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Abstract Our study is devoted to the problems of the short-term forecasting cryp-
tocurrency time series using machine learning (ML) approach. Focus on studying of
the financial time series allows to analyze the methodological principles, including
the advantages and disadvantages of using ML algorithms. The 90-day time horizon
of the dynamics of the three most capitalized cryptocurrencies (Bitcoin, Ethereum,
Ripple) was estimated using the Binary Autoregressive Tree model (BART), Neu-
ral Networks (multilayer perceptron, MLP) and an ensemble of Classification and
Regression Trees models—Random Forest (RF). The advantange of the developed
models is that their application does not impose rigid restrictions on the statistical
properties of the studied cryptocurrencies time series, with only the past values of
the target variable being used as predictors. Comparative analysis of the predictive
ability of the constructed models showed that all the models adequately describe the
dynamics of the cryptocurrencies with the mean absolute persentage error (MAPE)
for the BART and MLP models averaging 3.5%, and for RF models within 5%. Since
for trading perspective it is of interest to predict the direction of a change in price or
trend, rather than its numerical value, the practical application of BART model was
also demonstrated in the forecasting of the direction of change in price for a 90-day
period. To this end, a model of binary classification was used in the methodology
for assessing the degree of attractiveness of cryptocurrencies as an innovative finan-
cial instrument. Conducted computer simulations have confirmed the feasibility of
using the machine learning methods and models for the short-term forecasting of
financial time series. Constructed models and their ensembles can be the basis for
the algorithms for automated trading systems for Internet trading.

V. Derbentsev - A. Matviychuk

Kyiv National Economic University named after Vadym Hetman, 54/1 Prospect Peremogy, Kyiv
03057, Ukraine

e-mail: derbv@kneu.edu.ua

A. Matviychuk
e-mail: editor@nfmte.com

V. N. Soloviev (<)
Kryvyi Rih State Pedagogical University, 54 Gagarina Ave, Kryvyi Rih 50086, Ukraine
e-mail: vnsoloviev2016@gmail.com

© Springer Nature Singapore Pte Ltd. 2020 211
L. Pichl et al. (eds.), Advanced Studies of Financial Technologies
and Cryptocurrency Markets, https://doi.org/10.1007/978-981-15-4498-9_12


http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-4498-9_12&domain=pdf
mailto:derbv@kneu.edu.ua
mailto:editor@nfmte.com
mailto:vnsoloviev2016@gmail.com
https://doi.org/10.1007/978-981-15-4498-9_12

212 V. Derbentsev et al.

Keywords Binary autoregressive tree model - Cryptocurrency prices * Financial
time series + Machine learning + Neural network - Regression and classification
tree ensemble - Short-term forecasting

1 Introduction

Current stage of the global development has been characterized by the widespread
Information Technology (IT) innovation in all spheres of human activity, especially
in business and finance. Probably, today the question about the role and prospects
of widespread implementation of the blockchain technology and the first crypto-
graphic currency (cryptocurrency) Bitcoin, which was developed in 2009, is the
most controversial.

This problem is the focus of debate among leading economists, politicians and
businessmen, whose views are often diametrically opposite: from full support (“dig-
ital gold” of the twenty-first Century and the future of the world currency reserve
(Popper 2015; Vigna and Casey 2015)), to complete negation (“financial bubble”,
the biggest financial shady transaction (Krugman 2013; CNBC 2018)).

This controversy is not least due to the significant fluctuations in the exchange
rate of cryptocurrencies and legal uncertainty of the transactions with them in most
countries of the world, which led to significant risks of investment in these assets.

In this regard, the problem of developing adequate cryptocurrency prices forecast-
ing approach is relevant to the scientific community as well as to financial analysts,
investors and traders.

In order to make investment decisions in the crypto market, it is necessary to have
efficient tools of prices forecasting, profitability and risk assessment, at least for the
shortterm time horizon.

Analysis of recent theoretical and empirical studies shows that the price dynamics
of cryptocurrencies are influenced by many latent factors. These key factors (drivers)
have not been well understood and identified yet (Selmi et al. 2018; Cheah 2015;
Ciaian 2016; Catania and Grassi 2017). The vast majority of researchers are inclined
to believe that the fundamental factors do not have a significant influence on the
cryptocurrency rate. Instead their prices are determined by the demand-supply ratio.

