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Abstract. This article demonstrates the possibility of constructing indicators of
critical and crash phenomena in the volatile market of cryptocurrency. For this
purpose, the methods of the theory of complex systems have been used. The
possibility of constructing dynamic measures of complexity as recurrent,
entropy, network, quantum behaving in a proper way during actual pre-crash
periods has been shown. This fact is used to build predictors of crashes and
critical events phenomena on the examples of all the patterns recorded in the
time series of the key cryptocurrency Bitcoin, the effectiveness of the proposed
indicators-precursors of these falls has been identified. From positions, attained
by modern theoretical physics the concept of economic Planck’s constant has
been proposed. The theory on the economic dynamic time series related to the
cryptocurrencies market has been approved. Then, combining the empirical
cross-correlation matrix with the random matrix theory, we mainly examine the
statistical properties of cross-correlation coefficient, the evolution of the distri-
bution of eigenvalues and corresponding eigenvectors of the global cryptocur-
rency market using the daily returns of 24 cryptocurrencies price time series all
over the world from 2013 to 2018. The result has indicated that the largest
eigenvalue reflects a collective effect of the whole market, and is very sensitive
to the crash phenomena. It has been shown that both the introduced economic
mass and the largest eigenvalue of the matrix of correlations can act like
quantum indicator-predictors of falls in the market of cryptocurrencies.
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1 Introduction

The instability of global financial systems with regard to normal and natural distur-
bances of the modern market and the presence of poorly foreseeable financial crashes
indicate, first of all, the crisis of the methodology of modeling, forecasting and inter-
pretation of modern socio-economic realities. The doctrine of the unity of the scientific
method states that for the study of events in socio-economic systems, the same methods
and criteria as those used in the study of natural phenomena are applicable. Significant
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success has been achieved within the framework of interdisciplinary approaches and
the theory of self-organization - synergetics. The modern paradigm of synergetics is a
complex paradigm associated with the possibility of direct numerical simulation of the
processes of complex systems evolution, most of which have a network structure, or
one way or another can be reduced to the network. The theory of complex networks
studies the characteristics of networks, taking into account not only their topology, but
also statistical properties, the distribution of weights of individual nodes and edges, the
effects of dissemination of information, robustness, etc. [1–4].

Complex systems are systems consisting of a plurality of interacting agents pos-
sessing the ability to generate new qualities at the level of macroscopic collective
behavior, the manifestation of which is the spontaneous formation of noticeable tem-
poral, spatial, or functional structures. As simulation processes, the application of
quantitative methods involves measurement procedures, where importance is given to
complexity measures. I. Prigogine notes that the concepts of simplicity and complexity
are relativized in the pluralism of the descriptions of languages, which also determines
the plurality of approaches to the quantitative description of the complexity phe-
nomenon [5]. Therefore, we will continue to study Prigogine’s manifestations of the
system complexity, using the current methods of quantitative analysis to determine the
appropriate measures of complexity.

The key idea here is the hypothesis that the complexity of the system before the
crashes and the actual periods of crashes must change. This should signal the corre-
sponding degree of complexity if they are able to quantify certain patterns of a complex
system. Significant advantage of the introduced measures is their dynamism, that is, the
ability to monitor the change in time of the chosen measure and compare it with the
corresponding dynamics of the output time series. This allowed us to compare the
critical changes in the dynamics of the system, which is described by the time series,
with the characteristic changes of concrete measures of complexity. It turned out that
quantitative measures of complexity respond to critical changes in the dynamics of a
complex system, which allows them to be used in the diagnostic process and prediction
of future changes.

Cryptocurrency market is a complex, self-organized system, which in most cases
can be considered either as a complex network of market agents, or as an integrated
output signal of such a network - a time series, for example, prices of individual
cryptocurrency. The research on cryptocurrency price fluctuations being carried out
internationally is made more complex by the interplay due to many factors - including
market supply and demand, the US dollar exchange rate, stock market state, the
influence of crime and the shadow market, and fiat money regulator pressure - that
introduces a high level of noise into the cryptocurrency data. Moreover, in the cryp-
tocurrency market, to some extent, the blockchain technology is tested in general. Thus
the cryptocurrency prices exhibit such complex volatility characteristics as nonlinearity
and uncertainty, which are difficult to forecast and any results obtained are uncertain.
Therefore, cryptocurrency price prediction remains a huge challenge.

Among these prediction models, one of the most important models is econometric
model such as for example autoregressive integrated moving average (ARIMA) that
exploit time series stationarity. Because of the presence of local explosive trends,
depicted as bubbles, the Bitcoin exchange rate cannot be modelled by any traditional
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ARIMA models (see e.g. [6]). Dassios and Li [7] introduce a new diffusion process to
describe Bitcoin prices within an economic bubble cycle. In spite of rather a compli-
cated model, forecast bubble results for December, 2017 are disappointing. Tarnopolski
[8] has completed the modelling of Bitcoin price using Monte Carlo method based on
model of geometric fractional Brownian motion. The Bitcoin price predicted for the
beginning of 2018 turned out to be far from reality.

