Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал:
http://elibrary.kdpu.edu.ua/xmlui/handle/123456789/4410
Повний запис метаданих
Поле DC | Значення | Мова |
---|---|---|
dc.contributor.author | Hordiienko, Valentyna V. | - |
dc.contributor.author | Marchuk, Galyna V. | - |
dc.contributor.author | Vakaliuk, Tetiana A. | - |
dc.contributor.author | Pikilnyak, Andrey V. | - |
dc.date.accessioned | 2021-09-06T18:05:29Z | - |
dc.date.available | 2021-09-06T18:05:29Z | - |
dc.date.issued | 2020-11-08 | - |
dc.identifier.citation | Hordiienko V. V. Development of a model of the solar system in AR and 3D / Valentyna V. Hordiienko, Galyna V. Marchuk, Tetiana A. Vakaliuk, Andrey V. Pikilnyak // CEUR Workshop Proceedings. - 2020. - Vol. 2731. - P. 217-238. | uk |
dc.identifier.issn | 1613-0073 | - |
dc.identifier.uri | http://ceur-ws.org/Vol-2731/paper12.pdf | - |
dc.identifier.uri | http://elibrary.kdpu.edu.ua/xmlui/handle/123456789/4410 | - |
dc.identifier.uri | https://doi.org/10.31812/123456789/4410 | - |
dc.description | 1. Cryogeneye: AR Solar System. https://play.google.com/store/apps/details?id=com.Cryogeneye.Solar (2018). Accessed 25 Oct 2019 2. Google Developers: ARCore API reference. https://developers.google.com/ar/reference (2020). Accessed 21 Mar 2020 3. Haranin, O.M., Moiseienko, N.V.: Adaptive artificial intelligence in RPG-game on the Unity game engine. CEUR Workshop Proceedings 2292, 143–150 (2018) 4. Iatsyshyn, Anna V., Kovach, V.O., Romanenko, Ye.O., Deinega, I.I., Iatsyshyn, Andrii V., Popov, O.O., Kutsan, Yu.G., Artemchuk, V.O., Burov, O.Yu., Lytvynova, S.H.: Application of augmented reality technologies for preparation of specialists of new technological era. CEUR Workshop Proceedings 2547, 181–200 (2020) 5. INOVE: Solar System Scope. https://play.google.com/store/apps/details?id=air.com.eu.inove.sss2 (2020). Accessed 21 Mar 2020 6. Kasinathan, V., Mustapha, A., Hasibuan, M.A., Abidin, A.Z.: First Discovery: Augmented Reality for Learning Solar Systems. International Journal of Integrated Engineering 10(6), 149–154 (2018). doi:10.30880/ijie.2018.10.06.021 7. Kramarenko, T.H., Pylypenko, O.S., Zaselskiy, V.I.: Prospects of using the augmented reality application in STEM-based Mathematics teaching. CEUR Workshop Proceedings 2547, 130–144 (2020) 8. Midak, L.Ya., Kravets, I.V., Kuzyshyn, O.V., Pahomov, J.D., Lutsyshyn, V.M., Uchitel, A.D.: Augmented reality technology within studying natural subjects in primary school. CEUR Workshop Proceedings 2547, 251–261 (2020) 9. Morkun, V.S., Morkun, N.V., Pikilnyak, A.V.: Augmented reality as a tool for visualization of ultrasound propagation in heterogeneous media based on the k-space method. CEUR Workshop Proceedings 2547, 81–91 (2020) 10. Nechypurenko, P.P., Stoliarenko, V.G., Starova, T.V., Selivanova, T.V., Markova, O.M., Modlo, Ye.O., Shmeltser, E.O.: Development and implementation of educational resources in chemistry with elements of augmented reality. CEUR Workshop Proceedings 2547, 156– 167 (2020) 11. Onepixelsoft: Solar System AR. https://play.google.com/store/apps/details?id=com.onepixelsoft.solarsystemar (2017). Accessed 21 Mar 2017 12. Pochtoviuk, S.I., Vakaliuk, T.A., Pikilnyak, A.V.: Possibilities of application of augmented reality in different branches of education. CEUR Workshop Proceedings 2547, 92–106 (2020) 13. Shyshkina, M.P., Marienko, M.V.: Augmented reality as a tool for open science platform by research collaboration in virtual teams. CEUR Workshop Proceedings 2547, 107–116 (2020) 14. Sin, K., Zaman, H.B.: Live Solar System (LSS): Evaluation of an Augmented Reality book-based educational tool. In: International Symposium on Information Technology, Kuala Lumpur, 15-17 June 2010, pp. 1-6. IEEE (2010). doi:10.1109/ITSIM.2010.5561320 15. Unity – Manual: Unity User Manual (2019.4 LTS). https://docs.unity3d.com/Manual/UnityManual.html (2020). Accessed 21 Mar 2020 16. Unity Asset Store - The Best Assets for Game Making. https://www.assetstore.unity.com (2020). Accessed 21 Mar 2020 17. Wesoft: Solar System (AR), https://apkpure.com/solar-systemar/com.wesoft.solarsystemdetailed (2018). Accessed 21 Mar 2020 18. Zhang, X., Fronz, S., Navab, N.: Visual marker detection and decoding in AR systems: a comparative study. In: Proceedings of the International Symposium on Mixed and Augmented Reality, 1 Oct. 2002, Darmstadt, Germany. IEEE (2003). doi:10.1109/ISMAR.2002.1115078 | - |
dc.description.abstract | In this paper, the possibilities of using augmented reality technology are analyzed and the software model of the solar system model is created. The analysis of the available software products modeling the solar system is carried out. The developed software application demonstrates the behavior of solar system objects in detail with augmented reality technology. In addition to the interactive 3D model, you can explore each planet visually as well as informatively – by reading the description of each object, its main characteristics, and interesting facts. The model has two main views: Augmented Reality and 3D. Real-world object parameters were used to create the 3D models, using the basic ones – the correct proportions in the size and velocity of the objects and the shapes and distances between the orbits of the celestial bodies. | uk |
dc.language.iso | en | uk |
dc.publisher | CEUR Workshop Proceedings | uk |
dc.subject | augmented reality | uk |
dc.subject | virtual reality | uk |
dc.subject | ARCore | uk |
dc.subject | planet | uk |
dc.subject | solar system | uk |
dc.title | Development of a model of the solar system in AR and 3D | uk |
dc.type | Article | uk |
Розташовується у зібраннях: | Збірники наукових праць та матеріали конференцій |
Файли цього матеріалу:
Файл | Опис | Розмір | Формат | |
---|---|---|---|---|
paper12.pdf | article | 7.62 MB | Adobe PDF | Переглянути/Відкрити |
Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.