In our recent studies, we used the methods of the complex systems theory and
demonstrated the possibility of constructing indicators of critical and crash phe-
nomena in the volatile stock and cryptocurrency markets (Derbentsev et al. 2019b;
Soloviev and Belinskij 2016, 2019; Soloviev et al. 2019a, b, c; Belinskyi et al.
2019). Our results show that cryptocurrency time series are characterized by com-
plex dynamics, extreme observations and a high degree of volatility. They are also
non-stationary, fractal and have non-Gaussian distributions (Belinskyi et al. 2019).
These results are consistent with several other empirical studies which applied the
statistical approach (Catania and Grassi 2017).
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Therefore, the application of traditional forecasting methods based on the use of
casual models, built within a certain theoretical macroeconomic concept, or classical
time series models has proven to be ineffective.

In the last two decades the methods and algorithms of machine learning have been
applied to forecasting financial and economic time series (Flach 2012; Bontempi et al.
2013; Persio and Honchar 2018), and various automated trading systems—bots built
on these algorithms—began to be used for trading.

The main purpose of our research is to compare the prognostic properties for
the short-term prediction task of the cryptocurrency exchange rates of several ML
methods: the BART algorithm (Derbentsev et al. 2019a), Artificial Neural Networks
(ANN) and decision trees ensemble—RF.

The paper is structured as follows. Section 2 describes previous studies in these
fields. Section 3 presents ML approach in the context of financial time series fore-
casting. In this section we described the main aspects of applying BART, ANN and
RF to prediction of cryptocurrency prices.

Section 4 describes the datasets used to test and simulation the models. The
empirical results are reported in Sect. 5. In this section we presented the results of
the short-term predictions obtained with BART, ANN and RF models for the prices
of the three most capitalized cryptocurrencies (Bitcoin (BTC), Ethereum (ETH) and
Ripple (XRP)), and their price direction changes. And finally, we discuss results of
our study in Sect. 6.

2 Analysis of Previous Studies

Recently non-parametric methods within the Machine Learning (ML) and Deep
Learning (DL) paradigms have been widely used for predicting financial time series,
in particular, cryptocurrency prices dynamics (Varghade and Patel 2012; Boyacioglu
and Baykan 2011; Okasha 2014; Kumar 2006; Peng et al. 2018; McNally 2016).

In this area the primary focus has been on the use of such methods as ANNs of
different types and architectures, and Support Vector Machines (SVM). The appli-
cation of these methods has proven to be more efficient for the forecasting tasks for
both “traditional” (fiat currency, stock indices, commodities prices, etc.) (Varghade
and Patel 2012; Boyacioglu and Baykan 2011; Okasha 2014; Kumar 2006) and inno-
vative financial assets, including cryptocurrencies (Peng et al. 2018; McNally 2016;
Saxena and Sukumar 2018; Amjad and Shah 2016; Alessandretti et al. 2018).

Thus, examples of effective use of SVM in forecasting volatility of fiat- and
cryptocurrencies are given, in particular, by Peng et al. (2018).

Several studies (McNally 2016; Saxena and Sukumar 2018; Amjad and Shah
2016) presented the results of BTC exchange rate prediction by using ARIMA mod-
els, RF, Logistic Regressions (LR), Linear Discriminant Analysis approach (LDA)
and such ANN as Long Short-Term Memory (LSTM). According to obtained results,
the ML models proved to be more accurate in prediction both cryptocurrency prices,
and their volatility than times series models.
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Rebane and Karlsson (2018) presented a comparative analysis of the prognostic
properties of ARIMA with Recurrent Neural Networks (RNN) for such cryptocur-
rencies as Bitcoin, DASH, Ethereum, Litecoin (LTC), Siacoin (SC), Stellar (STR),
NEM (XEM), Monero (XMR) and Ripple (XRP). Their results also revealed better
predictive properties of ANN than ARIMA models.

Comparative performance of ML algorithms for forecasting cryptocurrency prices
has reported in the paper of Hitam and Ismail (2018). They tested ANNs, SVM and
Deep Learning (Boosted NN) for such coins as BTC, ETH, LTC, XEM, XRP and
XLM. Their results show that SVM has the best predictive accuracy in the terms of
the lowest value of Mean Percentage Error.