In addition to the classic econometric approaches, artificial intelligence methods
(also known as machine and/or deep learning methods) have been used to uncover the
inner complexity of cryptocurrency prices. Separate attempts of using both simple
artificial neural networks Elmann [9] and method of Bayesian regression [10] are
known, as well as more complex methods based on XGboost [11] or on the long short –
term memory (LSTM) algorithm for recurrent neural networks [12, 13]. Nowadays
combined classical econometric methods as well as methods of machine learning [14,
15] and those which take into consideration the spirit of social networks regarding the
state and tendency of cryptocurrency dynamics [16] are becoming more popular.

Thus, lack of reliable models of prediction of time series for the time being will
update the construction of at least indicators which warn against possible critical
phenomena or trade changes etc. This work is dedicated to the construction of such
indicators – precursors based on the theory of complexity.

In this paper, we consider some of the informative measures of complexity and
adapt them in order to study the critical and crash phenomena of cryptomarket.

The paper is structured as follows. Section 2 describes previous studies in these
fields. Section 3 presents classification of crashes and critical events on the Bitcoin
market during the entire period (16.07.2010 – 08.12.2018). Section 4 describes the
technique of quantitative recurrent analysis and recurrent measures of complexity as
indicators of crashes. The indicator-precursor of crashes based on the calculation of
Permutation Entropy is described in Sect. 5. Network measures of complexity and their
effectiveness as indicators of cryptomarket crashes are presented in Sect. 6. In Sect. 7,
new quantum indicators of critical and crash phenomena are introduced using the
Heisenberg uncertainty principle and the Random Matrix Theory. And finally, we
discuss our results in Sect. 8.

2 Analysis of Previous Studies

Throughout the existence of Bitcoin, its complexity became much larger. Crashes and
critical events that took place on this market as well as the reasons that led to them, did
not go unheeded. We determined that there are a lot of articles and papers on that topic
which we will demonstrate.

Donier and Bouchaud [17] found that the market microstructure on Bitcoin
exchanges can be used to anticipate illiquidity issues in the market, which lead to
abrupt crashes. They investigate Bitcoin liquidity based on order book data and, out of
this, accurately predict the size of price crashes.

Bariviera [18] demonstrates the dynamics of the intraday price of 12 cryptocur-
rencies. By using the complexity-entropy causality plane, authors discriminate three
different dynamics in the data set. Another paper [19] compares the time-varying
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weak-form efficiency of Bitcoin prices in terms of US dollars (BTC/USD) and euro
(BTC/EUR) at a high-frequency level by using Permutation Entropy. Their research
shows that BTC/USD and BTC/EUR markets have been demonstrating more infor-
mation at the intraday level since the beginning of 2016, and BTC/USD market has
been slightly more efficient than BTC/EUR during the same period. And moreover,
their research shows that with the higher frequency we have less price efficiency.

Some papers like this one [20] demonstrate how recurrence plots and measures of
recurrence quantification analysis can be used to study significant changes in complex
dynamical systems due to a change in control parameters, chaos-order as well as chaos-
chaos transitions. Santos et al. [21] discuss how to model activity in online collabo-
ration websites, such as Stock Exchange Question and Answering portals because the
success of these websites critically depends on the content contributed by its users. In
this paper, they represent user activity as time series and perform an initial analysis of
these time series to obtain a better understanding of the underlying mechanisms that
govern their creation. For this purpose nonlinear modeling via recurrence plots was
used, which gives more granular study and deeper understanding of nonlinear
dynamics of governing activity of time series and explaining the activity in online
collaboration websites.

Taking to the account studies on network analysis we can notice different papers on
this topic [22–24]. Di Francesco Maesa et al. [22] have performed on the users’ graph
inferred from the Bitcoin blockchain, dumped in December 2015, so after the occur-
rence of the exponential explosion in the number of transactions. Researchers first
present the analysis assessing classical graph properties like densification, distance
analysis, degree distribution, clustering coefficient, and several centrality measures.
Then, they analyze properties strictly tied to the nature of Bitcoin, like rich-get-richer
property, which measures the concentration of richness in the network. Bovet et al. [23]
analyzed the evolution of the network of Bitcoin transactions among users and built
network-based indicators of Bitcoin bubbles.

In this article [24], authors consider the history of Bitcoin and transactions in it.
Using this dataset, they reconstruct the transaction network among users and analyze
changes in the structure of the subgraph induced by the most active users. Their
approach is based on the unsupervised identification of important features of the time
variation of the network. Applying the widely used method of principal component
analysis to the matrix constructed from snapshots of the network at different times, they
show how changes in the network accompany significant changes in the price of
Bitcoin.

