Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал:
http://elibrary.kdpu.edu.ua/xmlui/handle/123456789/4477
Повний запис метаданих
Поле DC | Значення | Мова |
---|---|---|
dc.contributor.author | Danylchuk, Hanna | - |
dc.contributor.author | Kibalnyk, Liubov | - |
dc.contributor.author | Kovtun, Oksana | - |
dc.contributor.author | Ків, Арнольд Юхимович | - |
dc.contributor.author | Pursky, Oleg | - |
dc.contributor.author | Berezhna, Galina | - |
dc.date.accessioned | 2021-09-07T17:25:54Z | - |
dc.date.available | 2021-09-07T17:25:54Z | - |
dc.date.issued | 2020-10-26 | - |
dc.identifier.citation | Danylchuk H. Modelling of cryptocurrency market using fractal and entropy analysis in COVID-19 / Hanna Danylchuk, Liubov Kibalnyk, Oksana Kovtun, Arnold Kiv, Oleg Pursky, Galina Berezhna // CEUR Workshop Proceedings. - Vol. 2713. - P. 352-371. | uk |
dc.identifier.issn | 1613-0073 | - |
dc.identifier.uri | http://ceur-ws.org/Vol-2713/paper40.pdf | - |
dc.identifier.uri | http://elibrary.kdpu.edu.ua/xmlui/handle/123456789/4477 | - |
dc.identifier.uri | https://doi.org/10.31812/123456789/4477 | - |
dc.description.abstract | In this article, we present the results of simulation for cryptocurrency market based on fractal and entropy analysis using six cryptocurrencies in the first 20 of the capitalization rating. The application of the selected research methods is based on an analysis of existing methodologies and tools of economic and mathematical modeling of financial markets. It has been shown that individual methods are not relevant because they do not provide an adequate assessment of the given market, so an integrated approach is the most appropriate. Daily values of cryptocurrency pairs from August 2016 to August 2020 selected by the monitoring and modelling database. The application of fractal analysis led to the conclusion that the time series of selected cryptocurrencies were persistent. And the use of the window procedure for calculating the local Hurst coefficient allowed to detail and isolate the persistant and antipersistant gaps. Interdisciplinary methods, namely Tsallis entropy and wavelet entropy, are proposed to complement the results. The results of the research show that Tsallis entropy reveals special (crisis) conditions in the cryptocurrency market, despite the nature of the crises’ origin. Wavelet entropy is a warning indicator of crisis phenomena. It provides additional information on a small scale. | uk |
dc.language.iso | en | uk |
dc.publisher | CEUR Workshop Proceedings | uk |
dc.subject | cryptocurrency market | uk |
dc.subject | fractal analysis | uk |
dc.subject | wavelet entropy | uk |
dc.subject | Tsallis entropy | uk |
dc.subject | crisis | uk |
dc.subject | COVID-19 | uk |
dc.title | Modelling of cryptocurrency market using fractal and entropy analysis in COVID-19 | uk |
dc.type | Article | uk |
Розташовується у зібраннях: | Збірники наукових праць та матеріали конференцій |
Файли цього матеріалу:
Файл | Опис | Розмір | Формат | |
---|---|---|---|---|
paper40.pdf | article | 3.49 MB | Adobe PDF | Переглянути/Відкрити |
Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.