Yao et al. (2018) proposed to predict cryptocurrency price by using more a wider
dataset, which includes not only prices, but also market cap, volume, circulating and
maximum supply. Based on their results obtained on deep learning techniques (RNN
and LSTM) the prediction accuracy was within 59% (when using only prices) and
up to 75% (on an extended dataset).

Another powerful class of ML methods are the Classification and Regression Tree
(C&RT) and their ensembles proposed by Leo Breiman and colleagues (Breiman et al.
1984; Breiman 2001). It should be noted that much less attention has been paid to
these algorithms in the field of modelling and forecasting financial times series (see,
for example (Varghade and Patel 2012; Kumar 2006)).

In our recent work (Derbentsev et al. 2019a), we proposed BART algorithm, which
is a generalization of C&RT models for the case of scalar time series. The application
of BART to cryptocurrency exchange rate prediction task demonstrated that is was
more efficient than the ARIMA-ARFIMA time series models.

Nowadays combined classical econometric methods as well as methods of
machine learning (Albuquerque et al. 2018; Wang et al. 2018) and those which
take into consideration the spirit of social networks regarding the state and tendency
of cryptocurrency dynamics (Kennis 2018) are becoming more popular.

Another important aspect in the forecasting dynamics of financial time series is
prediction of the price changes direction. For this purpose Kumar (2006) tested such
ML classification models as LDA, LR, ANN, RF and SVM. His empirical results
suggests that the SVM and RF outperforms the other classification methods for the
prediction direction of the stock market movement.

Akyildirim et al. (2018) investigated predictability of the 12 cryptocurrencies on
the both daily and minute datasets by using the ML classification algorithms (SVM,
LR, ANN and RF) with the past price information and technical indicators as model
features. Their results showed that the direction of returns in the cryptocurrency
market can be predicted with averages accuracy around 55-60% with the daily or
minute observation.

In our previous works (Matviychuk 2006, 2011) we also solved the problem of
prediction of the price changes direction of financial time series. To this end we
applied the Fuzzy Logic tools were for formation of a knowledge base we used
rules of wave development from technical analysis and Elliott wave theory. And
also the task of pattern recognition in the structure of price curves and prediction
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of their further development we had dealt with usage of Counterpropagation Neural
Networks.

3 Methodology

3.1 Machine Learning Approach of Forecasting
Cryptocurrency Prices

The main difference between ML and classical modeling is that the Machine Learning
algorithms interpret the data themselves, so there is no need to perform their initial
decomposition. Depending on the purpose of the analysis, these algorithms “build”
logic modeling based on the available data. This avoids the complex and lengthy
pre-model stage of statistical testing of various hypotheses.

The main purpose of our study is to determine the ability of ML methods to
effectively analyse the time series data of cryptocurrencies (both scalar and vector),
and to identify the patterns and time correlations that form the basis for the qualitative
forecasts.

An important characteristic of ML is that the methods used to search for templates
in the data do not imply a priori data structure, their statistical properties and the type
of relationships.

Within the ML paradigm, a number of powerful approaches, methods and algo-
rithms have been developed, such as ANNs, SVM, C&RT, RF Regression and Clas-
sification ensembles, Gradient Boosting (GBoost), Deep Neural Networks and Deep
Learning, Kernel methods, etc. (Flach 2012).

Among ML methods, neural networks of different architecture, particularly deep
networks, have gained the most popularity. Numerous empirical studies have shown
the effectiveness of the application of ANN to pattern recognition, image and voice
analysis, machine translation, etc. They are increasingly being used to analyse and
forecast financial time series, in particular cryptocurrency data.

Several studies (Boyacioglu and Baykan 2011; Hitam and Ismail 2018; Matviy-
chuk 2011) showed that ANNs have better predictive properties than time series
models and other ML algorithms for financial time series forecasting.

Another type of ML models is C&RT and their ensembles. Both ANN and C&RT
approaches have their own advantages and disadvantages. Their common advantages
are the following:

e they do not impose strict a priori assumptions about the input data;

e they have a high level of automation, because required mathematical tools are
built into majority data mining software;

e they are able to process data both quantitative (metric) and qualitative (categori-
cal).
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The common disadvantages of both ANN and C&RT are the overfitting problem,
and a large number of hyperparameters that require tuning. The overfitting leads to
significantly increasing forecast errors on new data.