Separately, it is necessary to highlight the work of Sornette [25, 26], who built a
precursor of crashes based on the generation of so-called log-periodic oscillations by
the pre-crashing market. However, the actual collapse point is still badly predicted.

Thus, construction of indicators – precursors of critical and crash phenomena in the
cryptocurrency market remains relevant.
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3 Data

Bitcoin, despite its uncertain future, continues to attract investors, crypto-enthusiasts,
and researchers. Being historically proven, popular and widely used cryptocurrency for
the whole existence of cryptocurrencies in general, Bitcoin began to produce a lot of
news and speculation, which began to determine its future life. Similar discussions
began to lead to different kinds of crashes, critical events, and bubbles, which pro-
fessional investors and inexperienced users began to fear. Thus, we advanced into
action and set the tasks:

(1) Classification of such bubbles, critical events and crashes.
(2) Construction of such indicators that will predict crashes, critical events in order to

give investors and ordinary users the opportunity to work in this market.

At the moment, there are various research works on what crises and crashes are and
how to classify such interruptions in the market of cryptocurrencies. Taking into
account the experience of previous researchers [26–30], we have created our classifi-
cation of such leaps and falls, relying on Bitcoin time series during the entire period
(16.07.2010 – 08.12.2018) of verifiable fixed daily values of the Bitcoin price
(BTC) (https://finance.yahoo.com/cryptocurrencies).

For our classification, crashes are short, time-localized drops, with strong losing of
price per each day, which are formed as a result of the bubble. Critical events are those
falls that could go on for a long period of time, and at the same time, they were not caused
by a bubble. The bubble is an increasing in the price of the cryptocurrencies that could be
caused by certain speculative moments. Therefore, according to our classification of the
event with number (1, 3–6, 9–11, 14, 15) are the crashes that are preceded by the bubbles,
all the rest - critical events. More detailed information about crises, crashes and their
classification in accordance with these definitions is given in the Table 1.

Accordingly, during this period in the Bitcoin market, many crashes and critical
events shook it. Thus, considering them, we emphasize 15 periods on Bitcoin time
series, whose falling we predict by our indicators, relying on normalized returns and
volatility, where normalized returns are calculated as

gðtÞ ¼ lnXðtþDtÞ � lnXðtÞ ffi ½XðtþDtÞ � XðtÞ�=XðtÞ; ð1Þ

and volatility as

VTðtÞ ¼ 1
n

Xtþ n�1

t0¼t

gðt0Þj j

Besides, considering that gðtÞ should be more than the �3r, where sigma is a mean
square deviation.

Calculations were carried out within the framework of the algorithm of a moving
window. For this purpose, the part of the time series (window), for which there were
calculated measures of complexity, was selected, then the window was displaced along
the time series in a one-day increment and the procedure repeated until all the studied
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series had exhausted. Further, comparing the dynamics of the actual time series and the
corresponding measures of complexity, we can judge the characteristic changes in the
dynamics of the behavior of complexity with changes in the cryptocurrency. If this or
that measure of complexity behaves in a definite way for all periods of crashes, for
example, decreases or increases during the pre-crashes period, then it can serve as an
indicator or precursor of such a crashes phenomenon.

Calculations of measures of complexity were carried out both for the entire time
series, and for a fragment of the time series localizing the crash. In the latter case,
fragments of time series of the same length with fixed points of the onset of crashes or

Table 1. BTC Historical Corrections. List of Bitcoin major corrections � 20% since June
2011

№ Name Days in
correction

Bitcoin high
price, $

Bitcoin low
price, $

Decline,
%

Decline,
$

1 07.06.2011–
10.06.2011

4 29.60 14.65 50 15.05

2 15.01.2012–
16.02.2012

33 7.00 4.27 39 2.73

3 15.08.2012–
18.08.2012

4 13.50 8.00 40 5.50

4 08.04.2013–
15.04.2013

8 230.00 68.36 70 161.64

5 04.12.2013–
18.12.2013

15 1237.66 540.97 56 696.69

6 05.02.2014–
25.02.2014

21 904.52 135.77 85 768.75

7 12.11.2014–
14.01.2015

64 432.02 164.91 62 267.11

8 11.07.2015–
23.08.2015

44 310.44 211.42 32 99.02

9 09.11.2015–
11.11.2015

3 380.22 304.70 20 75.52

10 18.06.2016–
21.06.2016

4 761.03 590.55 22 170.48

11 04.01.2017–
11.01.2017

8 1135.41 785.42 30 349.99

12 03.03.2017–
24.03.2017

22 1283.30 939.70 27 343.60

13 10.06.2017–
15.07.2017

36 2973.44 1914.08 36 1059.36

14 16.12.2017–
22.12.2017

7 19345.49 13664.96 29 5680.53

15 13.11.2018–
26.11.2018

14 6339.17 3784.59 40 2554.58
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critical events were selected and the results of calculations of complexity measures
were compared to verify the universality of the indicators.

