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Abstract—Based on the network paradigm of complexity in 

the work, a systematic analysis of the dynamics of the largest 

stock markets in the world has been carried out. According to 

the algorithms of the visibility graph and recurrence plot, the 

daily values of stock indices are converted into a multiplex 

networks, the spectral and topological properties of which are 

sensitive to the critical and crisis phenomena of the studied 

complex systems. It is shown that some of the spectral and 

topological characteristics can serve as measures of the 

complexity of the stock market, and their specific behaviour in 

the pre-crisis period is used as indicators-precursors of crisis 

phenomena. 

Keywords—stock markets, graph theory, complex networks. 

I. INTRODUCTION  

The new interdisciplinary study of complex systems, 
known as the complex networks theory, laid the foundation 
for a new network paradigm of synergetics [1]. The complex 
networks theory studies the characteristics of networks, 
taking into account not only their topology, but also 
statistical properties, the distribution of weights of individual 
nodes and edges, the effects of information dissemination, 
robustness, etc. [2-8]. Complex networks include electrical, 
transport, information, social, economic, biological, neural 
and other networks [3-8]. The network paradigm has become 
dominant in the study of complex systems since it allows you 
to enter new quantitative measures of complexity not 
existing for the time series [9].  

Previously, we introduced various quantitative measures 
of complexity for individual time series [10, 11]. Significant 
advantage of the introduced measures is their dynamism, that 
is, the ability to monitor the time of change in the chosen 
measure and compare with the corresponding dynamics of 
the output time series. This allowed us to compare the critical 
changes in the dynamics of the system, which is described by 
the time series, with the characteristic changes of concrete 
measures of complexity. It turned out that quantitative 
measures of complexity respond to critical changes in the 
dynamics of a complex system, which allows them to be 

used in the diagnostic process and prediction of future 
changes. In [11], we introduced network complexity 
measures and adapted them to study system dynamics. But 
networks are rarely isolated. Therefore, it is necessary to take 
into account the interconnection interaction, which can be 
realized within the framework of different models [12]. In 
this paper we will consider it by simulating so-called 
multiplex networks, the features of which are reduced to a 
fixed number of nodes in each layer, but they are linked by 
different bonds. 

II. METHODS OF CONVERTING TIME SERIES INTO 

GRAPHS 

Most complex systems inform their structural and 
dynamic nature by generating a sequence of certain 
characteristics known as time series. In recent years, 
interesting algorithms for the transformation of time series 
into a network have been developed, which allows to extend 
the range of known characteristics of time series even to 
network ones. Recently, several approaches have been 
proposed to transform time sequences into complex network-
like mappings. Three main classes can be distinguished. The 
first is based on the study of the convexity of successive 
values of the time series and is called visibility graph (VG) 
[13]. The second analyzes the mutual approximation of 
different segments of the time sequence and uses the 
technique of recurrent analysis [14]. The recurrent diagram 
reflects the existing repetition of phase trajectories in the 
form of a binary matrix whose elements are units or zeros, 
depending on whether they are close (recurrent) with given 
accuracy or not, the selected points of the phase space of the 
dynamic system. The recurrence diagram is easily 
transformed into adjacency matrix, on which the spectral and 
topological characteristics of the graph are calculated [14]. 
Finally, if the basis of forming the links of the elements of 
the graph is to put correlation relations between them, we 
obtain a correlation graph [14]. To construct and analyze the 
properties of a correlation graph, we must form adjacency 
matrix from the correlation matrix. To do this, you need to 
enter a value which, for the correlation field, will serve as the 
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distance between the correlated agents. So, if the correlation 
coefficient between the two assets is significant, the distance 
between them is small, and, starting from a certain critical 
value, assets can be considered bound on the graph. For an 
adjacency matrix, this means that they are adjacent to the 
graph. Otherwise, the assets are not contiguous. In this case, 
the binding condition of the graph is a prerequisite. 

The use of the complexity of recurrent and visibility 
graph networks to prevent critical and crisis phenomena in 
stock markets has been considered by us in a recent papers 
[15, 16]. In this paper, we consider multiplex 
implementations of these techniques.  

