Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал: http://elibrary.kdpu.edu.ua/xmlui/handle/123456789/11843
Назва: Зміщення зарядів у п’єзоелектричних матеріалах, механічно деформованих зовнішньою силою
Автори: Задорожній, Віталій Миколайович
Ключові слова: п'єзоелектричні ефекти
плівка монохалькогенідів IV групи
вільно підвішена плівка HfO2
кластер HfO2
полімер (L-молочної] кислоти)
полімер нейлон-11
функціонал електронної густини
сили
стиснення
вигин
скручування
псевдопотенціал з перших принципів
просторові розподіли густини валентних електронів
кулонівські потенціали
заряди на окремих атомах
Дата публікації: 2025
Видавництво: Криворізький державний педагогічний університет
Бібліографічний опис: Задорожній В. М. Зміщення зарядів у п’єзоелектричних матеріалах, механічно деформованих зовнішньою силою : дисертація на здобуття наукового ступеня доктора філософії за спеціальністю 104 Фізика та астрономія / наук. керівник - доктор фізико-математичних наук, професор Р. М. Балабай ; Криворізький державний педагогічний університет. Кривий Ріг, 2025. 158 с.
Короткий огляд (реферат): Виконано теоретичні розрахунки з використанням функціоналу електронної густини, псевдопотенціалу із перших принципів, власного програмного коду щодо встановлення кореляції між атомною будовою різних матеріалів та їх п’єзоелектричними властивостями. Досліджено п’єзоелектричні ефекти у двовимірних плівках монохалькогенідів IV групи (GeS, GeSe). Розраховано просторові розподіли густини валентних електронів і кулонівського потенціалу в поперечному напрямку плівок з парною кількістю моношарів (центросиметричних) і з непарною кількістю (нецентросиметричних) при механічній дії. Встановлено, що плівки, що складаються із двох моношарів (бішар), які взаємодіють між собою слабкими силами Ван дер Ваальса та мають сильні ковалентно-іонні взаємодії всередині моношарів, мають рельєф розподілу електричного потенціалу більш крутим у напрямку від області між моно-шарами до зовнішньої сторони плівки. При цьому, значна різниця потенціалів формується, саме, на одному моношарі, але за умови, що він є складовою частиною бішару, тобто в атомній системі, яка має центр симетрії. Тоді як на ізольованих моношарах, що не мають центра інверсії формується потенціал, розподіл якого не призводить до появи помітної різниці потенціалів поперек плівки. Досліджено п’єзоелектричні ефекти в нескінченній вільно підвішеній плівці HfO2 та кластері HfO2 при механічній дії. Розраховано просторові розподіли густини валентних електронів, сили, що діють на окремий атом з боку електронної та іонної підсистем плівки/кластеру, кулонівські потенціали. Встановлено, що в наноплівках HfO2 спостерігається поляризаційний розподіл зарядів валентних електронів, що призводить до п’єзоелектричних ефектів, тоді як у нанокластерах HfO2 розподіл зарядів залишається рівномірним як у нестиснутому, так і в стислому стані. Досліджено п’єзоелектричні ефекти в полімері (L-молочної кислоти) при механічній дії. Розраховано просторові розподіли густини валентних електронів, кулонівські потенціали у різних напрямках фрагмента полімеру PLLA та зарядових станів його окремих атомів. Встановлено, що лише один фрагмент полімерного ланцюга дозволяє визначити характер зарядової поляризації валентних електронів та іонів при механічній деформації. Розраховано просторові розподіли густини валентних електронів, заряди на окремих атомах і кулонівські потенціали на сусідніх ланцюгах кристалічної α-фази нейлону-11 за механічної дії. Показано, що розподіл поляризаційного заряду валентних електронів, який призводить до п'єзоелектричних ефектів, зосереджено в області міжланцюгової взаємодії полімеру і не руйнується слабкими деформаціями.
Опис: 1. H. Cui, R. Hensleigh, D. Yao, D. Maurya, P. Kumar, M. G. Kang, S. Priya, X. R. Zheng, Three-dimensional printing of piezoelectric materials with designed anisotropy and directional response, Nature Materials 18 (2019) 234, https://doi.org/10.1038/s41563-018-0268-1 2. R. Gowdaman, A. Deepa, Y.K. Singla, Recent Advances in PVDF/CarbonBased Nanocomposite Fibers for Piezoelectric Energy Harvesting Applications, Journal of Electronic Materials, 54 (2025) 24, https://doi.org/10.1007/s11664-024-11589-6 3. F. Ali, W. Raza, X. Li, H. Gul, K.H. Kim, Piezoelectric energy harvesters for biomedical applications, Nano Energy, 57 (2019) 879, https://doi.org/10.1016/j.nanoen.2019.01.012 4. H. Liu, J. Zhong, C. Lee, S.W. Lee, L. Lin, A comprehensive review on piezoelectric energy harvesting technology: materials, mechanisms, and applications, Applied Physics Reviews, 5 (2018) 041306, https://doi.org/Article 041306, 10.1063/1.5074184 5. X. Wang, Piezoelectric nanogenerators-harvesting ambient mechanical energy at the nanometer scale, Nano Energy, 1 (2012) 13, https://doi.org/10.1016/j.nanoen.2011.09.001 6. C.R. Bowen, H.A. Kim, P.M. Weaver, S. Dunn, Piezoelectric and ferroelectric materials and structures for energy harvesting applications, Energy and Environmental Science, 7 (2014) 25, https://doi.org/10.1039/c3ee42454e 7. S.P. Beeby, M.J. Tudor, N.M. White, Energy harvesting vibration sources for microsystems applications, Measurement Science