МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ

ДВНЗ «КРИВОРІЗЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ»

Міжнародна науково-технічна конференція

Матеріали конференції

СТАЛИЙ РОЗВИТОК ПРОМИСЛОВОСТІ ТА СУСПІЛЬСТВА

Том 2

22-25 травня 2013 року

УДК 550.831 П. А. МИНЕНКО, д.ф.-м.н., профессор Криворожский педагогический институт ГВУЗ «Криворожский национальный университет»

ФИЛЬТРАЦИОННЫЕ МЕТОДЫ УСТОЙЧИВОГО РЕШЕНИЯ ОБРАТНЫХ ЗАДАЧ ДЛЯ АНАЛОГОВ ДРОБНЫХ ПРОИЗВОДНЫХ ПОЛЯ

Известны фильтрационные методы (ФМ) устойчивого решения обратных задач (ОЗ) для

Использовано сокращенные формулы производных дробного порядка для поля в дискретных точках.

измеренного с большими погрешностями гравитационного (g) или магнитного (Z) поля $(\Gamma\Pi, M\Pi)$ [1]. Основной их недостаток состоит в том, что они сильно чувствительны к неправильному выбору постоянного фона $(\Pi\Phi)$: g_f для $\Gamma\Pi$ и Z_f для $M\Pi$. При больших отклонениях $\Pi\Phi$ от его неизвестного реального значения решение O3 теряет геологическую содержательность, поскольку вычисленные физические параметры $(\Phi\Pi)$ каждого блока интерпретационной модели (MM) имеют в пространстве геологической среды нереально высокие осциллирующие значения. Обычно $\Pi\Phi$ устраняется образованием конечных разностей измеренного поля $(M\Pi)$ между двумя точками профиля X_{j+1} и X_j , расположенными на

расстоянии $\Delta X = X_{j+1} - X_j$ (градиенты поля) или в 8 точках (трансформанта Саксова-Ниггарда (ТСН)). Однако обе они приводят к очень малым значениям нового поля – трансформанты, при сохранении, и даже превышении в некоторых точках, уровня помех ИП. Это существенно снижает точность решения ОЗ и глубинность надежных исследований. Тем не менее, с помощью методических приемов эти трансформанты ИП можно использовать для изучения приповерхностной части геологического разреза. Например, повторением решения ОЗ для ТСН при перемещении всех блоков ИМ с шагом 20-50 м вдоль профиля можно получить переменное распределение ФП внутри блоков и глубин до них. Однако эти методики требуют в десятки раз больших затрат компьютерного времени, чем при интерпретации ИП,

что и является их существенным недостатком. Целью настоящего сообщения является поиск такого ряда трансформант измеренного поля (ТИП), которые позволяют исследовать зависимость ряда решений ОЗ от величины введенного в исходное поле постоянного фона и в этом процессе найти его оптимальное значение.

где α_i – константа, определяющая величину ДП аналога производной.

Преимуществом этого метода является то, что любая погрешность поля (ПП) в одной точке входит в соседние НРП не только с разным знаком, но и в соотношении $1:\alpha_i$, что обеспечивает линейную независимость ПП, входящих во все точки ТИП. Причем, таких графиков НРП можно построить любое количество, в соответствии с выбранным рядом значений α_i , которые, подобно сейсмограмме, образуют гравитограмму или магнитограмму ТИП, вычисленных по формулам

$$G_{\alpha_{i}}(X_{j}) = g(X_{j} + \Delta X) + g_{f} - \alpha_{i}(g(X_{j}) + g_{f});$$

$$Z_{\alpha_{i}}(X_{j}) = (Z(X_{j} + \Delta X) + Z_{f}) - \alpha_{i}(Z(X_{j}) + Z_{f});$$
(2)

Кроме того, исследованием решений ОЗ для НРП (1)-(2) установлено, что при одном α_i и разных значениях ПФ $g_{f,i}$ мы имеем различные решения ОЗ по (2) относительно ФП – плотности σ_i для ГП (и, аналогично, для МП относительно интенсивности намагничивания

(ИН) горных пород $J_{z,i}$). Однако, все графики НРП, построенные для различных α_i , в системе координат $(g_{f,i},\sigma_i,\alpha_i$ =const) или $(Z_{f,i},J_{z,i},\alpha_i$ =const), пересекаются в одной точке $(g_{f,k},\sigma_k)$ или $(Z_{f,k},J_{z,k})$, соответствующей значению оптимального ПФ $(g_{f,k},M_{ij},M_{ij},M_{ij},M_{ij},M_{ij},M_{ij})$, при котором мы получаем геологически содержательное и наиболее близкое к реальному решение ОЗ $(\sigma_k$ или $J_{z,k})$, не зависящее от параметра α_i :

$$\sigma_k(\alpha_l, g_{f,k}) = \sigma_k(\alpha_2, g_{f,k}) = \dots = \sigma_k(\alpha_i, g_{f,k}) = \dots = \sigma_k(\alpha_m, g_{f,k});$$
 (3)

На рис. 1 приведена карта одной из трансформант МП Z при $\alpha_i=1/3;1/2$ и 2/3, по которым выполнено решение ОЗ. На рис. 2, 3, 4 приведены результаты решения по трем разным картам ОЗ магнитометрии для 2-го наклонного слоя ИМ (глубина до кровли слоя 0,9-0,5 км, до подошвы -1,4-0,8 км) в виде вычисленных карт ИН J_Z (в относительных единицах - o.e.)

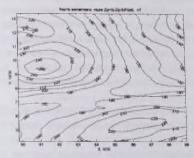


Рис. 1. Карта трансформанты магнитного измеренного поля (в нТ) при $\alpha_i = 2/3$

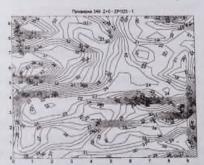


Рис. 3. Карта ${J}_z$ 2-го слоя при ${lpha_i}$ =1/2

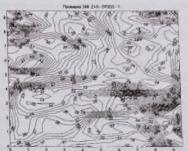


Рис. 2. Карта интенсивности намагничивания J_z 2-го слоя при $lpha_i$ =1/3

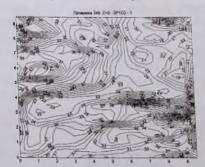


Рис. 4. Карта ${J}_{z}$ 2-го слоя при ${\alpha}_{i}=$ 2/3

Выводы. Предложенный метод поиска постоянного фона гравитационных и магнитных аномалий существенно повышает точность решения некорректных ОЗ и геологическую содержательность результатов интерпретации аномалий, а также существенно уменьшает затраты машинного времени на вычисления. Предполагается разработать аналогичный метод для вычисления глубин до блоков сближенных интерпретационных моделей.

Литература

- 1. Миненко П. А. Обратная линейная задача гравиметрии на основе композиции нескольких векторов начальних русловий // «Доповіді НАН України». 2006. № 9, С. 126-130.
- 2. Миненко Р. В. Исследование глубинного строения южной части Криворожского синклинория методами гравиметрии / Р. В. Миненко, П. А. Миненко, Ю. П. Мечников // «Науковий вісник НГУ». Дн-сък, 2009. №2. С. 60- 64.