As for ANNS, they are “Black Box” model which are characterized by the “opac-
ity” of the hypothesis function (a function that describes the relationship between
input and output). So ANNs don’t have enough explanatory power and they require
significant training time. In addition, choosing a network architecture, the number of
input neurons, hidden layers and activation functions is generally a non-trivial task.

The major weaknesses of the C&RT models are their lower accuracy compared
to ANNSs (for the regression problems) and the ambiguity of choosing the best final
tree (for the prediction problem). But their advantage is visibility, perspicuity for
visualization and interpretation.

However, complex tree branches are also difficult to interpret in a meaningful
way, therefore, using them, we have to find a compromise between the complexity
of the tree and its accuracy. This problem is inherent in the vast majority of ML
algorithms.

The RF algorithm consists of constructing an ensemble of simple classifiers (trees)
and obtaining an average estimate of the prediction of each of the trees that are built
on different subsets of features and randomly selected training subsamples of data.
This approach is less subject to overfitting, but is also poorly interpreted.

The input data for our analysis is a time series of values for a certain cryptocurrency
of length 7, which we denote by ¥ = (Y, Y», ..., Y7). We will use supervised
learning, so training and test samples contain a set of examples. In our case this is
one-step ahead forecast Y, with known values of the target variable in p previous
time periods Y1, Y;—1,..., Y.

We state our hypothesis in the following form

Pr(YIf'Y]a Y27 sy Yl‘—179) zf(Ytlyl—p7 Yt—p+17 LIRS Yf—]70)7 p < t E T7 (1)

where f(:|-, #)—is a family of conditional probability distributions, and 6—are
unknown model parameters.
The hypothesis function can be represented as

/)}z z.f‘(ytfps erp+1, e Y, 9) + & ()

Thereby we used only past values of the target variable as factors (features).

We investigated three different type of ML algorithms to predict cryptocur-
rency time series (short-term forecast) and compare their predictive properties: the
Binary Auto Regressive Tree, the Multilayer Perceptron, and the Random Forest tree
ensemble models.

It should be mentioned that when we applying ML methods, it is necessary to
solve the problem of Bias-Variance trade-off. This is the problem of simultaneously
minimizing two sources of error that prevent supervised learning algorithms from
generalizing beyond their training set:
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Fig. 1 Supervised machine learning prediction

e bias is error from erroneous assumptions in the learning algorithm, high bias
can cause an algorithm to miss the relevant relations between features and target
output (underfitting);

e variance is error from sensitivity to small fluctuations in the training set, high
variance can cause overfitting, i.e., modelling the random noise in the training
data, rather than the intended output.

Therefore, when adjusting the model parameters, we have to find a compromise
between the forecast error caused by its bias and the unstable parameter values (high
variance):

PE(Y,) = E[(Y, —f(Y,))z] - Biasz(f) + Var(f) +02, 3)

where PE(Y;)—the total forecast error at time f; E(-)—mathematical expectation
operator; Y;, f (Y;)—the actual time series value and its predicted value; Bias(-)—
the average bias across all datasets; Var(-)—error variance, which generally depends
on the number of model parameters and their accuracy; o >—unavoidable error.

A general diagram of supervised ML prediction process is shown in Fig. 1.

3.2 Binary Auto Regressive Tree (BART)

Binary Auto Regressive Tree is a generalization of standard C&RT models, which is
adapted to time series prediction tasks. BART combines the classic C&RT algorithm
(Kumar 2006) and the ARIMA Box-Jenkins autoregressive models.

The target variable Y, in this algorithm depends on p the previous values of the
studied time series Y,_1, Y;—2, ..., Y;—,. BART allows dividing the phase space into
segments, with a subsequent development of a model for each, and a piecewise
regression function presented in an intuitive and visual way. In such a tree, the inner
nodes contain rules for splitting the space of explanatory variables; branches indicate
conditions and transition between nodes; and the leaves are local ARIMA models.
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When constructing BART a binary tree is constructed, therefore each node has
two child nodes (i.e., number of branches is 2). An autoregressive tree is constructed
sequentially (iteratively) and this process is described by the following algorithm
(Derbentsev et al. 2019a; Breiman et al. 1984).

Step 1. The first step is to determine the threshold for splitting the initial (root)
node, which is taken as the median Me (2-quantile Qsog) of the training series
(sample) and is calculated by the formula

Me(Y) = Oson = 0.5 x (Ymin + Ymax>, )

The median of the time series is defined as the median of the distribution of the
realization of a random variable at time ¢. For a stationary time series (or time series
with a symmetric distribution), this value is independent of the observation time and
then the sample median is equal to mean, i.e. Me(Y) =Y.