and Technology, 17 (2006) 175, https://doi.org/10.1088/0957-0233/17/12/R01 8. Y. Sun, J. Chen, X. Li, Y. Lu, S. Zhang, Z. Cheng, Flexible piezoelectric energy harvester/sensor with high voltage output over wide temperature range, Nano Energy, 61 (2019) 337, https://doi.org/10.1016/j.nanoen.2019.04.055 9. D. Hu, M. Yao, Y. Fan, C. Ma, M. Fan, M. Liu, Strategies to achieve high performance piezoelectric nanogenerators, Nano Energy, 55 (2019), 288, https://doi.org/10.1016/j.nanoen.2018.10.053 10. S.K. Karan, S. Maiti, A.K. Agrawal, A.K. Das, A. Maitra, S. Paria, A. Bera, R. Bera, L. Halder, A.K. Mishra, J.K. Kim, B.B. Khatua, Designing high energy conversion efficient bio-inspired vitamin assisted single-structured based selfpowered piezoelectric/wind/acoustic multi-energy harvester with remarkable power density, Nano Energy, 59 (2019) 169, https://doi.org/10.1016/j.nanoen.2019.02.031 11.J. Yan, M. Liu, Y.G. Jeong, W. Kang, L. Li, Y. Zhao, N. Deng, B. Cheng, G. Yang, Performance enhancements in poly(vinylidene fluoride)-based piezoelectric nanogenerators for efficient energy harvesting, Nano Energy, 56 (2019) 662, https://doi.org/10.1016/j.nanoen.2018.12.010 12. D.W. Wang, J.L. Mo, X.F. Wang, H. Ouyang, Z.R. Zhou, Experimental and numerical investigations of the piezoelectric energy harvesting via frictioninduced vibration, Energy Conversion and Management, 171 (2018) 1134, https://doi.org/10.1016/j.enconman.2018.06.052 13. X.D. Xie, Q. Wang, Energy harvesting from a vehicle suspension system, Energy, 86 (2015) 382, https://doi.org/10.1016/j.energy.2015.04.009 14.J. Chen, S.K. Oh, N. Nabulsi, H. Johnson, W. Wang, J.H. Ryou, Biocompatible and sustainable power supply for self-powered wearable and implantable electronics using III-nitride thin-film-based flexible piezoelectric generator, Nano Energy, 57 (2019) 670, https://doi.org/10.1016/j.nanoen.2018.12.080 15.C. Fei, X. Liu, B. Zhu, D. Li, X. Yang, Y. Yang, Q. Zhou, AlN piezoelectric thin films for energy harvesting and acoustic devices, Nano Energy, 51 (2018) 146, https://doi.org/10.1016/j.nanoen.2018.06.062 16. X. Guan, B. Xu, J. Gong, Hierarchically architected polydopamine modified BaTiO3@P(VDF-TrFE) nanocomposite fiber mats for flexible piezoelectric nanogenerators and self-powered sensors, Nano Energy, 70 (2020) 104516, https://doi.org/10.1016/j.nanoen.2020.104516 17. K. Shi, B. Sun, X. Huang, P. Jiang, Synergistic effect of graphene nanosheet and BaTiO3 nanoparticles on performance enhancement of electrospun PVDF nanofiber mat for flexible piezoelectric nanogenerators, Nano Energy, 52 (2018) 153, https://doi.org/10.1016/j.nanoen.2018.07.053 18. H.S. Kim, J.H. Kim, J. Kim, A review of piezoelectric energy harvesting based on vibration, International Journal of Precision Engineering and Manufacturing, 12 (6) (2011) 1129, https://doi.org/10.1007/s12541-011-0151-3 19. N. Wu, Q. Wang, X.D. Xie, Ocean wave energy harvesting with a piezoelectric coupled buoy structure, Applied Ocean Research, 50 (2015) 110, https://doi.org/10.1016/j.apor.2015.01.004 20. H. Madinei, H. Haddad Khodaparast, S. Adhikari, M.I. Friswell, Design of MEMS piezoelectric harvesters with electrostatically adjustable resonance frequency, Mechanical Systems and Signal Processing, 81 (2015) 360, https://doi.org/10.1016/j.ymssp.2016.03.023 21.J. Sun, H. Guo, G. N. Schädli, K. Tu, S. Schär, F. W. M. R. Schwarze, G. Panzarasa, J. Ribera, I. Burgert, Enhanced mechanical energy conversion with selectively decayed wood, Science Advances, 7 (2021) eabd9138, https://doi.org/10.1126/sciadv.abd9138 22.J. Siang, M.H. Lim, M. Salman Leong, Review of vibration-based energy harvesting technology: mechanism and architectural approach, International Journal of Energy Research, 42 (2018) 1866, https://doi.org/10.1002/er.3986. 23. D.S. Snyder, Vibrating transducer power supply for use in abnormal tire condition warning systems, 1983. https://patentimages.storage.googleapis.com/pdfs/US4384482.pdf 24. D.S. Snyder, Piezoelectric reed power supply for use in abnormal tire condition warning systems, 1985, https://patentimages.storage.googleapis.com/6b/d4/89/e908bb0163a9dd/US451 0484.pdf 25. X. Song, F. Hui, K. Gilmore, B. Wang, G. Jing, Z. Fan, E. Grustan-Gutierrez, Y. Shi, L. Lombardi, S. A. Hodge, Enhanced piezoelectric effect at the edges of stepped molybdenum disulfide nanosheets, Nanoscale, 9 (2017) 6237, https://doi.org/10.1039/C6NR09275F 26. Q. Xu, X. Gao, S. Zhao, Y. Liu, D. Zhang, K. Zhou, H. Khanbareh, W. Chen, Y. Zhang, C. Bowen, Construction of Bio-Piezoelectric Platforms: From Structures and Synthesis to Applications, Advanced Materials, 33 (2021) 2008452, https://doi.org/10.1002/adma.202008452 27. P. R. Tulip, S. J. Clark, Variational density-functional perturbation theory for dielectrics and lattice dynamics, Physical Review B, 74 (2006) 64301, https://doi.org/10.1103/PhysRevB.73.155114 28. P. R. Tulip, S. J. Clark, Dielectric and vibrational properties of amino acids, The Journal Chemical Physics, 121 (2004) 5201, https://doi.org/10.1063/1.1781615 29. Y. Zhang, Y. Bao, D. Zhang, C. R. Bowen, Porous PZT Ceramics with Aligned Pore Channels for Energy