The recurrence diagrams for the visualization of phase 
space recurrences is based on Henri Poincare's idea of the 
phase space recurrence of dynamical systems. According to 
Takens theorem [14], an equivalent phase trajectory that 
preserves the structure of the original phase trajectory can be 
recovered from a single observation or time series by the 

time delay method: ( 1)
ˆ( ) ( , ,..., )i i i mx t u u u    , where m - 

embedding dimension, τ - time delay (real time delay is 
defined as τ ∆t). The recurrent diagram shows the existing 

repetitions in the form of a binary matrix R, where Ri, j = 1, if 
jx  it is adjacent to the state

ix , and Ri,j = 0 otherwise. 

Neighboring (or recurrent) are states jx  that fall into a m -

dimensional region with radius   and center in
ix . It is clear 

that parameters m, τ and ε are key when conducting recurrent 
analysis. The recurrence diagram is easily transformed into 
an adjacency matrix, by which the spectral and topological 
characteristics of the graph are calculated [15]. 

The algorithm of the VG is realized as follows. Take a 
time series Y(t) = [y1,y2,… , yn ] of length  N. Each point in 
the time series data can be considered as a vertex in an 
associative network, and the edge connects two vertices if 
two corresponding data points can "see" each other from the 
corresponding point of the time series (Figure 1).  

Formally, two values ya of the series (at the time of time 
ta) and yb (at the time of time tb) are connected, if for any 
other value (yc, tc), which is placed between them (that is, 
ta<tc<tb), the condition is satisfied 

( )(( ) / ( )).c a b a c a b ay y y y t t t t     Note that the visibility 

graph is always connected by definition and also is invariant 
under affine transformations, due to the mapping  method. 

An alternative (and much simpler) algorithm is the 
horizontal visibility graph (HVG) [17], in which a 
connection can be established between two data points a and 
b, if one can draw a horizontal line in the time series joining 
them that does not intersect any intermediate data by the 
following geometrical criterion: ya, yb > yc 

for all c such that 
ta  < tc < tb (Figure 1). 

In multiplex networks, there are two tasks [18]: (1) turn 
separate time series on the network for each layer; (2) 
connect the intra-loop networks to each other. The first 
problem is solved within the framework of the standard 
algorithms described above. For multiplex networks, the 
algorithm of the MVG for the three layers is presented in 
Figure 2.  

The cross-recurrent multiplex network (MCRP) is 

formed from recursive diagrams of individual layers. 

 

Fig. 1. Illustration of constructing the visibility graph (red lines) and the 

horizontal visibility graph (green lines)  

 

Fig. 2. Scheme for forming bonds between three layers of the multiplex 

network [18].  

III. SPECTRAL AND TOPOLOGICAL GRAPH PROPERTIES 

Spectral theory of graphs is based on algebraic invariants 
of a graph - its spectra. The spectrum of graph G  is the set 
of eigenvalues of a matrix Sp(G) corresponding to a given 
graph. For a adjacency matrix A of a graph, there exists an 
characteristic polynomial |λI ­ A|, which is called the 
characteristic polynomial of a graph PG(λ). The eigenvalues 
of the matrix A (the zeros of the polynomial |λI ­ A|) and the 
spectrum of the matrix A (the set of eigenvalues) are called 
respectively their eigenvalues and the spectrum of graph G. 
The eigenvalues of the matrix A satisfy the equality 
Ax x  ( x  - non-zero vector). Vectors x  satisfying this 

equality are called eigenvectors of matrix A (or graph G) 
corresponding to their eigenvalues.  

Another common type of graph spectrum is the spectrum 
of the Laplace matrix L. The Laplace matrix is used to 
calculate the tree graphs, as well as to obtain some important 
spectral characteristics of the graph. In particular, the 
positive eigenvalues λ2 is called the index of algebraic 
connectivity of the graph. This value represents the "force" 
of the connectivity of the graph component and is used in the 
analysis of reliability and synchronization of the graph. 