Therefore, an autoregressive estimation of the tree at the first step of splitting will
look like

f(Yy) = Me(Y)Ig(Yi-1), (&)

where R is the dataset; Ig(Y,—;)—an indicator function of space, in fact it is a set
of rules for getting variable Y;_; into this space. So, in the first step, the dataset is
divide into two subsets by criterion (5).

Step 2. The second step is to divide the data space in the selected node obtained in
the first step into two parts. Some lag variable, for example, Y;_,k € (1,2, ...,p)
is selected and the left and right data subspaces Ry, R;igr: are defined:

Rip =Yk €R: Yy <o}, Ryjgne ={Yr-k €R: Yy >a},p<t<T. (6)

Then the regression estimation at the next step takes the form:

1 ; 1 )
[ = <A7 > Y[E”k)IR,Msz) + (ﬁ > Y,E)k)IR,ig,,,(Y,k), (7)

I] 12

where I} = {i, Yt(’_')k € R,Ef,}, L = {i, Yt(i)k € R,,-g;,,}—sets of observation indices
(7) falling into the subspaces Rj; and R, respectively; M, N are the number of
elements in these subspaces.

Estimation of the best split is equal to the smallest sum of squares

T

R(F) =7 30 (1 =F(revinviy)) ®)

t=p+1
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Step 3. For each untreated node, the best splitting is found. There are two argu-
ments defined for this: the variable Y;_¢, k € (1,2, ..., p) that will be splitting and
the threshold value « of this variable.

We used as a threshold quintile the corresponding empirical distribution of the
random variable Y (the value which random variable does not exceed with a certain
probability) and limited the potential splitting on seven values of each predictor
variable

a € {Q10%, Q5% Q40%,> Q50%> Q60%> Q75%> Qo0%}- &)

Of the possible splitting options in this step, the “better” option is chosen by
the adopted rule. These procedures are similar to the C&RT algorithm (Breiman
et al. 1984). The difference is in the adopted rules, evaluation criteria and stop split-
ting. BART suggested an alternative criterion for selecting the best splitting based
on the entropy (called Entropy Information Gain, IGain), because this reduces the
complexity of the tree

1Gain = H (M ,N) — H (m, n), (10)

where H (M, N) is entropy of parent node, H (m, n) is average entropy of children
nodes.Thus, for each next splitting, algorithm selects node and lag variable (and,
accordingly, the threshold value) that provide the maximum entropy reduction given
by (10).

Step 4. In the next step it is necessary to evaluate the “value” of the tree, which
characterizes the relationship between the accuracy of the approximation and the
complexity (branching) of the constructed tree.

The value of the tree in BART is determined based on the early stop criterion. As
such criterion, we used the Extended Bayesian Information Criterion (EBIC), which
minimizes statistics:

EBIC = T.1nR(f) +J - [In(T) + 2 In(b)], (11)

where R(f ) is the root mean square error (8); J—number of model settings; 7—
number of samples in training set; b is the quantity that characterizes the complexity
of the model space. It equals the product of the size of the tree (the number of branches
in the tree) by the number of lag variables p.

In expression (11), the first term is the maximum value of the logarithmic function
of the root mean square error, and the second is a penalty for the complexity of the
model.

Step 5. Splitting nodes continues as long as the value of statistics EBIC decreases.
If the selected splitting is effective at entropy gain (11), then it must be performed
and the algorithm proceeds to step 3 (to evaluate other nodes). Otherwise, the final
tree is selected and the BART algorithm is completed.
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Model 1 Model 2 Model 3 Model 4

Fig. 2 Example of building BART with 2 split variables (p = 2)

Because the final target of the algorithm is prediction, we proposed to build Box-
Jenkins ARIMA models on the each leaf nodes.

Fig. 2 shows a simple example of building BART with 2 split variables (p = 2),
with local AIMA models located on leaf nodes.

Each of these models approximate thier own phase sub-space factor variables.

3.3 Random Forest

The random forest algorithm is based on the construction of an ensemble of clas-
sification (regression) trees, each of which is constructed from sub-samples of the
original training sample using bagging (abbreviated from bootstrap aggregating)
(Breiman 2001). Bagging is a method of creating an ensemble of models based on
various random samples from the original dataset. Samples are uniformly replaced
and are called bootstrap samples (Flach 2012).