Harvesting Applications, Journal of the American Ceramic Society, 98 (2015) 2980, https://doi.org/10.1111/jace.13797 30. S. Priya, D.J. Inman, Energy Harvesting Technologies, Springer, (2009), ISBN : 978-0-387-76463-4 31.I. L. Guy, S. Muensit, E. M. Goldys, Extensional piezoelectric coefficients of gallium nitride and aluminum nitride, Applied Physics Letters, 75 (1999) 4133, https://doi.org/10.1063/1.125560 32.R. E. Newnham, Properties of Materials: Anisotropy, Symmetry, Structure, Properties of Materials: Anisotropy, Symmetry, Structure, Oxford University, Oxford (2005). https://doi.org/10.1093/oso/9780198520757.001.0001 33.B. Zaarour, L. Zhu, C. Huang, X. Jin, H. Alghafari, J. Fang, T. Lin, A review on piezoelectric fibers and nanowires for energy harvesting, Journal of Industrial Textiles, 51 (2019) 297, https://doi.org/10.1177/1528083719870197 34. V. Jella, S. Ippili, J.H. Eom, S. Pammi, J.S. Jung, V.D. Tran, V.H. Nguyen, A. Kirakosyan, S. Yun, D. Kim, M.R. Sihn, J. Choi, Y.J. Kim, H.J. Kim, S.G. Yoon, A comprehensive review of flexible piezoelectric generators based on organic-inorganic metal halide perovskites, Nano Energy, 57 (2019) 74, https://doi.org/10.1016/j.nanoen.2018.12.038 35. G. da Cunha Rodrigues, P. Zelenovskiy, K. Romanyuk, S. Luchkin, Y. Kopelevich, A. Kholkin, Strong piezoelectricity in single-layer graphene deposited on SiO2 grating substrates, Nature Communications, 6 (2015) 7572, https://doi.org/10.1038/ncomms8572 36. S. Priya, H.C. Song, Y. Zhou, R. Varghese, A. Chopra, S.G. Kim, I. Kanno, L. Wu, D.S. Ha, J. Ryu, R.G. Polcawich, A review on piezoelectric energy harvesting: materials, methods, and circuits, Energy Harvesting and Systems, 4 (2019) 3, https://doi.org/10.1515/ehs-2016-0028 37. S. K. Ghosh, D. Mandal, Efficient natural piezoelectric nanogenerator: Electricity generation from fish swim bladder, Nano Energy, 28 (2016) 356, https://doi.org/10.1016/j.nanoen.2016.08.030 38. D. Denning, J. I. Kilpatrick, E. Fukada, N. Zhang, S. Habelitz, A. Fertala, M. D. Gilchrist, Y. Zhang, S. A. M. Tofail, B. J. Rodriguez, Piezoelectric Tensor of Collagen Fibrils Determined at the Nanoscale, ACS Biomaterials Science & Engineering, 3 (2017) 929, https://doi.org/10.1021/acsbiomaterials.7b00183 39.J. Wang, C. Carlos, Z. Zhang, J. Li, Y. Long, F. Yang, Y. Dong, X. Qiu, Y. Qian, X. Wang, Piezoelectric Nanocellulose Thin Film with Large-Scale Vertical Crystal Alignment, ACS Applied Materials & Interfaces 12 (2020), 26399. https://doi.org/10.1021/acsami.0c05680 40.R. L. Horan, K. Antle, A. L. Collette, Y. Wang, J. Huang, J. E. Moreau, V. Volloch, D. L. Kaplan, G. H. Altman, In vitro degradation of silk fibroin, Biomaterials, 26 (2005) 3385, https://doi.org/10.1016/j.biomaterials.2004.09.020 41. A. Stapleton, M. R. Noor, J. Sweeney, V. Casey, A. L. Kholkin, C. Silien, A. A. Gandhi, T. Soulimane, S. A. M. Tofail, The direct piezoelectric effect in the globular protein lysozyme, Applied Physics Letter, 111 (2017) 142902, https://doi.org/10.1063/1.4997446 42. X. Dong, M. Ospeck, K. H. Iwasa, Piezoelectric Reciprocal Relationship of the Membrane Motor in the Cochlear Outer Hair Cell, Biophysical Journal, 82 (2002) 1254, https://doi.org/10.1016/S0006-3495(02)75481-7 43. S. Beeby, N. White, Energy harvesting for autonomous systems, Artech House, (2010) 285, https://www.researchgate.net/profile/StephenBeeby/publication/264873114_Energy_Harvesting_for_Autonomous_Systems/ links/5465da5f0cf2052b509fb3e8/Energy-Harvesting-for-AutonomousSystems.pdf 44. A.H. Rajabi, M. Jaffe, T.L. Arinzeh, Piezoelectric materials for tissue regeneration: a review, Acta Biomaterialia, 24 (2015) 12, https://doi.org/10.1016/j.actbio.2015.07.010 45. A. Jain, K.J. Prashanth, A.K. Sharma, A. Jain, R. P.n, Dielectric and piezoelectric properties of PVDF/PZT composites: a review, Polymer Engineering and Science, 55 (2015)1589, https://doi.org/10.1002/pen.24088 46. S. Guerin, T. A. M. Syed, D. Thompson, Deconstructing collagen piezoelectricity using alanine-hydroxyproline-glycine building blocks, Nanoscale, 10 (2018) 9653, https://doi.org/10.1039/C8NR01634H 47. D. Arnold, W. Kinsel, W.W. Clark, C. Mo, Exploration of new cymbal design in energy harvesting, in: SPIE Proceedings, 7977 (2011), https://doi.org/10.1117/12.880614 48. Y. Sugawara, K. Onitsuka, S. Yoshikawa, Q. Xu, R.E. Newnham, K. Uchino, Metal-ceramic composite actuators, Journal of the American Ceramic Society, 75(1992) 996, https://doi.org/10.1111/j.1151-2916.1992.tb04172.x 49. L. Li, J. Xu, J. Liu, F. Gao, Recent progress on piezoelectric energy harvesting: structures and materials, Advanced Composites and Hybrid Materials, 3 (2018) 478, https://doi.org/10.1007/s42114-018-0046-1 50. D. Farrar, K. Ren, D. Cheng, S. Kim, W. Moon, W. L. Wilson, J. E. West, S. M. Yu, Permanent polarity and piezoelectricity of electro spun α-helical poly(α-amino acid) fibers, Advanced Materials, 23 (2011) 3954, https://doi.org/10.1002/adma.201101733 51. S. Wada, K. Yako, H. Kakemoto, T. Tsurumi, T. Kiguchi, Enhanced piezoelectric properties of barium titanate single crystals with different engineered-domain sizes, Journal of Applied Physics, 98 (2005) 014109, https://doi.org/10.1063/1.1957130 52. H. Takahashi, Y. Numamoto, J. Tani, K. Matsuta, J. Qiu, S. Tsurekawa, Leadfree barium titanate ceramics with large piezoelectric constant fabricated by microwave sintering, Japanese Journal of Applied Physics, 45 (2006) 30, https://doi.org/10.1143/JJAP.45.L30 53. A. Polotai, K. Breece, E. Dickey, C. Randall, A. Ragulya, A novel approach to sintering nanocrystalline barium titanate ceramics, Journal of the American Ceramic Society, 88 (2005) 3008, https://doi.org/10.1111/j.1551- 2916.2005.00552.x 54. X.