Description:
1.
Samarskii, A. A. and A. P. Mikhailov.
Mathematical Modeling: Ideas. Methods. Examples.
Moscow:
Fizmatlit, 2001.
2.
Ivakhnenko, O. G. Grouping Method of Data Handling
– the Concurrent of Stochastic Approximation
Methods (in Ukrainian),
Automatika
, Vol. 3
(3), 1968, pp. 58–72.
3.
Saptsin, V. and Soloviev, V.
Relativistic Quantum Econophysics – New Paradigms in Complex Systems
Modelling.
arXiv:0907.1142v1 [physics.soc-ph].
4.
Von Bertalanffy, L. General Syst
em Theory – a Critical Review,
General Systems
, VII, 1962, pp. 1–20.
5.
Kurbanov, K. R. and V. M. Saptsin. Markov Chains
as Technology for Social, Economic and Ecological
Processes Forecasting. In:
Problems of Regional Perspectives of the Market Economy, Kremenchuk,
May, 11–13 2007
, pp. 10–14. (In Russian)
6.
Saptsin, V. M. Experience of Using Genetically Complex Markov Chains for the Neural Network
Technology Forecasting,
Visnyk Krivorizkogo ekonomichnogo institutu KNEU
, Vol. 2
(18), pp. 56–66,
2009.
7.
Lukashin, Y. P.
Adaptive Methods of Time Seri
es Forecasting: Textbook.
Moscow: Finance and
Statistics, 2003.
8.
Zaichenko, Y. P.
Fuzzy Models and Techniques in Intelligent Systems: Monograph.
Kiev: Slovo,
2008. (In Russian)
9.
Ezhov, A. A. and S. A. Shumsky.
Neurocomputing and its Application in Economics and Business
(Series “Textbooks” of Economic-Analytical Institu
te MEPI) / Ed. by Professor V. V. Kharitonov
. Moscow:
MEPI, 1998.
10.
Soloviev, V., Saptsin, V. and D. Chabanenko. Financial time series prediction with the technology of
complex Markov chains,
Computer Modelling and New Technologies
, Vol. 14
(3), 2010, pp. 63–67.
http://www.tsi.lv/RSR/vol14 3/14 3-7.pdf
11.
Soloviev, V., Saptsin, V. and D. Chabanenko.
Markov Chains application to the financial-economic time
series prediction
. – arXiv:1111:5254, November 2011.
12.
Tikhonov, V. I. and V. A. Mironov.
Markov Processes
. Moscow: Soviet Radio, 1977.
13.
Raftery, Adrian E. A Model for High-Order Markov Chains,
Journal of the Royal Statistical Society,
1985.
14.
Raftery, Adrian and Simon Tavare. Estimation and M
odelling Repeated Patterns in High Order Markov
Chains with the Mixture Transition Distribution Model,
Appl. Statist
., Vol. 43
(1), 1994, pp. 179–199.
15.
Chabanenko, D. M. Discrete Fourie
r-Based Forecasting of Time Series,
Sistemni tehnologii.
Regionalny mizhvuzivsky zbirnik naukovyh pratz
(in Ukrainian), Vol. 1
(66), 2010, pp. 114–121. –
http://www.nbuv.gov.ua/portal/n
atural/syte/2010 1/15.pdf