Important derivative characteristics are spectral gap, 
graph energy, spectral moments and spectral radius. The 
spectral gap is the difference between the largest and the next 
eigenvalues of the adjacency matrix and characterizes the 
rate of return of the system to the equilibrium state. The 
graph energy is the sum of the modules of the eigenvalues of 
the graph adjacency matrix. The spectral radius is the largest 
modulus of the eigenvalue of the adjacency matrix. Denote 
by Nc the value which corresponds to an “average eigen 
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value” of the graph adjacency matrix 

1

ln 1/ exp( )
n

c i

i

N N 


 
  

 
 and is called natural connectivity. 

The k-th spectral moment of the adjacency matrix is 

determined by the expression 
1

( ) 1/ ,
n

k

k i

i

m A n 


  where 
i is 

the eigenvalues of the adjacency matrix, n  is the vertex of 

G . 

Among the topological measures one of the most 

important is the node degree k  - the number of links 

attached to this node. For non-directed networks, the node's 

degree 
ik  is determined by the sum i ij

j

k a , where the 

elements ija  of the adjacency matrix. 

To characterize the "linear size" of the network, useful 

concepts of mean l  and maximum 
maxl  shortest paths.  

For a connected network of N nodes, the average path length 

is equal to 2 / (( ( 1)) ,ij

i j

l n N l


     where ijl  - the length of 

the shortest path between the nodes. The diameter of the 
connected graph is the maximum possible distance between 

its two vertices, while the minimum possible is the radius of 

the graph. 

If the average length of the shortest path gives an idea of 

the whole network and is a global characteristic, the next 

parameter - the clustering coefficient - is a local value and 

characterizes a separate node. For a given node m , the 

clustering coefficient 
mC  is defined as the ratio of the 

existing number of links between its closest neighbors to the 

maximum possible number of such relationships 

2 / ( ( 1)).m m m mC E k k  Here ( 1) / 2m mk k  is the maximum 

number of links between the closest neighbors. The 

clustering coefficient of the entire network is defined as the 

average value 
mC of all its nodes. The clustering coefficient 

shows how many of the nearest neighbors of the given node 

are also the closest neighbors to each other. He characterizes 

the tendency to form groups of interconnected nodes - 

clusters. For real-life networks, the high values of the 

clustering coefficient are high. 

Another feature of the node is the between’s. It reflects 

the role of the node in establishing network connections and 

shows how many shortest paths pass through this node. Node  

between’s 
m  is defined as ( , , ) / ( , ),m

i j

B i m j B i j


 where 

( , )B i j  - the total number of shortest paths between nodes i  

and j , ( , , )B i m j  - the number of shortest paths between ,i j  

those passing through the node m . The value (9) is also 

called the load or between’s centrality.  

One of the main characteristics of the network is the 

distribution of nodes ( )P k , which is defined as the 

probability that the node i  has a degree ik k . For most 

natural and actual artificial networks there is a power 

distribution ( ) 1/ ,  0,  0.P k k k    

Also important topological characteristics are the vertex 

eccentricity - the largest distance between m  and any other 

vertex, that is, how far the vertex is far from the other 

vertices of the graph. The centrality of the vertex measures 

its relative importance in the graph. At the same time, the 

farness of a node is defined as the sum of its distances to all 

other nodes, and its closeness is defined as the backward 

distance. Thus, the centrality of the node is lower than its 

total distance to all other nodes. 

Another important measure is the link density in the 

graph, which is defined as the number of links
en , divided by 

the expression ( 1) / 2n nn n  , where 
nn  is the number of 

nodes of the graph.  

IV. MULTIPLEX COMPLEXITY MEASURES 

A multilayer/multiplex network is a pair ( , )M G C  

where { ;  {1,..., }}G G M    there is a family of graphs 

(whether directed or not, weighed or not) ( , )G X E   , 

called layers { ;  , {1,...,M}, }C E X X           . 

The latter is a set of links between nodes of different layers 

G  and G  at   . Each element E  is intralayer bonds 

M  in contrast to the elements of each ( )E   , called 

interlayer bonds. 

A set of nodes of a layer G  is 

denoted 1{ ,..., }NX x x


 

  , and a adjacency matrix 

as
[ ] ( )

N N

ijA a    
  , where 

1,  ( , ) ,

0 

i j

ij

x x E
a

 


 

 


for 

1 ,i j N  and 1 M  . For an interlayer adjacency 

matrix we have
[ , ] ( )

N N

ijA a     
  , where 

1,  ( , ) ,

0 

i j

ij

x x E
a

 


 

 


.  