-H. Wang, X.Y. Deng, H.L. Bai, H. Zhou, W.G. Qu, L.T. Li, I.W. Chen, Two-step sintering of ceramics with constant grain-size, II: BaTiO3 and Ni-CuZn ferrite, Journal of the American Ceramic Society, 89 (2006) 438, https://doi.org/10.1111/j.1551-2916.2005.00728.x 55. T. Karaki, K. Yan, T. Miyamoto, M. Adachi, Lead-free piezoelectric ceramics with large dielectric and piezoelectric constants manufactured from BaTiO3 nano-powder, Japanese Journal of Applied Physics, 46 (2007) 97-99, https://doi.org/10.1143/JJAP.46.L97 56. T. Takenaka, H. Nagata, Current status and prospects of lead-free piezoelectric ceramics, Journal of the European Ceramic Society, 25 (2005) 2693, https://doi.org/10.1016/j.jeurceramsoc.2005.03.125 57. E. Fukada, I. Yasuda, On the Piezoelectric Effect of Bone, Journal of the Physical Society of Japan, 12 (1975) 1158, https://doi.org/10.1143/JPSJ.12.1158 58. F. Yang, J. Li, Y. Long, Z. Zhang, L. Wang, J. Sui, Y. Dong, Y. Wang, R. Taylor, D. Ni, Wafer-scale heterostructured piezoelectric bio-organic thin films, Science, 373 (2021) 337, https://doi.org/10.1126/science.abf2155 59. B. Jaffe, R.S. Roth, S. Marzullo, Piezoelectric properties of lead zirconate‐lead titanate solid‐solution ceramics, Journal of Applied Physics, 25 (1954) 809, https://doi.org/10.1063/1.1721741 60. D. Berlincourt, Piezoelectric ceramic compositional development, Journal of the Acoustical Society of America, 91 (1992) 3034, https://doi.org/10.1121/1.402938 61. D.J. Shin, S.J. Jeong, C.E. Seo, K.H. Cho, J.H. Koh, Multi-layered piezoelectric energy harvesters based on PZT ceramic actuators, Ceramics International, 41 (2015) 686, https://doi.org/10.1016/j.ceramint.2015.03.180 62. A.M. Flynn, S.R. Sanders, Fundamental limits on energy transfer and circuit considerations for piezoelectric transformers, IIEEE Transactions on Power Electronics, 17 (2002) 8, https://doi.org/10.1109/63.988662 63. Z. Yi, B. Yang, G. Li, J. Liu, X. Chen, X. Wang, C. Yang, High performance bimorph piezoelectric MEMS harvester via bulk PZT thick films on thin beryllium-bronze substrate, Applied Physics Letters, 111 (2017) 013902, https://doi.org/10.1063/1.4991368 64. W.S. Kang, J.H. Koh, (1-x)Bi0.5Na0.5TiO3-xBaTiO3 lead-free piezoelectric ceramics for energy-harvesting applications, Journal of the European Ceramic Society, 35 (2015) 2057, https://doi.org/10.1016/j.jeurceramsoc.2014.12.036 65. D.J. Shin, J. Kim, J.H. Koh, Piezoelectric properties of (1-x)BZT-xBCT system for energy harvesting applications, Journal of the European Ceramic Society, 38 (2018) 4395, https://doi.org/10.1016/j.jeurceramsoc.2018.05.022 66. K. Kapat, Q.T.H. Shubhra, M. Zhou, S. Leeuwenburgh, Piezoelectric nanobiomaterials for biomedicine and tissue regeneration, Advanced Functional Materials, 44 (2020) 1909045, https://doi.org/10.1002/adfm.201909045 67. K. Ryan, J. Beirne, G. Redmond, J. I. Kilpatrick, J. Guyonnet, N.-V. Buchete, A. L. Kholkin, B. J. Rodriguez, Nanoscale Piezoelectric Properties of SelfAssembled Fmoc-FF Peptide Fibrous Networks, ACS Applied Materials & Interfaces, 7 (2015) 12702, https://doi.org/10.1021/acsami.5b01251 68. W. Wu, S. Bai, M. Yuan, Y. Qin, Z.L. Wang, T. Jing, Lead zirconate titanate nanowire textile nanogenerator for wearable energy-harvesting and selfpowered devices, ACS Nano, 7 (2012) 6231, https://doi.org/10.1021/nn3016585 69.J. Chun, N.R. Kang, J.Y. Kim, M.S. Noh, C.Y. Kang, D. Choi, S.W. Kim, Z. Lin Wang, J. Min Baik, Highly anisotropic power generation in piezoelectric hemispheres composed stretchable composite film for self-powered motion sensor, Nano Energy, 11 (2015) 1, https://doi.org/10.1016/j.nanoen.2014.10.010 70.J. Briscoe, S. Dunn, Piezoelectric nanogenerators - a review of nanostructured piezoelectric energy harvesters, Nano Energy, 14 (2014) 15, https://doi.org/10.1016/j.nanoen.2014.11.059 71. V. Nguyen, R. Zhu, K. Jenkins, R. Yang, Self-assembly of diphenylalanine peptide with controlled polarization for power generation, Nature Communications, 7 (2016) 13566, https://doi.org/10.1038/ncomms13566 72. M.G. Kang, W.S. Jung, C.Y. Kang, S.J. Yoon, Recent progress on PZT based piezoelectric energy harvesting technologies, Actuators, 5 (2016), https://doi.org/10.3390/act5010005 73. H. Kawai, The piezoelectricity of poly (vinylidene fluoride), Japanese journal of applied physics, 8 (1969) 975, https://doi.org/10.1143/JJAP.8.975 74. A. Handelman, P. Beker, E. Mishina, S. Semin, N. Amdursky, G. Rosenman, Ferroelectric Properties and Phase Transition in Dipeptide Nanotubes, Ferroelectrics, 430 (2012) 84, https://doi.org/10.1080/00150193.2012.677721 