Bagging efficiency is achieved by training the basic algorithms in different sub-
sets. These sub-sets will be significantly different from each other, and their errors
are mutually compensated by “voting”, as well as anomalous observations and time
series jumps may not be included in some training sub-sets.

Bagging is especially useful in combination with tree models that are sensitive to
changes in training data. In the RF algorithm, bagging is combined with the method
of random subspaces: that is, each tree is built on different randomly selected subsets
of features—this process is called subspace sampling.

The random subspaces method reduces the correlation between trees and avoids
retraining because the basic algorithms are trained on different subsets of traits, which
are also randomly selected.
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As aresult, the diversity of the ensemble will be even greater, reducing the learning
time of each tree, which can be done in parallel. This ensemble is called a Random
Forest.

The RF is used for both classification and regression problems, and RF can also
be useful for selecting predictors and finding deviations in data analysis.

The prediction with RF algorithm is carried out by averaging the forecasts obtained
by each ensemble tree (or by “voting” the trees for classification problems). Unlike
individual trees, this algorithm is much less prone to overfitting and gives more
sensitive (flexible) boundary to decision making.

3.4 Neural Network

As an ANN model, we used the simplest and most common Multilayer Perceptron
architecture with one hidden layer of neurons, and an output layer containing only
one neuron—estimation of the forecast of the studied time series by one step (Fig. 3).

According to Kolmogorov’s theorem despite such a simple architecture, MLP can
describe complex patterns in the data and modeled unknown nonlinear function of
the time series with sufficient accuracy. This is achieved by using superposition of
nonlinear activation functions on the hidden and output layers of the network.

Network output values depend on input and hidden neurons, weights, and
activation functions

k
Yipr = g(Z wif (1) + bo), (14)

i=1

Input Hidden layer

I:“<
;
2
S0
b

: .
N .
Yy % (»
I-p
p — number k — number
neurons neurons

Fig. 3 Multilayer perceptron
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where f(-), g(-) are activation functions of the hidden and output layer neurons
respectively; w,—weights of links between hidden layer neurons and the output of the
network; by, b,—neurons bias of the output and hidden layers; s; = Zf: VoY1 +
b;—sum of hidden layer neurons; w;—weight of links between neurons of input and
hidden layers.

MLP training consists in computing synaptic weights, and Error (Cost) Function
(EF) is used to determine the difference between the target variable and the network
output. Finding the minimum EF was performed using the gradient descent method.

We used a back-propagation algorithm. According to it the value of the EF is
applied to the neurons of the hidden layer and the weights are adjusted. In the first
step the input vector Yy, Yyi1, ..., Yuyp, m = 1,2,...,1) propagates across the
network from layer to layer in the forward direction with the fixed scales. In the next,
reverse step, all synaptic weights are adjusted by the error correction rule.

4 Data

For numerical simulation of the short-term forecasting models (BART, RF and MLP)
of cryptocurrency prices we selected data of daily exchanges of the three most cap-
italized coins: Bitcoin, Ethereum and Ripple. Data set includes 1583 observations
for the period from August 1, 2015 to December 1, 2019 according to the Yahoo
Finance (2019).

We chose closing prices both in absolute value and in natural log, which allows
to stabilize the variability (variance) of the studied series (Fig. 4).

14,00

——LN(BTC) LN{1000*XRP) ~——LN{100*ETH)

12,00

10,00

8,00

6,00

4,00
2,00
0,00

311215 30.06.16 311216 30.06.17 311217 30.06.18 31.12.18

Fig. 4 Daily close prices of BTC, ETH and XRP (USD, log scale)
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The first 1392 observations were divided into 80 and 20% between the training
and test sets and were used to fit and train models and tuning their parameters, and
the last 90 observations were reserved to estimate the quality of the forecast.

5 Empirical Result

Because all three types of models useses only past observations of the time series, the
choice of the lag depth p is one of the main tasks for identifying them. According to
many empirical studies (Boyacioglu and Baykan 2011; Okasha 2014; Matviychuk
2011), for “traditional” financial assets (fiat currencies, stock indices, commodity
prices, etc.) that are traded for 5 days a week, there is a seasonal lag which is a
multiple of 5 if we use daily observations.