A multiplex network is a partial interlayer case and 

contains a fixed number of nodes connected by different 

types of links. Multiplex networks are characterized by 

correlations of different nature [16], which enable the 

introduction of additional multiplexes. 

Let's evaluate the quantitative overlap between the 

various layers. The average edge overlap obviously equal 

[ ]

[ ]

0,
/ (1 )

ij
ij ai j i i j i

a M 




 

 
 

     and 

determines the number of layers in which this bond is 

present. Its value lies on the interval [1/ ,  1]M  and equals 

1/ M  if the connection ( , )i j  exists only in one layer, that 

is, if there is a layer   such that [ ] [ ]1,  =0   ij ija a      . 

If all layers are identical, then 1  . Consequently, this 

measure can serve as a measure of the coherence of the 
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output time series: high values   indicate a noticeable 

correlation in the structure of time series.
 

The total overlap O  between the two layers   and   

is defined as the total number of bonds that are shared 

between the layers  and  :
ij ijO a a    , where  . 

For a multiplex network, the vertex degree k  is already 

a vector [1] [ ]( ,...,  )M

i i ik k k , where [ ]

ik   is the degree of the 

node in the layer, that is, while the elements of the matrix of 
adjacency for the layer. Specificity of the vector character of 

the degree of the peak in multiplex networks allows for the 

introduction of additional interlayer characteristics. One of 

these is the overlap of the node's degree [ ]

1

M

i io k 



 .  

The next measure quantitatively describes the interlayer 

correlations between the degrees of the selected node in two 

different layers. If, chosen from M  the layers of the pair 

( , )   characterized by the distribution of 

degrees [ ] [ ]( ),  ( )P k P k  , the so-called interlayer mutual 

information is determined by the formula 

 [ ] [ ] [ ] [ ] [ ] [ ]

, ( , ) log ( ( , )) / ( ( ) ( )) ,I P k k P k k P k P k     

   

where [ ] [ ]( , )P k k   is the probability of finding a node 

degree [ ]k   in a layer   and degree [ ]k   in a layer  . The 

higher the ,I   value, the more correlated are the 

distributions of the levels of the two layers, and, 

consequently, the structure of the time series associated with 

them. We also find the mean value ,I   for all possible 

pairs of layers - the scalar value ,I    that quantifies the 

information flow in the system.  

The quantity that quantitatively describes the distribution 

of the node degree i  between different layers is the entropy 

of the multiplexed degree [ ] [ ]

1

/ ln( / )
M

i i i i iS k o k o 



  . 

Entropy is zero if all nodes are in the same layer and vice 

versa, has the maximum value when they are evenly 

distributed between different layers. That is, the higher the 

value
iS , the even more links evenly the nodes' connections 

are distributed between the layers. 

A similar magnitude is the multiplex participation 

coefficient  

 
2

[ ]

1

/ ( 1) 1 /
M

i i iP M M k o



 
   

  
 . iP takes values on the 

interval [0,1]  and determines that homogeneous links of 

node i  are distributed among M  the layers. If all links of 

the node i  lie in one layer, 0iP   and 1iP   if the node has 

a precisely defined number of links in each of the M  layers. 

Consequently, the larger the coefficient iP  is, the more 

evenly distributed the participation of the node in the 

multiplex.  

Obviously, the magnitudes 
iS  and 

iP  are very similar. 

We will show that some of these spectral and topological 

measures serve as measures of complexity of the system, 

and the dynamics of their changes allows us to build 

predictors of crisis situations on financial markets. 

V. EXPERIMENTAL RESULTS AND THEIR DISCUSSION 

 The time series of daily values of stock market indexes 
for the period from 01/01/1983 to 10/01/2019 were selected 

as databases, which contained significant changes in the 

indexes, and were identified as crisis phenomena [23]. 