75. S.B. Lang, S. Muensit, Review of some lesser-known applications of piezoelectric and pyroelectric polymers,Applied Physics A: Materials Science and Processing, 85 (2006) 125, https://doi.org/10.1007/s00339-006-3688-8 76. H. R. Leuchtag, Voltage-Sensitive Ion Channels: Biophysics of Molecular Excitability, Berlin: Springer, 2008 77. S.K. Karan, D. Mandal, B.B. Khatua, Self-powered flexible Fe-doped RGO/PVDF nanocomposite: an excellent material for a piezoelectric energy harvester, Nanoscale, 7 (2015) 10655, https://doi.org/10.1039/c5nr02067k 78. M.E. Kiziroglou, E.M. Yeatman, Functional Materials for Sustainable Energy Applications, Woodhead Publishing Series in Energy, (2012) 541, https://doi.org/10.1533/9780857096371.4.539 79. Z. Pi, J. Zhang, C. Wen, Z. bin Zhang, D. Wu, Flexible piezoelectric nanogenerator made of poly(vinylidenefluoride-co-trifluoroethylene) (PVDFTrFE) thin film, Nano Energy, 7 (2014) 33, https://doi.org/10.1016/j.nanoen.2014.04.016 80. L. Jin, S. Ma, W. Deng, C. Yan, T. Yang, X. Chu, G. Tian, D. Xiong, J. Lu, W. Yang, Polarization-free high-crystallization β-PVDF piezoelectric nanogenerator toward self-powered 3D acceleration sensor, Nano Energy, 50 (2018) 632, https://doi.org/10.1016/j.nanoen.2018.05.068 81.J. Zhu, L. Jia, R. Huang, Electrospinning poly(l-lactic acid) piezoelectric ordered porous nanofibers for strain sensing and energy harvesting, Journal of Materials Science: Materials in Electronics, 28 (2017) 12080, https://doi.org/10.1007/s10854-017-7020-5 82. M.M. Abolhasani, M. Naebe, K. Shirvanimoghaddam, H. Fashandi, H. Khayyam, M. Joordens, A. Pipertzis, S. Anwar, R. Berger, G. Floudas, J. Michels, K. Asadi, Thermodynamic approach to tailor porosity in piezoelectric polymer fibers for application in nanogenerators, Nano Energy, 62 (2019) 594, https://doi.org/10.1016/j.nanoen.2019.05.044 83.J. Fu, Y. Hou, X. Gao, M. Zheng, M. Zhu, Highly durable piezoelectric energy harvester based on a PVDF flexible nanocomposite filled with oriented BaTi2O5 nanorods with high power density, Nano Energy, 52 (2018) 391, https://doi.org/10.1016/j.nanoen.2018.08.006 84. L. Csoka, I. C. Hoeger, O. J. Rojas, I. Peszlen, J. J. Pawlak, P. N. Peralta, Piezoelectric Effect of Cellulose Nanocrystals Thin Films, ACS Macro Letters, 1 (2012) 867, https://doi.org/10.1021/mz300234a 85. L. Yang, S. Chi, S. Dong, F. Yuan, Z. Wang, J. Lei, L. Bao, J. Xiang, J. Wang, Preparationand characterization of a novel piezoelectric nanogenerator based on solubleand meltable copolyimide for harvesting mechanical energy, Nano Energy, 67 (2020) 104220, https://doi.org/10.1016/j.nanoen.2019.104220 86. F. Liu, M. W. Urban, Recent advances and challenges in designing stimuliresponsive polymers, Progress in Polymer Science, 35 (2010) 3, https://doi.org/10.1016/j.progpolymsci.2009.10.002 87.J. Anjana , K. J. Prashanth , K. S. Asheesh , J. Arpit , P.N. Rashmi, Dielectric and piezoelectric properties of PVDF/PZT composites: A review, Polymer Engineering & Science, 55 (2015) 1589, https://doi.org/10.1002/pen.24088 88. S. M. Joseph, S. Krishnamoorthy, R. Paranthaman, J. A. Moses, C. Anandharamakrishnan, A review on source-specific chemistry, functionality, and applications of chitin and chitosan, Carbohydrate Polymer Technologies and Applications, 2 (2021) 100036, https://doi.org/10.1016/j.carpta.2021.100036 89.C. Shuai, G. Liu, Y. Yang, W. Yang, C. He, G. Wang, Z. Liu, F. Qi, S. Peng, Functionalized BaTiO3 enhances piezoelectric effect towards cell response of bone scaffold, Colloids and Surfaces B: Biointerfaces, 185 (2020) 110587, https://doi.org/10.1016/j.colsurfb.2019.110587 90.C. Shuai, G. Liu, Y. Yang, F. Qi, S. Peng, W. Yang, C. He, G. Wang, G. Qian, A strawberry-like Ag-decorated barium titanate enhances piezoelectric and antibacterial activities of polymer scaffold,Nano Energy, 74 (2020) 104825, https://doi.org/10.1016/j.nanoen.2020.104825 91. H. Kim, S.M. Kim, H. Son, H. Kim, B. Park, J. Ku, J.I. Sohn, K. Im, J.E. Jang, J.J. Park, O. Kim, S. Cha, Y.J. Park, Enhancement of piezoelectricity via electrostatic effects on a textile platform, Energy and Environmental Science, 10 (2012) 8932, https://doi.org/10.1039/c2ee22744d 92. S. Siddiqui, D.I. Kim, E. Roh, L.T. Duy, T.Q. Trung, M.T. Nguyen, N.E. Lee, A durable and stable piezoelectric nanogenerator with nanocomposite nanofibers embedded in an elastomer under high loading for a self-powered sensor system, Nano Energy, 30 (2016) 434, https://doi.org/10.1016/j.nanoen.2016.10.034 93. M.M. Alam, D. Mandal, Native cellulose microfiber-based hybrid piezoelectric generator for mechanical energy harvesting utility, ACS Applied Materials and Interfaces, 8 (2016) 1555, https://doi.org/10.1021/acsami.5b08168 94. Y. Zhang, C.K. Jeong, T. Yang, H. Sun, L.Q. Chen, S. Zhang, W. Chen, Q. Wang, Bioinspired elastic piezoelectric composites for high-performance mechanical energy harvesting, Journal of Materials Chemistry A, 30 (2018) 14546, https://doi.org/10.1039/c8ta03617a 95. D.-M. Shin, H. J. Han, W.-G. Kim, E. Kim, C. Kim, S. W. Hong, H. K. Kim, J.-W. Oh, Y.