DSpace Repository

Multifractal properties of the Ukraine stock market

Show simple item record

dc.contributor.author Ganchuk, A.
dc.contributor.author Derbentsev, V.
dc.contributor.author Соловйов, Володимир Миколайович
dc.date.accessioned 2017-07-21T07:02:25Z
dc.date.available 2017-07-21T07:02:25Z
dc.date.issued 2006
dc.identifier.citation Ganchuk A. Multifractal properties of the Ukraine stock market / A. Ganchuk, V. Derbentsev, V. Soloviev. – 1 Aug. 2006. – arXiv:physics/0608009v1 [physics.data-an] uk
dc.identifier.uri http://elibrary.kdpu.edu.ua/handle/0564/1078
dc.identifier.uri https://doi.org/10.48550/arXiv.physics/0608009
dc.description [1] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez , D.-U. Hwang, Physics Reports 424 (2006) 175 – 308 [2] B.B. Mandelbrot and J.W. van Ness, SIAM Review 10 (1968) 422-437 [3] V. Plerou, P. Gopikrishnan, L.A.N. Amaral, M. Meyer and H.E. Stanley, Phys. Rev. E 60 (1999) 6519-6529 [4] P. Gopikrishnan, V. Plerou, L.A.N. Amaral, M. Meyer and H.E. Stanley, Phys. Rev. E 60 (1999) 5305-5316 [5] V. Plerou, P. Gopikrishnan, L.A.N. Amaral, X. Gabaix and H.E. Stanley, Phys. Rev. E 62 (2000) R3023-R3026 [6] V. Plerou, P. Gopikrishnan, B.Rosenow, L. A. N. Amaral, T.Guhr, H. E. Stanley Phys.Rev E, 65 (2002) 066126 [7] S. Drozdz, J. Kwapien, F. Gruemmer, F. Ruf and J. Speth, Acta Phys. Pol. B 34 (2003) 4293-4305 [8] J. F.Muzy, E. Bacry, and A. Arneodo, Phys. Rev. Lett. 67 (1991), 3515 [9] J.W. Kantelhardt, S.A. Zschiegner, E. Koscielny-Bunde, A. Bunde, Sh. Havlin and H.E. Stanley, Physica A 316 (2002) 87-114
dc.description.abstract Recently the statistical characterizations of financial markets based on physics concepts and methods attract considerable attentions. We used two possible procedures of analyzing multifractal properties of a time series. The first one uses the continuous wavelet transform and extracts scaling exponents from the wavelet transform amplitudes over all scales. The second method is the multifractal version of the detrended fluctuation analysis method (MF- DFA). The multifractality of a time series we analysed by means of the difference of values singularity stregth αmax and αmin as a suitable way to characterise multifractality. Singularity spectrum calculated from daily re- turns using a sliding 1000 day time window in discrete steps of 1. . . 10 days. We discovered that changes in the multifractal spectrum display distinctive pattern around significant “drawdowns”. Finally, we discuss applications to the construction of crushes precursors at the financial markets. uk
dc.language.iso en uk
dc.subject multifractal uk
dc.subject stock market uk
dc.subject singularity spectrum uk
dc.title Multifractal properties of the Ukraine stock market uk
dc.type Article uk


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account

Statistics