Cryptocurrencies are traded 24/7, that’s why it is expected a seasonal lag multiple
of 7 days exists. Correlation analysis confirmed our hypothesis: for all 3 cryptocur-
rencies there are statistically significant correlations on lags 7, 14, 21, besides there
are correlations on some other lags. Similar results were obtained in Catania and
Grassi (2017), Alessandretti et al. (2018).

We tested 3 classes of models (BART, RF, MLP) with different lag depth for each
cryptocurrency.

According to our hypothesis regarding lag depth for MLP models, we tested the
following architectures:

e 7 inputs and 4-12 hidden layer neurons;
e 14 inputs and 5-15 hidden layer neurons;
e 21 inputs and 6-21 hidden layer neurons.

The most common functions such as logistic, hyperbolic tan, exponential and
ReLu were selected as activation functions. Training MLP for each cryptocurrency
and different lag values (number of input neurons) was conducted over 100 epochs,
of which the best 5 architectures were selected for each case (in terms of minimum PE
error (3) in the test sample and matching the model residuals to normal distribution).

The final prediction for each cryptocurrency was obtained as the prediction of the
ensemble of networks, that is, average of the best 5 corresponding MLP models.

For RF simulation we used the following parameter settings: total number of
trees—200, maximum tree depth—10, and number of predictors in each tree: 3, 5, 7
for RF-7, RF-14 and RF-21 models respectively.

For BART we chose two parameters: a maximum tree depth—15, a minimum
number of examples (observations) per node—20.

Figure 5 shows the graphs that characterize the quality of approximation of BART
models for training (a, c, e) and test (b, d, f) samples for 3 cryptocurrencies. The
graphs (a, c, e) show the dependence of the predicted values (vertical axis) on the
actual data (horizontal axis).

The short-term forecasts for each of the cryptocurrency were made for both abso-
lute values of prices and their logs. It should be noted that according to our results
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the prediction accuracy by the metrics (15) defined below for the logs of prices was
generally no better than for the absolute values.
This fact supports the argument that the ML algorithms (in particular, ANNs,
C&RT and their ensembles) are much less sensitive to the time series statistical
properties than classical statistical and econometric methods.
Figures 6, 7 and 8 show the final results of forecasting cryptocurrency prices for
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the 90-day time horizon, which was carried out using one-step forecasting technique
without adjusting models parameters.

Analysis of the graphs allows us to conclude that the models fit the real data
sufficiently well, taking into account the complex oscillating dynamic behavior of
the studied series: an increasing trend for BTC and a decreasing one for ETH and
XRP.

We can also observe that all models, despite the overall adequacy of the existing
trends in the cryptocurrency dynamics, show some delay relative to the real data.

For estimating prediction accuracy we used metrics of Mean Percentage Absolute
Error (MAPE) and Root Mean Square Error (RMSE):

o =i - NS i s
MAPE = =3 1 x100%, RMSE= |~ (vi=fm) . a
p ; : 6 p ; ). as)
It should be noted that RMSE can only be used to evaluate the quality of different
forecasts for one financial assets (time series). It provides information about the
magnitude of the error. But RMSE does not characterize this error in comparison to
the actual quote value.
In contrast, MAPE allows evaluating the forecasts performance of both individual
models and their ensembles for different assets and compare them with each other.
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Table 1 Out-of-sample accuracy performance results for different lags

BTC ETH XRP

MAPE, % RMSE MAPE, % RMSE MAPE, % RMSE
Lagp=7
BART-7 371 535.2 3.39 11.74 3.07 0.0154
RF-7 7.11 971.9 7.44 21.8 3.94 0.0196
MLP-7 3.69 529.8 3.53 12.17 3.07 0.0153
Lagp =14
BART-14 3.83 541.9 3.37 11.86 3.42 0.0167
RF-14 5.60 756.9 6.48 19.82 4.08 0.0203
MLP-14 3.95 559.1 3.51 12.16 3.41 0.0162
Lagp =21
BART-21 3.94 558.5 3.69 12.55 3.83 0.0183
RF-21 5.54 739.3 4.52 14.55 3.92 0.0212
MLP-21 4.28 610.8 3.84 13.17 2.98 0.0151

In our evaluation of predictive accuracy, we made a forecast of the dynamics of
cryptocurrency prices over a 90-day horizon by using one-step forecasting technique.