-H. Hwang, Bioinspired piezoelectric nanogenerators based on vertically aligned phage nanopillars, Energy & Environmental Science, 8 (2015) 3198, https://doi.org/10.1039/C5EE02611C 96. S. Maiti, S. Kumar Karan, J. Lee, A. Kumar Mishra, B. Bhusan Khatua, J. Kon Kim, Bio-waste onion skin as an innovative nature-driven piezoelectric material with high energy conversion efficiency, Nano Energy, 42 (2017) 282, https://doi.org/10.1016/j.nanoen.2017.10.041 97. S.K. Ghosh, D. Mandal, Efficient natural piezoelectric nanogenerator: electricity generation from fish swim bladder, Nano Energy, 28 (2016) 356, https://doi.org/10.1016/j.nanoen.2016.08.030 98. S.K. Karan, S. Maiti, S. Paria, A. Maitra, S.K. Si, J.K. Kim, B.B. Khatua, A new insight towards eggshell membrane as high energy conversion efficient bio-piezoelectric energy harvester, Materials Today Energy, 9 (2018) 114, https://doi.org/10.1016/j.mtener.2018.05.00 99. N.R. Alluri, N.P. Maria Joseph Raj, G. Khandelwal, V. Vivekananthan, S.J. Kim, Aloe vera: a tropical desert plant to harness the mechanical energy by triboelectric and piezoelectric approaches, Nano Energy, 73 (2020) 104767, https://doi.org/10.1016/j.nanoen.2020.104767 100. A. Farahani, A. Zarei-Hanzaki, H. R. Abedi, L. Tayebi, E. Mostafavi, Polylactic Acid Piezo-Biopolymers: Chemistry, Structural Evolution, Fabrication Methods, and Tissue Engineering Applications, Journal of Functional Biomaterials, 12 (2021) 71, https://doi.org/10.3390/jfb12040071 101. S. Luo, J. Zhao, J. Zou, Z. He, C. Xu, F. Liu, Y. Huang, L. Dong, L. Wang, H. Zhang, Self-standing polypyrrole/black phosphorus laminated film: 0cycling stability, ACS Applied Materials and Interfaces, 10 (2018) 3538, https://doi.org/10.1021/acsami.7b15458 102. X. Qi, Y. Zhang, Q. Ou, S.T. Ha, C.W. Qiu, H. Zhang, Y.B. Cheng, Q. Xiong, Q. Bao, Photonics and optoelectronics of 2D metal-halide perovskites, Small, 31 (2018), 1800682, https://doi.org/10.1002/smll.201800682 103. E. J. Curry, T. T. Le, R. Das, K. Ke, E. M. Santorella, D. Paul, M. T. Chorsi, K. T. M. Tran, J. Baroody, E. R. Borges, Biodegradable nanofiber-based piezoelectric transducer, Proceedings of the National Academy Sciences USA, 117 (2020) 214, https://doi.org/10.1073/pnas.1910343117 104. P. Wu, P. Chen, C. Xu, Q. Wang, F. Zhang, K. Yang, W. Jiang, J. Feng, Z. Luo, Ultrasound-driven in vivo electrical stimulation based on biodegradable piezoelectric nanogenerators for enhancing and monitoring the nerve tissue repair, Nano Energy, 102 (2022) 107707, https://doi.org/10.1016/j.nanoen.2022.107707 105. Y. M. Yousry, V. Wong, R. Ji, Y. Chen, S. Chen, X. Zhang, D. B. K. Lim, L. Shen, K. Yao, Shear Mode Ultrasonic Transducers from Flexible Piezoelectric PLLA Fibers for Structural Health Monitoring, Advanced Functional Materials, 33 (2023) 2213582, https://doi.org/10.1002/adfm.202213582 106. T. T. Le, E. J. Curry, T. Vinikoor, R. Das, Y. Liu, D. Sheets, K. T. M. Tran, C. J. Hawxhurst, J. F. Stevens, J. N. Hancock, Piezoelectric Nanofiber Membrane for Reusable, Stable, and Highly Functional Face Mask Filter with Long-Term Biodegradability, Advanced Functional Materials, 32 (2022) 2113040, https://doi.org/10.1002/adfm.202113040 107. X. Jiang, A.V. Kuklin, A. Baev, Y. Ge, H. Ågren, H. Zhang, P.N. Prasad, Two-dimensional MXenes: from morphological to optical, electric, and magnetic properties and applications, Physics Reports, 848 (2020) 1, https://doi.org/10.1016/j.physrep.2019.12.006 108. J. He, L. Tao, H. Zhang, B. Zhou, J. Li, Emerging 2D materials beyond graphene for ultrashort pulse generation in fiber lasers, Nanoscale, 11 (2019) 2577, https://doi.org/10.1039/C8NR09368G 109. S. Guo, Y. Zhang, Y. Ge, S. Zhang, H. Zeng, H. Zhang, 2D V‐V binary materials: status and challenges, Advanced Materials, 39 (2019) 1902352, https://doi.org/10.1002/adma.201902352 110. N. Sezer, S.A. Khan, M. Koç, Boiling heat transfer enhancement by self‐assembled graphene/silver hybrid film for the thermal management of concentrated photovoltaics, Energy Technology, 8 (2020) 2000532, https://doi.org/10.1002/ente.202000532 111. P. Hu, S. Hu, Y. Huang, J. R. Reimers, A. M. Rappe, Y. Li, A. Stroppa, W. Ren, Bioferroelectric Properties of Glycine Crystals, The Journal of Physical Chemistry Letters, 10 (2019) 1319, https://doi.org/10.1021/acs.jpclett.8b03837 112. S.A. Khan, N. Sezer, M. Koç, Design, fabrication and nucleate pool-boiling heat transfer performance of hybrid micro-nano scale 2-D modulated porous surfaces, Applied Thermal Engineering, 153 (2019) 168, https://doi.org/10.1016/j.applthermaleng.2019.02.133 113. S.A. Khan, N. Sezer, S. Ismail, M. Koç, Design, synthesis and nucleate boiling performance assessment of hybrid micro-nano porous surfaces for thermal management of concentrated photovoltaics (CPV), Energy Conversion and Management, 195 (2019) 1056, https://doi.org/10.1016/j.enconman.2019.05.068 114. J. Joseph, S. G. Singh, S. R. K. Vanjari, Leveraging innate piezoelectricity of ultra-smooth silk thin films for flexible and wearable sensor applications, IEEE Sensors Journal, 17 (2017) 8306, https://doi.org/10.1109/JSEN.2017.2766163 115. C. Wang, K. Xia, Y. Zhang, D. L. Kaplan. “Silk-Based Advanced Materials for Soft Electronics, Accounts