Among the set of stock indexes are the following: 

SP (S & P 500) - USA; 

DAX (DAX PERFORMANCE-INDEX) - Germany; 

N225 (Nikkei 225) - Japan; 

HSI (HANG SENG INDEX) - China; 

GSPTSE (S & P / TSX Composite index) - Canada. 

The size of the databases was determined by the shortest 

available database [23], which in this case was determined 

by the length of the index DAX (Figure 3).  

 

Fig. 3. The dynamics of the daily values of the selected stock market 

indices from December 4, 1987 to August 22, 2019.  

Despite a slight difference in the dynamic stocks indeces 
(this is especially noticeable for the index NIKKEY), the 
main trends (both rising and falling – actually crises) are 
observed for all time series.  

Calculations of spectral and topological measures by 

methods of MVG, MCRP were carried out in the following 

way. The time window was chosen, for example, a year or 

two (approximately 250 or 500 trading days), for which the 

corresponding graphs were constructed and the spectral, 

topological and multiplex properties were calculated. Next, 

the window was shifted step by step, for example, one week 
(5 trading days) and the procedure repeated until the time 

series were exhausted. Knowing the time of the onset of the 

crisis and comparing the time series with the dynamics of a 

certain indicator, it is possible to investigate its dependence 

on certain the characteristic changes in the stock market: pre-

crisis, crisis and post-crisis periods. 

The results of calculations for revived time series of 

graphs are shown in Figures 4 - 7.  
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Figures 4 - 5 show that the pair of parameters ,S P  in 

Figure 4 is antisymmetric to the three parameters , ,I o O  of 

Figure 5. However, all of them in a characteristic way 
(decreasing or increasing before the crisis) signal about its 
possible onset.  

 

Fig. 4. The entropy of the multiplexed degree and the multiplex 

participation coefficient calculated for a sliding window (w) of 500 

days in increments ( t ) of 5 days. Dates of major stock crises are 

indicated.  

 

Fig. 5. The entropy of the interlayer mutual information, nodes degree 

overlap and the total overlap calculated for a sliding window (w) of 

500 days in increments ( t ) of 5 days.  

 

Fig. 6. Recurrent multiplex complexity measures: the entropy of the 

multiplexed degree and the multiplex participation coefficient. 

As in the case of a multiplex visibility graph, multiplex 

recurrence measures are also informative indicators-

predictors of crisis phenomena. 

Parameters such as the width of the window w and the 

step ∆t of its displacement along the time series are 
important. When w is small, the degree of complexity 

fluctuates noticeably, reacting not only to crises, but also to 

more or less noticeable fluctuations of the index. On the 

contrary, with too much window width there is a noticeable 

smoothing of the appropriate measure and if two crises are at 

a distance that is smaller w, the indicators of both crises are 

averaged and less informative. If you choose an oversized 

parameter ∆t, you might miss the actual crisis that distorts 

the indicator. 

 

Fig. 7. Recurrent multiplex complexity measures: nodes degree overlap 

and the total overlap 

Multiplex networks are actively used to simulate 
complex networks of different nature: from financial (banks 
[19], stock market [20], guarantee market [21]) to social 
[22]. Particular attention should be paid to the work [20], in 
which the above multiplex measures are analyzed for the 
subject of correlations with known stock markets crises. Yet 
there is no systematic analysis of network and multiplex 
measures and the construction of indicators-predictors of the 
crisis phenomena in the stock market. Therefore, our studies 
to some extent fill this gap. 

VI. CONCLUSIONS 

Thus, we have demonstrated the possibility of studying 
complex socio-economic systems as part of a network 
paradigm of complexity. A time series can be represented in 
an equivalent way - a multiplex network, which has a wide 
range of characteristics; both spectral and topological, and 
multiplexed. Examples of known financial crises have shown 
that most of the network measures can serve as indicators-
precursors of crisis phenomena and can be used for possible 
early prevention of unwanted crises in the financial markets. 
They are an extension of the already proposed by us and 
"working" indicators, which use other measures of 
complexity. 

It should be noted that the proposed indicators-precursors 
do not solve the more general problem of forecasting future 
values or trends of the stock market. In this way, it is 
possible to use new approaches or alternative methods based 
on algorithms of (deep) machine learning [24]. 
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