The final out-of-sample accuracy results obtained from the BART, MLP and RF
are shown in Table 1.

The accuracy obtained from both BART and MLP are significantly higher for all
lags and cryptocurrencies than for the RF algorithm. The relatively low accuracy of
RF may be due to the fact that a much larger number of factors are required for its
effective implementation. It is worth noting that RF accuracy increases as the depth
of the lag increases. Accuracy can also be improved by building more trees in the
forest.

As for the comparison of the MLP and BART performance, the results in Figs. 6, 7
and 8 and Table 1 show similar accuracy of these models: the smallest error (MAPE)
for BTC was 3.69% (MLP), for ETH—3.37% (BART), for XRP—2.98% (MLP).

Somewhat unexpected, there was a slight decrease in the accuracy of both the MLP
and BART (at least for BTC and ETH) with increasing lag depth. In our opinion, this
may be due to the overfitting problem.

From the trading point of view it is more valuable to predict the direction of price
or trend change, rather than its numerical value. Since all three types of models can
solve the classification problem we also performed prediction of the price change
direction of BTC, ETH and XRP from August 1, 2019 to December 1, 2019 (123
observations).

To investigate this problem, we made forecast for growth (class positive, P) and
falling (class negative, N) prices on the next day by using one-step forecasting
technique without adjusting the model parameters.

However, a certain observation was classified as positive, P or negative, N if the
price of the asset for that day increased (or decreased) by 1% or more, respectively.
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Table 2 Prediction accuracy of the prices change direction of individual cryptocurrencies for the
period 01/08/19-01/12/19

Actual | BART MLP RF
Pred. | Accur. % | Pred. | Accur. % | Pred. | Accur. %

BTC | Rising, P 29 21 64 17 62 19 57
Falling, N | 53 31 28 29

ETH | Rising, P 41 29 62 25 59 27 59
Falling, N | 49 27 24 26

XRP | Rising, P 49 33 59 29 61 31 56
Falling, N | 52 26 25 25

To measure forecasting performance, we used Accuracy metrics defined in (16)
below, which represents the proportion of correctly predicted values among all
predictions

TP + TN
Accuracy = Pi—N’ (16)

were TP and TN are the number of correctly predicted values of positive and negative
classes, respectively; P and N are the actual number of values for each class. Table
2 shows the summary of the estimation accuracy of our models by using this metric.

As shown in Table 2, the prediction accuracy of the BART and MLP are higher
for all time series than for the RF models. The average values of the Accuracy metric
by the BART model are 62%, MLP 61%, RF 57%.

Note that for all models the proportion of correctly predicted values of the positive
class (increase in price), turned out to be higher than the proportion of the correctly
predicted values of the decrease in price, which must be taken into account in practical
application of the models.

We can conclude based on the considered accuracy metrics defined in (15-16),
that the models of the short-term forecast of the cryptocurrency prices dynamics in
general have smaller errors than the “naive forecasts”. During the periods of slow
change, these models can be used to make a short-term forecasts for up to 30 days.

For traders with a longer investment horizon (90 days to a year) it is necessary
to take into account the dynamics of nonlinear trends, and in our opinion, it would
be advisable to use the models developed by us in combination with trend-cycles
models.
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6 Conclusion

The results of our modeling of short-term cryptocurrency dynamics and application of
these models to real life data demonstrated the effectiveness of using machine learn-
ing approach, in particular, models of neural networks, regression (autoregressive)
trees and their ensembles for forecasting tasks. Based on the results of the study, these
models allow making short-term forecast with sufficient accuracy: within 3—4%.

Results of the binary classification of the direction of price changes showed, that
BART and MLP models had an average accuracy of about 63% for the daily time
series observations, which was higher than for the “naive” model.

It should be noted that we used a minimal dataset—only lag values of the studied
series (closing prices). Forecast accuracy can be increased by using a more expanded
dataset: including open, maximum, minimum and average prices, trading volume,
etc. In addition, we can use a variety of indices, oscillators, in particular, moving
averages of different types and time periods, taking into account the trend dynamics.

In this work we have applied a simple model of Neural Network—the Multilayer
Perceptron with one hidden layer. Using networks with more complex architecture:
recurrent, self-organized, deep, etc. should also improve the predictive accuracy. In
summary, we note that the perspective approach for the financial time series fore-
casting is the construction of combined Classification and Regression Tree models
and Neural Networks.
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