of Chemical Research, 52 (2019) 2916, https://doi.org/10.1021/acs.accounts.9b00333 116. N. Sezer, M.A. Atieh, M. Koc, A comprehensive review on synthesis, stability, thermophysical properties, and characterization of nanofluids, Powder technology, 344 (2018) 404, https://doi.org/10.1016/j.powtec.2018.12.016 117. M. Smith, C. Lindackers, K. McCarthy, S. Kar-Narayan, Enhanced Molecular Alignment in Poly-l-Lactic Acid Nanotubes Induced via Melt-Press Template-Wetting, Macromolecular Materials and Engineering, 304 (2019) 1800607, https://doi.org/10.1002/mame.201800607 118. W. Deng, T. Yang, L. Jin, C. Yan, H. Huang, X. Chu, Z. Wang, D. Xiong, G. Tian, Y. Gao, H. Zhang, W. Yang, Cowpea-structured PVDF/ZnO nanofibers based flexible self-powered piezoelectric bending motion sensor towards remote control of gestures, Nano Energy, 55 (2019) 516, https://doi.org/10.1016/j.nanoen.2018.10.049 119. D. Vanderbilt, Berry-phase theory of proper piezoelectric response, Journal of Physics and Chemistry of Solids, 61 (2000) 147, https://doi.org/10.1016/S0022-3697(99)00273-5 120. S. Dutta, P. Buragohain, S. Glinsek, C. Richter, H. Aramberri, H. Lu, U. Schroeder, E. Defay, A. Gruverman, J. Íñiguez, Piezoelectricity in hafnia, Nature Communications, 12 (2021) 7301, https://doi.org/10.1038/s41467-021- 27480-5 121. М. Alyörük, Piezoelectric properties of monolayer II–VI group oxides by first-principles calculations, Physic Status Solidi, 253 (2016) 2534, https://doi.org/10.1002/pssb.201600387 122. K. Lejaeghere et al., Reproducibility in density functional theory calculations of solids, Science, 351 (2016) aad3000-1, https://doi.org/10.1126/science.aad3000 123. R. O. Jones, Density functional theory: Its origins, rise to prominence, and future, Reviews of modern physics, 87 (2015) 897, https://doi.org/10.1103/RevModPhys.87.897 124. Z. L. Wang, J. Song, Рiezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays, Science, 312 (2006) 242. https://doi.org/10.1126/science.1124005 125. R. Hinchet, U. Khan, C. Falconi, S.-W. Kim, Piezoelectric properties in twodimensional materials: Simulations and experiments, Materials Today, 21 (2018) 611, https://doi.org/10.1016/j.mattod.2018.01.031 126. F. Li, T. Shen, C. Wang, Y. Zhang, J. Qi, H. Zhang, Advances in Strain‑Induced Piezoelectric and Piezoresistive Effect-Engineered 2D Semiconductors for Adaptive Electronics and Optoelectronics, Nano-Micro Letters, 12 (2020) 106, https://doi.org/10.1007/s40820-020-00439-9 127. R. Fe, W. Li, J. Li, L.Yang, Giant piezoelectricity of monolayer group IV monochalcogenides: SnSe, SnS, GeSe, and GeS, Applied Physics Letters, 107 (2015) 173104, https://doi.org/10.1063/1.4934750 128. R.M. Balabai, V.M. Zadorozhnii, Ab initio study of the piezoelectric effects of the 2D semiconductors of IV group monochalcogenides (GeSe, GeS) // The International research and practice conference “Nanotechnology and nanomaterials” (NANO-2022). Abstract Book of participants of the International research and practice conference, 25–27 August 2022, Lviv. Edited by Dr. Olena Fesenko. – Kyiv: LLC APF POLYGRAPH SERVICE, 2022. – Р. 410. http://nanoconference.iop.kiev.ua/assets/files/nano22bookOfAbstracts.pdf 129. R.M. Balabai, V.M. Zadorozhnii, Ab initio study of the piezoelectric effects of the 2D semiconductors of IV group monochalcogenides (GeSe, GeS), Molecular Crystals and Liquid Crystals, 765 (2023) 97, https://doi.org/10.1080/15421406.2023.2215026 130. T. Grandke, L. Ley, Angular-resolved UV photoemission and the band structure of GeS, Physical Review B, 16 (1977) 832, https://doi.org/10.1103/PhysRevB.16.832 131. S. Dutta, P. Buragohain, S. Glinsek, C. Richter, H. Aramberri, H. Lu, U. Schroeder, E. Defay, A. Gruverman, J. Íñiguez, Piezoelectricity in hafnia, Nature Communications, 12 (2021) 7301, https://doi.org/10.1038/s41467-021- 27480-5 132. R.M. Balabai, V.M. Zadorozhnii, The piezoelectric activity in the HfO2 nanoclusters // The International research and practice conference “Nanotechnology and nanomaterials” (NANO-2023). Abstract Book of participants of the International research and practice conference, 16–19 August 2023, Bukovel. Edited by Dr. Olena Fesenko. – Kyiv: LLC APF POLYGRAPH SERVICE, 2023. – P. 87. 133. R.M. Balabai, V.M. Zadorozhnii, The piezoelectric activity in the HfO2 nanoclusters, Molecular Crystals and Liquid Crystals, 768 (2024) 1254, https://doi.org/10.1080/15421406.2024.2403914 134. X. Sang, E.D. Grimley, T. Schenk, U. Schroeder, J.M. Lebeau, On the structural origins of ferroelectricity in HfO2 thin films, Applied Physics Letters, 106 (2015) 162905, https://doi.org/10.1063/1.4919135 135. J. Liu, S. Liu, L. H. Liu, B. Hanrahan, S. T. Pantelides, Origin of Pyroelectricity in Ferroelectric HfO2, Phys. Rev. Applied, 12 (2019) 034032, https://doi.org/10.1103/PhysRevApplied.12.034032 136. S. Kirbach, K. Kühne, W. Weinreich, Piezoelectric Hafnium Oxide Thin Films for Energy - Harvesting Applications, IEEE (2018), DOI:10.1109/NANO.2018.8626275 137. M. Smith, S.i Kar-Narayan, Piezoelectric polymers: theory, challenges and opportunities, International Materials Reviews, 67 (2022)65, https://doi.org/10.1080/09506608.2021.1915935 138. M. Ali, M. J. Bathaei, L. Beker, Biodegradable Piezoelectric Polymers: Recent Advancements in Materials and Applications, Advanced Healthcare Materials, 12 (2023) 2300318, https://doi.org/10.1002/adhm.202300318 139. Y. Yu, F. Narita, Evaluation of Electromechanical Properties and Conversion Efficiency of Piezoelectric Nanocomposites with Carbon-FiberReinforced Polymer Electrodes for Stress Sensing and Energy Harvesting, Polymers, 13 (2021) 3184, https://doi.org/10.3390/polym13183184 140. J. Wu, Y. Fu, G.