In the Fig. 1 output Bitcoin time series, normalized returns gðtÞ, and volatility VTðtÞ
calculated for the window size 100 are presented.

From Fig. 1 we can see that during periods of crashes and critical events nor-
malized profitability g increases considerably in some cases beyond the limits �3r.
This indicates about deviation from the normal law of distribution, the presence of the
“heavy tails” in the distribution g, characteristic of abnormal phenomena in the market.
At the same time volatility also grows. These characteristics serve as indicators of
critical and collapse phenomena as they react only at the moment of the above men-
tioned phenomena and don’t give an opportunity to identify the corresponding
abnormal phenomena in advance. In contrast, the indicators described below respond to
critical and collapse phenomena in advance. It enables them to be used as indicators –
precursors of such phenomena and in order to prevent them.

4 Recurrence Quantification Analysis

Recurrence plots (RPs) have been introduced to study dynamics and recurrence states
of complex systems. A phase space trajectory can be transformed from a time series
Ui ¼ fu1; . . .; ung (t ¼ iDt, where Dt is the sampling time) into time-delay structures

Xi ¼ ðUi;Uiþ 1; . . .;Uiþðm�1ÞsÞ;

Fig. 1. The standardized dynamics, returns gðtÞ, and volatility VTðtÞ of BTC/USD daily values.
Horizontal dotted lines indicate the �3r borders. The arrows indicate the beginning of one of the
crashes or the critical events.
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where m stands for the embedding dimension and s for the entire time delay. Both of
them can be calculated from the original data using false nearest neighbors and mutual
information [31].

A RP is a plot representation of those states which are recurrent. The recurrence
matrix and the states are considered to be recurrent if the distance between them within
the e- radius. In this case, the recurrence plot is defined as:

Rij ¼ Hðe� xi � xj
�� ��Þ; i; j ¼ 1; . . .;N;

and kk is a norm (representing the spatial distance between the states at times i and j), e is a
predefined recurrence threshold, andH is the Heaviside function (ensuring a binary R).

Usually, recurrent plot has a square form and R � 1 is included to the represen-
tation, but for calculations, it might be useful to remove it [31]. For qualitative
description of the system, the graphic representation of the system suits perfectly. For
the quantitative description of the system, the small-scale clusters such as diagonal and
vertical lines can be used. The histograms of the lengths of these lines are the base of
the recurrence quantification analysis developed by Webber and Zbilut and later by
Marwan et al. [32–34].

Recurrence rate (RR) is the part of recurrence points in the plot that can be
interpreted as the probability that any state of the system will recur. It is the simplest
measure, which computes by taking the number of the nearest points forming short,
spanning row and columns of the recurrent plot, summarize them and divide by the
number of possible points N2:

RR ¼ 1
N2

XN
1;j¼1

Ri;j:

The set of recurrence points on the recurrence plots that form line segments of
minimal length l parallel to the matrix diagonal is the measure of determinism (DET):

DET ðuÞ ¼
PN

l¼l l � DðlÞPN
i;j Ri;j

¼
PN

l¼l l � DðlÞPN
l¼1 l � DðlÞ

;

where

DðlÞ ¼
XN
i;j

ð1� Ri�1;j�1Þ � ð1� Riþ 1;jþ 1Þ �
Yl�1

k¼0

Riþ k;jþ k

( )

is the histogram of the lengths of the diagonal lines. The understanding of ‘deter-
minism’ in this sense is of heuristic nature.

The results of calculations of window dynamics of the considered recurrent mea-
sures are presented in Fig. 2. Measures RR and DET are calculated for local time series
of length in 250 days, with a window of 50 days and a step of 1 day. In this case, the
beginning of a crash or critical event is at point 100.
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It is evident that the two recurrent measures during abnormal periods decrease long
before the actual anomaly. The complex system becomes less recurrent and less
deterministic which is logical in the periods approaching critical phenomena. And,
consequently, RR and DET can be used as precursors of critical and crash phenomena.

5 Permutation Entropy

The Permutation Entropy (PEn) is conceptually simple, computationally a very fast
approach which gives an opportunity to quantify complexity in measured time series.
Exactly, the measure of entropy is the measure of “randomness”. It quantifies the
degree of chaos or uncertainty in a system. The uncertainty is associated with a
physical process described by the probability distribution

P ¼ fpi; i ¼ 1; . . .;Mg

is related to the Shannon entropy,

Fig. 2. Dynamics of RR and DET for crashes (a), (b) and for crisis events (c), (d).
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S P½ � ¼ �
XM
i¼1

pi ln pi:

PEn is based on usual entropy but it is used for the time series analysis of permu-
tation patterns. Bant and Pompe proposed to construct probability distributions using
ordinal patterns from recorded time series [35]. These ordinal patterns are constructed
based on the relative amplitude of time series values. In this way, if compared with other
measures of complexity, this symbolic approach has many advantages over the others as
robustness to noise and invariance to nonlinear monotonous transformations [25].
Similar advantages make it particularly attractive for use on experimental data.

