dc.contributor.author | Соловйов, Володимир Миколайович | |
dc.date.accessioned | 2017-07-07T19:06:05Z | |
dc.date.available | 2017-07-07T19:06:05Z | |
dc.date.issued | 1984-06-16 | |
dc.identifier.citation | Solovev V. N. Atomic Particle Delocalisation Effect in Disordered Media / V. N. Solovev // physica status solidi (a). – 1984. – Volume 83, Issue 2. – Pp. 553-559. | uk |
dc.identifier.issn | 1862-6300 | |
dc.identifier.uri | http://elibrary.kdpu.edu.ua/handle/0564/1013 | |
dc.identifier.uri | https://doi.org/10.1002/pssa.2210830216 | |
dc.description | [1] H. L. Tuller, P. D. Button, and D. R. Ulhmann, J. non-crystall. Solids 40, 93 (1980). [2] R. W. Cahn, Contemp. Phys. 21, 43 (1980). [3] C. C. Jain, B. C. Chakravarty, and S. N. Singh, Appl. Phys. Letters 38, 815 (1981). [4] N. F. Mott and E. A. Davis, Electron Processes in Non-Crystalline Materials, Clarendon Press, Oxford 1979. [5] D. Akhtar, B. Cantor, and R. W. Cahn, Acta metall. 30, 1571 (1982). [6] R. C. Bowman, Jr. and A. J. Maeland, Phys. Rev. B 24, 2328 (1981). [7] B. S. Bokstein, L. M. Klinger, I. M. Razumovskii, and E. N. Uvarova, Fiz. Metallov i Metallovedenie 51, 651 (1981). [8] B. S. Berry and W. C. Prithet, Phys. Rev. B 24, 2299 (1981). [9] D. Gupta, K. N. Tu, and K. W. Asai, Thin Solid Films 90, 131 (1982). [10] P. Valenta, K. Maier, H. Kronmuller, and K. Freitag, phys. stat. sol. (b) 106,129 (1981). [11] T. M. Reith, Appl. Phys. Letters 28, 152 (1976). [12] B. Swaminathan and K. C. Saraswat, Appl. Phys. Letters 40, 795 (1982). [13] H.-U. Shreiber and B. Grabe, Solid State Electronics 24, 1135 (1981). [14] A. B. Danilin, A. V. Dvurechenskii, I. A. Ryazantsev, P. A. Timofeev, and V. D. Verner, phys. stat. sol. (a) 65, 453 (1981). [15] B. I. Sklovskii and A. A. Efros, Electronnye svoistva legirovannykh poluprovodnikov, Izd. Nauka, Moscow 1979. [16] A. Miller and E. Abrahams, Phys. Rev. 120, 745 (1960). [17] A. E. Kiv, V. N. Solovev, and L. E. Stys, in: Ion Beam Modification of Materials, 2nd Internat. Conf., Albany (New York) 1980 (p. E29). [18] V. N. Solovev, Fiz. Metallov i Metallovedenie 54, 876 (1982). [19] L. S. Smirnova (Ed.), Fizicheskie protsesi v poluprovodnikakh, Izd. Nauka, Novosibirsk 1977. | |
dc.description.abstract | Possible reasons are given of the higher diffusion rates of atoms (comparatively to crystals) in disordered condensed media (in metallic and oxide glasses, polycrystalline and amorphous semiconductors). It is shown, that the diffusion coefficient exponentially depends on the disordering degree of the media. A quantum-chemical simulation of the diffusion processes in amorphous silicon is made, The results of which corresponds to the delocalisation atom effect obtained in random fields. The most characteristic experimental features of the activation processes in disordered media are analysed. | uk |
dc.language.iso | en_US | uk |
dc.publisher | Wiley-VCH | uk |
dc.subject | disordered condensed media | uk |
dc.subject | metallic and oxide glasses | uk |
dc.subject | polycrystalline and amorphous semiconductors | uk |
dc.subject | diffusion coefficient | uk |
dc.subject | disordering degree of the media | uk |
dc.subject | quantum-chemical simulation method | uk |
dc.subject | diffusion processes | uk |
dc.subject | amorphous silicon | uk |
dc.subject | delocalisation atom effect | uk |
dc.subject | disordered media | uk |
dc.title | Atomic Particle Delocalisation Effect in Disordered Media | uk |
dc.type | Article | uk |