-H. Hu, S. Wang, C. Xiong. Effect of Stretching on Crystalline Structure, Ferroelectric and Piezoelectric Properties of SolutionCast Nylon-11 Films, Polymers, 13 (2021) 2037, https://doi.org/10.3390/polym13132037 141. W. Kaewkan, T. Kohji, H. Makoto, O. Tokashi, K. Kazuo, K. Ryota, T. Taro, O. Tomoji, K. Tetsuo, Crystal Structure Analysis of Poly(L-lactic Acid) α Form On the basis of the 2-Dimensional Wide-Angle Synchrotron X-ray and Neutron Diffraction Measurements, Macromolecules, 44 (2011) 6441, https://dx.doi.org/10.1021/ma2006624 142. Задорожній В.М, Балабай Р.М., Бондаренко О.О. П'єзоелектричний відгук полі(L-молочної кислоти) α-форми на механічно напружений стан // 9-а Українська наукова конференція з фізики напівпровідників. Матеріали конференції. – Ужгород: Видавець ТОВ "Рік-У", 2023. – с.58- 59. 143. V.M. Zadorozhnii, R.M. Balabai, O. O. Bondarenko, Piezoelectric response of α-form poly (L-lactic acid) to mechanically stressed state, Ukrainian Journal of Physics, 70 (2025) 109, https://doi.org/10.15407/ujpe70.2.109 144. Y. Choi, S Kim, M. Smith, F. Williams, M. E. Vickers, J.A. Elliott, S. KarNarayan*,Unprecedented dipole alignment in α-phase nylon-11 nanowires for high-performance energy-harvesting applications, Science Advances, 6 (2020) 5065, https://doi.org/10.1126/sciadv.aay5065 145. J. Pepin, V. Miri, J.-M. Lefebvre, New Insights into the Brill Transition in Polyamide 11 and Polyamide, Macromolecules, 49 (2016) 564, https://doi.org/10.1021/acs.macromol.5b01 146. Y. S. Choi, S. K. Kim, F. Williams, Y. Calahorra, J. A. Elliott, S. KarNarayan, The effect of crystal structure on the electromechanical properties of piezoelectric Nylon-11 nanowires, Chemical Communications, 54 (2018) 6863, https://doi.org/10.1039/C8CC02530D 147. T. Sasaki, Notes on the polymorphism in nylon 11, Journal of Polymer Sciences part B, 3 (1965) 557, https://doi.org/10.1002/pol.1965.110030707 148. A. Kawaguchi, T. Ikawa, Y. Fujiwara, M. Tabuchi, K. Monobe, Polymorphism in lamellar single crystals of Nylon 11, Journal of Macromolecular Science, Part B, 20 (1981) 1, https://doi.org/10.1080/00222348108219425 149. K. G. Kim, B. A. Newman, J. I. Scheinbeim, Temperature dependence of the crystal structures of Nylon 11, Journal of Polymer Science Polymer Physics Edition, 23 (1985) 477, https://doi.org/10.1002/pol.1985.180231206 150. S. S. Nair, C. Ramesh, K Tashiro, Crystalline phases in Nylon-11: Studies using HTWAXS and HTFTIR, Macromolecules, 39 (2006) 2841, https://doi.org/10.1021/ma052597e 151. B. A. Newman, T. P. Sham, K. D. Pae, A high-pressure x-ray study of Nylon 11, Journal of Materials Science, 48 (1977) 4092, https://doi.org/10.1007/BF00542825 152. K. Little, Investigation of nylon “texture” by X-ray diffraction, British Journal of Applied Physics, 10 (1959) 225, https://doi.org/10.1088/0508- 3443/10/5/307 153. Y. S. Choi, S. Kar-Narayan, Nylon-11 nanowires for triboelectric energy harvesting, EcoMat, 4 (2020) e12068, https://doi.org/10.1002/eom2.12068 154. E. Roguet, S. Tence -Girault, S. Castagnet, J. C. Grandidier, G. Hochstetter, Micromechanisms in volved in the atypical tensile behavior observed in polyamide 11 at high temperature, Journal of Polymer Sciences part B, 45 (2007) 3046, https://doi.org/10.1002/polb.21299 155. M. Dosiere, J. J. Point, Orientation of the boundary faces in nylon-11 lamellar crystals, Journal of Polymer Science: Polymer Physics Edition, 22 (1984) 1383, https://doi.org/10.1002/pol.1984.180220803 156. S Rhee, J. L. White, Crystalline structure and morphology of biaxially oriented polyamide-11 films, Journal of Polymer Sciences part B, 40 (2002) 2624, https://doi.org/10.1002/polb.10330 157. V.M. Zadorozhnii, R.M. Balabai, Triboelectric charge on the crystalline region of a-phase hylon-11, The International research and practice conference “Nanotechnology and nanomaterials” (NANO-2024), Abstract Book of participants of the International research and practice conference, Uzhorod, 21– 24 August (2024) 172, https://drive.google.com/file/d/1_I2sb5lRxa8SCTPSjnFYNrr103akqQp/view?usp=sharing 158. S. Dasgupta, W. B. Hammond, W. A. Goddard III, Crystal Structures and Properties of Nylon Polymers from Theory, Journal of the American Chemical Society, 118 (1996) 12291, https://doi.org/10.1021/ja944125d
URI (Уніфікований ідентифікатор ресурсу): http://elibrary.kdpu.edu.ua/xmlui/handle/123456789/11843
Розташовується у зібраннях:Дисертації докторів філософії

Файли цього матеріалу:
Файл Опис РозмірФормат 
Дисертація Задорожній.pdf4.35 MBAdobe PDFПереглянути/Відкрити


Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.