If we want to get the ordinal pattern P on which entropy is related, at first we need
to define the order of permutations D and ordinal pattern time delay s. There are D!
possible permutations for a vector of length D, so in order to obtain reliable statistics,
the length of the time series N should be much larger than D! [35].

The ordinal time delay s that is responsible for the time scale over which the
complexity is quantified can be set by changing. If we change it, we will determine the
time separation between values used to construct the vector from which the ordinal
pattern is determined. Its value corresponds to a multiple of the signal sampling period.
For a given time series fut; t ¼ 1; . . .;Ng, ordinal pattern length D, and ordinal pattern
time delay s, we consider the vector:

Xs ! ðus�ðD�1Þs; us�ðD�2Þs; . . .; us�s; usÞ:

Relating to the time S equal numbers take their unique symbol according to their
position in the time series:

p ¼ ðr0; r1; . . .; rD�1Þ defined by us�r0s � us�r1p � . . .� us�rD�2s � us�rD�1s:

Then, with all D! possible permutations pi, the ordinal pattern probability distri-
bution P ¼ fpðpÞ; i ¼ 1; . . .;D!g required for entropy calculations is constructed. To
take more convenient values, we normalize Permutation Entropy S associating it with
the probability distribution P:

Hs½P� ¼ S½P�
Smax

¼ �PD!
i¼1 pðpiÞ ln pðpiÞ

ln D!
:

The values of this normalized permutation have the range 0	HS 	 1 where pre-
dictable time series shows a value of zero and absolutely randomize process with a
uniform probability distribution presented by a value equal to one. It is important to
realize that the Permutation Entropy is a statistical measure and is not able to distin-
guish whether the observed complexity (irregularity) arises from stochastic or deter-
ministic chaotic processes. It is also important that the PEn provides ways to
characterize complexity on different time scales, given by the time delay.

Therefore HS compared measure of complexity with actual time series under study
gives values whose meaning leads to understanding whether we have regular time
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series or not. Besides, it is understandable that parameter D will not work if we have
small values, such as 1 or 2, it is clear that if D is too small, such as 1 or 2, the
procedure will not work, because there are only very few distinct states. Enough large
parameter D is fine as long as the length of time series can be made proportional to D!.
The authors of this method recommend using D ¼ 3; . . .; 7. We discovered that
D ¼ 5; 6, or 7 indicate better result.

Figure 3 shows the PEn calculation results for the entire Bitcoin time series (a) (the
window is 100 days, the window offset is 1 day) and also for the local time series of
crashes (b) and critical events (c) (the length of the time series is 250 days, the window
is 50 days, window offset is 1 day).

Figure 3 shows that Permutation Entropy decreases for both the entire time series
(3a) and for selected crash (3b) or critical (3c) fragments, signaling the approaching of
a special state. Comparison of Fig. 3b and c shows that for crash states this behavior is
more universal than for critical ones. As in the case of recurrent measures, PEn is an
indicator of the precursor of critical and crash phenomena.

Fig. 3. The dynamics of Permutation Entropy for the entire time series of Bitcoin (a) and for
local crashes (b) and events (c). Figure (a) shows the numbers of crashes and critical events in
accordance with the Table.
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6 Complex Network Indicators

The most commonly used methods for converting time sequences to the corresponding
networks are recurrent [36], visibility graph [37] and correlation [38]. In the first case,
the recurrence diagram is transformed into an adjacency matrix, on which the spectral
and topological characteristics of the graph are calculated. The algorithm of the visibility
graph is realized as follows. Take a time series YðtÞ ¼ ½y1; y2;; . . .; yn� of length N. Each
point in the time series data can be considered as a vertex in an associated network, and
the edge connects two vertices if two corresponding data points can “see” each other
from the corresponding point in the time series. Formally, two values of the series ya (at
the time of time ta) and yb (at the time of time tb) are connected, if for any other value
ðyc; tcÞ, which is placed between them (i.e., ta\tc\tb), the condition is satisfied:

yc\ya þðyb � yaÞ tc � ta
tb � ta

To construct and analyze the properties of a correlation graph, we must form a
correlation matrix from the set of cryptocurrencies (as is done in Sect. 7), and from it
we must pass to the matrix of adjacency. To do this, you must enter a value which, for
the correlation field, will be the distance between the correlated assets. Such a distance
may be dependent on the correlation coefficients cij of the value xði; jÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� cijÞ

p
.

