monograph (in Ukrainian). Brama-Ukraine, Cherkassy, 2010.
http://kafek.at.ua/Monogr.pdf
[31] V. M. Saptsin and D. N. Chabanenko. Fourier-based forecasting of low-frequency components
of economical dynamic’s time series. In Problemy ekonomichnoyi kibernetiki: Tezy dopovidey
XIV Vseukrayinskoyi Naukovo-praktichnoyi konferentsiyi.(in Ukrainian), page 132, Kharkiv,
Oct 8-9, 2009 2009. KhNU imeni VN Karazina.
[32] D. M. Chabanenko. Discrete Fourier-based forecasting of time series. Sistemni tehnologii.
Regionalny mizhvuzivsky zbirnik naukovyh pratz (in Ukrainian), 1(66):114 – 121, 2010.
http://www.nbuv.gov.ua/portal/natural/syte/2010 1/15.pdf
[33] V. N. Soloviev. Mathematical economics. A textbook for self-study (in Ukrainian). CHNU,
Cherkassy, 2008. http://kafek.at.ua/Posibnyk Soloviev.rar
[34] Vladimir Soloviev, Vladimir Saptsin, and Dmitry Chabanenko. Prediction of financial time series with the technology of high-order markov chains. In Working
Group on Physics of Socio-economic Systems (AGSOE), Drezden, 2009. http://www.dpgverhandlungen.de/2009/dresden/agsoe.pdf
[35] V. Soloviev, V. Saptsin, and D. Chabanenko. Financial time series prediction with the technology of complex markov chains. Computer Modelling and New Technologies, 14(3):63–67, 2010. http://www.tsi.lv/RSR/vol14 3/14 3-7.pdf
[36] Yahoo! finance database. http://finance.yahoo.com
[37] Economic indicators : Gdp per capita (current prices, national currency) 2010. http://www.economywatch.com/economic-statistics/economicindicators/GDP Per Capita Current Prices National Currency/2010/