DSpace Repository

Effect of oxygen agglomeration in polycrystaline Si (SIPOS) films

Show simple item record

dc.contributor.author Lisovskyy, I. P.
dc.contributor.author Litovchenko, V. G.
dc.contributor.author Gnenyy, B. M.
dc.contributor.author Fussel, W.
dc.contributor.author Ків, Арнольд Юхимович
dc.contributor.author Соловйов, Володимир Миколайович
dc.contributor.author Maximova, Tatiana I.
dc.date.accessioned 2017-07-09T18:22:20Z
dc.date.available 2017-07-09T18:22:20Z
dc.date.issued 2002
dc.identifier.citation Lisovskyy I. P. Effect of oxygen agglomeration in polycrystaline Si (SIPOS) films / I. P. Lisovskyy, V. G. Litovchenko, B. M. Gnenyy, W. Fussel, A. E. Kiv, V. N. Soloviev, T. I. Maximova // Journal of Materials Science: Materials in Electronics. – 2002. – Vol. 13, N 3. – Pp. 167-171. uk
dc.identifier.issn 0957-4522
dc.identifier.uri http://elibrary.kdpu.edu.ua/handle/0564/1032
dc.identifier.uri https://doi.org/10.1023/A:1014385401282
dc.description 1. P. A K H T E R , M. N. Z A K I R , A. B A I G , Semieond. Sci. Technology 6(1991) 135. 2. C. V A L K E R , ; . D. W H I T F I E L D a n d P. L. FE JE S , Mater. Res. Soc. Symp. ProtL 14 (1983) 187. 3. K. NAUKA, H. C, GATOS and J. LAGOVSKY, Appl. Phys. Lett. 43 (1983) 241. 4. PARK, M. DUECHER and H. J. M OELLER, in “ Proceedings of the Twelfth European Photovoltaic Solar Energy Conference, Amsterdam, June 1994", edited by J. Park (Elsevier Science, Kidlington, 1994) p. 996. 5. I. E. R EIS, CHUNG and H. M O E LER , in “ Proceedings of the Eleventh European Photovoltaic Solar Energy Conference Montreux September 1992" edited by J. Park (Elsevier Science, Kidlington, 1992) p. 499. 6. I. P. L I S O V S K I I , V. G. L I T O V C H E N K O , V. B. L O Z I N S K I I a n d G. I. STEBLOVSKII, Thin Solid Films 213 (1992) 164. 7. I. P. L I S O V S K I I , V. G. L IT O V C H E N K O , V. B. L O Z I N S K I I , V. P. M E L N IK a n d S. I. FROLOV , ibid. 247 (1994) 264. 8. I. P. L I S O V S K I I , V. G. L IT O V C H E N K O , V. B. L O Z I N S K I I , S. J. FROLOV, H. F L IE T N E R , W. F U S S EL and E. SCHM ID T, J. Non-Cryst. Solids 87 (1995) 91. 9. A. E. K IV , V. N . S O L O V I E V a n d T. I. M A X I M O V A , Semieond. Phys., Quantum Electron. Opipelectron. 3 (2000) 157. 10. H. H I B I N O , K. S U M I T O M O a n d T. F U K U D A , Phys. Rev. B58 (1999) 12587. 11. A. L E H M A N N , L. SCH U M A N N and K. H U B N ER , Phys. Status Solid B i l l (1984) 505. 12. P. G A W O R Z E W S K I, E. H IL D , F.-G . K I R S C H T and L. V ECSERN YES, Phys. Status Solid A 85 (1984) 133. 13. M. N A K A M U R A , Y. M O C H I Z U K I , K. U S A M I , Y. I T O H a n d T. N OZAK I, Solid State Commun. 50 (1984) 1079. 14. I. P. L IS O V S K Y Y , V. G„ L I T O V C H E N K O , B. M. G N E N Y Y . D. O. M AZ UR O V , W. F U S S E L , A. E. KIV, T. I. M A X IM O V A a n d V. N. S O L O V IE V , Phys. Low-Dim. Struct. 7/8 (2001) 113. 15. A. P. D O S T A N K O , E. S, A K U L I C H , V. YA. S H IR IP O V an d S. A. SOBOLEV, /. Appl. Spectrose 50 (1989) 436. 16. I. V. S V A D K O V S K I I , E. S. A K U L I C H , V. YA. S H I R I P O V a n d A. P. d o s t a n k o , ibid. 55(1991) 322. 17. G. V. S I D O R E N K O , N„ N. S Y R B U , A. T, G A P O N E N K O an d V. D. P R IL E P O V , Elektronnaya Tekhnika, Seria Materialy 256 (1991)49. 18. W. F U S S E L , W. H EN R IO N a n d R . SC H O L Z , Microelectr. Eng. 22 (1993) 355. 19. P. W. J A C O B S , A, E. K IV , R. M. B A L A B A Y , N . V. G R I S C H E N K O , V. V. C H IS L O V , J . I. D O N C H E V a n d S. V. PRIKHODNAYA, Comput. Model. New Technol. 2 (1998) 15. 20. F. H. S T I L L I N G E R and T. A. W E B E R , Phys. Rev. B 31 (1985) 52. 21. F. F. A B R A H A M and I. P. B A T R A , Surf. Sci. 163 (1985) L752.
dc.description.abstract IR transmission spectra of SIPOS structures were measured and were investigated by using an approach of deconvolution of the Si-O stretching band into Gauss profiles. It was found that the space distribution of oxygen in SIPOS layers treated at elevated temperatures does not correspond to the prediction of RBM statistics. The oxygen agglomeration was observed. Optical microscopy was also applied to get additional information about the SIPOS films after treatment in HF solution. The peculiarities of the space distribution of oxygen in SIPOS films are explained on the basis of a computer simulation of free Si surface relaxation. A computer model has shown that a disordered phase arises in the Si surface layers at elevated temperatures. This phase is characterized by a large concentration of stressed and dangling bonds. There are lattice nodes with more than one dangling bond that are suitable sites for oxygen agglomeration. uk
dc.language.iso en uk
dc.publisher Springer Science+Business Media uk
dc.subject IR transmission spectra uk
dc.subject SIPOS structures uk
dc.subject space distribution uk
dc.subject RBM statistics uk
dc.subject oxygen agglomeration uk
dc.subject SIPOS films uk
dc.subject HF solution uk
dc.subject peculiarities of the space distribution of oxygen uk
dc.subject computer simulation uk
dc.subject free Si surface relaxation uk
dc.subject disordered phase uk
dc.subject Si surface layers uk
dc.subject stressed bonds uk
dc.subject dangling bonds uk
dc.subject quasi-disordered phase uk
dc.title Effect of oxygen agglomeration in polycrystaline Si (SIPOS) films uk
dc.type Article uk


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account

Statistics