So, if the correlation coefficient between the two assets is significant, the distance
between them is small, and, starting from some critical value, assets can be considered
bound on the graph.

For constructed graph methods described above, one can calculate spectral and
topological properties. We will show that some of them serve as a measure of the
complexity of the system, and the dynamics of their changes allows us to build pre-
dictors of crashes or critical events in the financial markets.

Spectral theory of graphs is based on algebraic invariants of a graph - its spectra.
The spectrum of graph G is the set of eigenvalues SpðGÞ of a matrix corresponding to a
given graph. For adjacency matrix A of a graph, there exists an characteristic poly-
nomial kI � Aj j, which is called the characteristic polynomial of a graph PG kð Þ. The
eigenvalues of the matrix A (the zeros of the polynomial kI � Aj j) and the spectrum of
the matrix A (the set of eigenvalues) are called respectively their eigenvalues k and the
spectrum Sp Gð Þ of graph G. The eigenvalues of the matrix A satisfy the equality
A�x ¼ k�x (�x - non-zero vector). Vectors �x satisfying this equality are called eigenvectors
of the matrix A (or the graph G) corresponding to their eigenvalues.

From a multiplicity of spectral and topological measures we will choose only two -
the maximum eigenvalue kmax of the adjacency matrix and Average path Length
(ApLen). For a connected network of N nodes, the ApLen is equal

\l[ ¼ 2
nðN � 1Þ

X
i[ j

lij; ð2Þ

where lij - the length of the shortest path between the nodes i and j.
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Figure 4 demonstrates the asymmetric response of the spectral and topological
measures of network complexity. For the complete series, the calculation parameters
are as follows: window width 100, step is 1 day. For local measures, the length of the
fragment is 150, the width of the window is 50 and the step is 1 day.

Fig. 4. Visibility graph dynamics of network measures kmax (a), Average path length (b) for all
Bitcoin time series. Dynamics of network measures for local crashes (c, e) and crisis events (d, f).
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Figure 4 shows the possibility of using both spectral and topological measures of
complexity as indicators-precursors of special states in the market of cryptocurrencies.
Indeed, the maximum actual value of the adjacency matrix of the visibility graph both
for Bitcoin as a whole and for isolated segments of time series containing a crash and
critical phenomenon, takes maximum value. It corresponds to the maximum com-
plexity of the system. An especial state of the system leads to a decrease in complexity,
and, accordingly, to a decrease in value kmax. Average length of the path on the graph
(ApLen) is, on the contrary, minimal for complex systems and increases with the
randomization of the system. Such increase during pre-crash and pre-critical states as
well as reduce kmax are indicators-precursors of the above mentioned states. You can
choose other spectral and topological measures from the calculated ones, e.g. the
maximum degree of the vertex and the diameter of the graph, algebraic connectivity
and centrality, etc. Network measures of complexity, thus, are the most universal and
informative and have obvious advantages in the selection of indicators of special states.

7 Quantum Econophysics Indicators

The attempts to create an adequate model of socio-economic critical events, which, as it
has been historically proven, are almost permanent, were, are and will always be made.
Actually, it is a super task impossible to solve. However, the potentially useful solu-
tions, local in time or other socio-economic logistic coordinates, are possible. In fact,
they have to be the object of interest for a real and effective economic science.

Econophysics is a young interdisciplinary scientific field, which developed and
acquired its name at the end of the last century [39]. Quantum econophysics, a direction
distinguished by the use of mathematical apparatus of quantum mechanics as well as its
fundamental conceptual ideas and relativistic aspects, developed within its boundaries
just a couple of years later, in the first decade of the 21st century [40–43].

According to classical physics, immediate values of physical quantities, which
describe the system status, not only exist, but can also be exactly measured. Although
non-relativistic quantum mechanics doesn’t reject the existence of immediate values of
classic physical quantities, it postulates that not all of them can be measured simul-
taneously (Heisenberg uncertainty ratio). Relativistic quantum mechanics denies the
existence of immediate values for all kinds of physical quantities, and, therefore, the
notion of system status seizes to be algoristic.

In this section, we will demonstrate the possibilities of quantum econophysics on
the example of the application of the Heisenberg uncertainty principle and the Random
Matrices Theory to the actual and debatable now market of cryptocurrencies.

7.1 Heisenberg Uncertainty Principle and Economic Analogues of
Basic Physical Quantities

In our paper [43] we have suggested a new paradigm of complex systems modeling
based on the ideas of quantum as well as relativistic mechanics. It has been revealed
that the use of quantum-mechanical analogies (such as the uncertainty principle, notion
of the operator, and quantum measurement interpretation) can be applied to describing
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socio-economic processes. Methodological and philosophical analysis of fundamental
physical notions and constants, such as time, space and spatial coordinates, mass,
Planck’s constant, light velocity from the point of view of modern theoretical physics
provides an opportunity to search of adequate and useful analogues in socio-economic
phenomena and processes.

The Heisenberg uncertainty principle is one of the cornerstones of quantum
mechanics. The modern version of the uncertainty principle, deals not with the pre-
cision of a measurement and the disturbance it introduces, but with the intrinsic
uncertainty any quantum state must possess, regardless of what measurement is per-
formed [44, 45]. Recently, the study of uncertainty relations in general has been a topic
of growing interest, specifically in the setting of quantum information and quantum
cryptography, where it is fundamental to the security of certain protocols [46, 47].

To demonstrate it, let us use the known Heisenberg’s uncertainty ratio which is the
fundamental consequence of non-relativistic quantum mechanics axioms and appears
to be (e.g. [48]):

Dx � Dv� �h
2m0

; ð3Þ

where Dx and Dv are mean square deviations of x coordinate and velocity v corre-
sponding to the particle with (rest) mass m0, �h - Planck’s constant. Considering values
Dx и Dv to be measurable when their product reaches its minimum, we derive (from
(1)):

m0 ¼ �h
2 � Dx � Dv ; ð4Þ

i.e. mass of the particle is conveyed via uncertainties of its coordinate and velocity –

time derivative of the same coordinate.
Economic measurements are fundamentally relative, are local in time, space and

other socio-economic coordinates, and can be carried out via consequent and/or parallel
comparisons “here and now”, “here and there”, “yesterday and today”, “a year ago and
now” etc.

Due to these reasons constant monitoring, analysis, and time series prediction (time
series imply data derived from the dynamics of stock indices, exchange rates, cryp-
tocurrencies prices, spot prices and other socio-economic indicators) becomes relevant
for evaluation of the state, tendencies, and perspectives of global, regional, and national
economies.

Suppose there is a set of K time series, each of N samples, that correspond to the
single distance T , with an equal minimal time step Dtmin:

XiðtnÞ; tn ¼ Dtminn; n ¼ 0; 1; 2; . . .N � 1; i ¼ 1; 2; . . .K: ð5Þ

To bring all series to the unified and non-dimensional representation, accurate to
the additive constant, we normalize them, having taken a natural logarithm of each term
of the series. Then consider that every new series xiðtnÞ is a one-dimensional trajectory
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of a certain fictitious or abstract particle numbered i, while its coordinate is registered
after every time span Dtmin, and evaluate mean square deviations of its coordinate and
speed in some time window DT ¼ DN � Dtmin ¼ DN; 1\\DN\\N. The «immedi-
ate» speed of i particle at the moment tn is defined by the ratio:

vi tnð Þ ¼ xiðtnþ 1Þ � xiðtnÞ
Dtmin

¼ 1
Dtmin

ln
Xiðtnþ 1Þ
XiðtnÞ ð6Þ

with variance Dvi and mean square deviation Dvi.
Keeping an analogy with (1) after some transformations we can write an uncer-

tainty ratio for this trajectory [49]:

1
Dtmin

\ ln2
Xiðtnþ 1Þ
XiðtnÞ [ n;DN � \ ln

Xiðtnþ 1Þ
XiðtnÞ [ n;DN

� �2
 !


 h
mi

; ð7Þ

where mi - economic “mass” of an i series, h - value which comes as an economic
Planck’s constant.

Since the analogy with physical particle trajectory is merely formal, h value, unlike
the physical Planck’s constant �h, can, generally speaking, depend on the historical
period of time, for which the series are taken, and the length of the averaging interval
(e.g. economical processes are different in the time of crisis and recession), on the
series number i etc. Whether this analogy is correct or not depends on particular series’
properties.

In recent work [50], we tested the economic mass as an indicator of crisis phe-
nomena on stock index data. In this work we will test the model for the cryptocurrency
market on the example of the Bitcoin [51].

Obviously, there is a dynamic characteristic values m depending on the internal
dynamics of the market. In times of crashes known marked by arrows in the Figs. 5(a)
and 5(b) mass m is significantly reduced in the pre-crash and pre-critical periods.

Fig. 5. Dynamics of measure m for local crashes (a) and critical events (b).
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Obviously, that the value of m remains a good indicator-precursor even in this case.
Value m is considerably reduced before a special market condition. The market
becomes more volatile and prone to changes.

The following method of quantum econophysics is borrowed from nuclear physi-
cists and is called Random Matrix Theory.

7.2 Random Matrix Theory and Quantum Indicators-Predictors

Random Matrix Theory (RMT) developed in this context the energy levels of complex
nuclei, which the existing models failed to explain (Wigner, Dyson, Mehta, and others
[52–54]). Deviations from the universal predictions of RMT identify system specific,
nonrandom properties of the system under consideration, providing clues about the
underlying interactions.

Unlike most physical systems, where one relates correlations between subunits to
basic interactions, the underlying ‘‘interactions’’ for the stock market problem are not
known. Here, we analyze cross correlations between stocks by applying concepts and
methods of random matrix theory, developed in the context of complex quantum
systems where the precise nature of the interactions between subunits are not known.

RMT has been applied extensively in studying multiple financial time series [55–59].
In order to quantify correlations, we first calculate the logarithmic return (1) of the i

cryptocurrencies price series over a time scale Dt ¼ 1 day. It was selected 24 estab-
lished during the last 5 years the most capitalized cryptocurrencies for the period from
04.08.2013 to 08.12.2018 (https://coinmarketcap.com/all/views/all/). We calculate the
pairwise cross-correlation coefficients between any two cryptocurrencies returns time
series. For the correlation matrix C we can calculate its eigenvalues, C ¼ UKUT ,
where U denotes the eigenvectors, K is the eigenvalues of the correlation matrix, whose
density fcðkÞ is defined as follows, fcðkÞ ¼ ð1=NÞdnðkÞ=dk, where nðkÞ is the number
of eigenvalues of C that are less than k. In the limit N ! 1; T ! 1 and Q ¼ T=N� 1
fixed, the probability density function fcðkÞ of eigenvalues k of the random correlation
matrix M has a close form:

fcðkÞ ¼ Q
2pr2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðkmax � kÞðk� kminÞ
p

k
ð8Þ

with k 2 ½kmin; kmax�, where kmax
min is given by kmax

min ¼ r2ð1þ 1=Q� 2
ffiffiffiffiffiffiffiffiffi
1=Q

p Þ and r2 is
equal to the variance of the elements of matrix M.

We compute the eigenvalues of the correlation matrix C, kmax ¼ k1 [ k2 [
� � � [ k15 ¼ kmin. We find that the largest eigenvalue kmax ¼ 5:48 and the smallest
eigenvalue kmin ¼ 0:81. If C is a random matrix, the largest eigenvalue kRMT

max ¼ 1:45
and the smallest eigenvalue kRMT

min ¼ 0:63, according to Eq. (8). In our case, only one-
third of its own values refer to the RMT region.

Eigenvectors correspond to the participation ratio PR and its inverse participation

ratio IPR Ik ¼PN
l¼1 ½ukl �4, where ukl , l ¼ 1; . . .;N are the components of the eigen-

vector uk. Figure 6 shows the comparative characteristics of the eigenvalue distribu-
tions for the random matrix (shuffled) and real (a) and the corresponding values of IPR
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(b). The difference in dynamics is due to the peculiarities of non-random correlations
between the time series of individual assets. Under the framework of random matrix
theory, if the eigenvalues of the real time series differ from the prediction of random
matrix theory, there must exists hidden economic information in those deviating
eigenvalues. For cryptocurrencies markets, there are several deviating eigenvalues in
which the largest eigenvalue kmax reflects a collective effect of the whole market. As for
PR the differences from RMT appear at large and small lambda values and are similar
to the Anderson quantum effect of localization [60]. Under crashes conditions, the
states at the edges of the distributions of eigenvalues are delocalized, thus identifying
the beginning of the crash. This is evidenced by the results presented in Fig. 6 (c).

We find that both kmax and PR of kmax have large values for periods containing the
market crashes and critical events. At the same time, their growth begins in the pre-
crashes periods. Means, as well as the economic mass, they are quantum precursors of
crashes and critical events phenomena.

Fig. 6. Window dynamics of the distribution of eigenvalues (a), inverse participation ratio
(b) for the initial and mixed (or random) matrices and quantum measures of complexity kmax and
its participation ratio
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8 Conclusions

Consequently, in this paper, we have shown that monitoring and prediction of possible
critical changes on cryptocurrency is of paramount importance. As it has been shown
by us, the theory of complex systems has a powerful toolkit of methods and models for
creating effective indicators - precursors of crashes and critical phenomena. In this
paper, we have explored the possibility of using the recurrent, entropy, network and
quantum measures of complexity to detect dynamical changes in a complex time series.
We have shown that the measures that have been used can indeed be effectively used to
detect abnormal phenomena for the time series of Bitcoin.

We have shown that monitoring and prediction of possible critical changes on
cryptocurrency is of paramount importance. As it has been shown by us, the quantum
econophysics has a powerful toolkit of methods and models for creating effective
indicators-precursors of crisis phenomena. In this paper, we have explored the possi-
bility of using the Heisenberg uncertainty principle and random matrix theory to detect
dynamical changes in a complex time series. We have shown that the economic mass
m, and the largest eigenvalue kmax may be effectively used to detect crisis phenomena
for the cryptocurrencies time series. We have concluded though by emphasizing that
the most attractive features of the m, kmax and PR of kmax namely its conceptual sim-
plicity and computational efficiency make it an excellent candidate for a fast, robust,
and useful screener and detector of unusual patterns in complex time series.
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