Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал: http://elibrary.kdpu.edu.ua/xmlui/handle/123456789/10946
Повний запис метаданих
Поле DCЗначенняМова
dc.contributor.authorFadieieva, Liliia-
dc.contributor.authorСемеріков, Сергій Олексійович-
dc.contributor.authorФадєєва, Лілія Олександрівна-
dc.date.accessioned2024-12-03T11:30:51Z-
dc.date.available2024-12-03T11:30:51Z-
dc.date.issued2024-10-08-
dc.identifier.citationFadieieva L. Exploring the Interplay of Moodle Tools and Student Learning Outcomes: A Composite-Based Structural Equation Modelling Approach / Liliia Fadieieva, Serhiy Semerikov // Information Technology for Education, Science, and Technics : Proceedings of ITEST 2024, Volume 2 / editors : Emil Faure, Yurii Tryus, Tero Vartiainen, Olena Danchenko, Maksym Bondarenko, Constantine Bazilo, Grygoriy Zaspa // Lecture Notes on Data Engineering and Communications Technologies. – Cham : Springer, 2024. – Vol. 222. – P. 418–435. – DOI : https://doi.org/10.1007/978-3-031-71804-5_28uk
dc.identifier.isbn978-3-031-71803-8-
dc.identifier.isbn978-3-031-71804-5-
dc.identifier.urihttps://link.springer.com/chapter/10.1007/978-3-031-71804-5_28-
dc.identifier.urihttps://doi.org/10.1007/978-3-031-71804-5_28-
dc.identifier.urihttp://elibrary.kdpu.edu.ua/xmlui/handle/123456789/10946-
dc.descriptionPhilosophy (2006). https://tinyurl.com/yck8br28. Accessed 12 May 2024 Regulation on using the distance learning technologies in the educational activity of the Kryvyi Rih State Pedagogical University (2021). https://tinyurl.com/2p8yc7jr. Accessed 12 May 2024 Regulation on the system of assessment of the students’ learning outcomes in the Kryvyi Rih State Pedagogical University (2022). https://tinyurl.com/db9at3ru. Accessed 12 May 2024 Abuzinadah, N., et al.: Role of convolutional features and machine learning for predicting student academic performance from MOODLE data. PLOS ONE 18, 1–22 (2023). https://doi.org/10.1371/journal.pone.0293061 Cohen, J.: Statistical Power Analysis for the Behavioral Sciences, 2 edn. Routledge, New York (1988). https://doi.org/10.4324/9780203771587 Fadieieva, L., Semerikov, S.: ADANCO output on dataset from https://zenodo.org/doi/10.5281/zenodo.10938018 (2024). https://ssemerikov.github.io/Fadieieva/. Accessed 12 May 2024 Fadieieva, L., Semerikov, S.: KSPU Moodle activities and marks 2020–2022, April 2024. https://doi.org/10.5281/zenodo.10938019. Accessed 12 May 2024 Fadieieva, L.O.: Adaptive learning: a cluster-based literature review (2011–2022). Educ. Technol. Q. 2023(3), 319–366 (2023). https://doi.org/10.55056/etq.613 Fadieieva, L.O.: Adaptive learning concept selection: a bibliometric review of scholarly literature from 2011 to 2019. Educ. Dimension 9, 136–148 (2023). https://doi.org/10.31812/ed.643 Fadieieva, L.O.: Bibliometric analysis of adaptive learning literature from 2011–2019: identifying primary concepts and keyword clusters. In: Antoniou, G., et al. (eds.) ICTERI 2023. CCIS, vol. 1980, pp. 215–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-48325-7_16 Henseler, J.: ADANCO 2.0.1 User Manual (2017). https://ris.utwente.nl/ws/portalfiles/portal/5135104/ADANCO_2-0-1.pdf. Accessed 12 May 2024 Henseler, J.: Composite-Based Structural Equation Modeling: Analyzing Latent and Emergent Variables. Methodology in the Social Sciences. The Guilford Press, New York (2021) Google Scholar Iyer, S.S., Gernal, L., Subramanian, R., Mehrotra, A.: Impact of digital disruption influencing business continuity in UAE higher education. Educ. Technol. Q. 2023(1), 18–57 (2023). https://doi.org/10.55056/etq.29 Jordan, C.: Comparison of International Baccalaureate (IB) chemistry students’ preferred vs actual experience with a constructivist style of learning in a Moodle e-learning environment. Int. J. Lesson Learning Stud. 2(2), 155–167 (2013). https://doi.org/10.1108/20468251311323397 Article Google Scholar Kaensar, C., Wongnin, W.: Analysis and prediction of student performance based on Moodle log data using machine learning techniques. Int. J. Emerg. Technol. Learn. 18(10), 184–203 (2023). https://doi.org/10.3991/ijet.v18i10.35841 Article Google Scholar Kiv, A., Semerikov, S., Soloviev, V.N., Kibalnyk, L., Danylchuk, H., Matviychuk, A.: Experimental economics and machine learning for prediction of emergent economy dynamics. CEUR Workshop Proc. 2422, 1–4 (2019), https://ceur-ws.org/Vol-2422/paper00.pdf Krahn, T., Kuo, R., Chang, M.: Personalized study guide: a Moodle plug-in generating personal learning path for students. In: Frasson, C., Mylonas, P., Troussas, C. (eds.) ITS 2023. LNCS, vol. 13891, pp. 333–341. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-32883-1_30 Moreno-Marcos, P.M., Barredo, J., Muñoz-Merino, P.J., Delgado Kloos, C.: Statoodle: a learning analytics tool to analyze Moodle students’ actions and prevent cheating. In: Viberg, O., Jivet, I., Muñoz-Merino, P., Perifanou, M., Papathoma, T. (eds.) EC-TEL 2023. LNCS, vol. 14200, pp. 736–741. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-42682-7_70 Osadchyi, V.V.: Adaptive system for individualization and personalization of professional training of future specialists in blended learning. Technical report 0223U003360, Bogdan Khmelnitsky Melitopol State Pedagogical University (2023). https://nrat.ukrintei.ua/searchdoc/0223U003360. Accessed 12 May 2024 Petrova, M.Y., Mintii, M.M., Semerikov, S.O., Volkova, N.P.: Development of adaptive educational software on the topic of “Fractional Numbers” for students in grade 5. In: CEUR Workshop Proceedings, vol. 2292, pp. 162–192 (2018). http://ceur-ws.org/Vol-2292/paper19.pdf Pérez-Suay, A., Van Vaerenbergh, S., Diago, P.D., Pascual-Venteo, A.B., Ferri, F.J.: Data-driven modeling through the moodle learning management system: an empirical study based on a mathematics teaching subject. IEEE Revista Iberoamericana de Tecnologias del Aprendizaje 18(1), 19–27 (2023). https://doi.org/10.1109/RITA.2023.3250434 Article Google Scholar Sergeev, K.A., Mironenko, O.I., Krivich, O.Y., Petrov, A.A., Kozlov, M.V.: Using the module “analytics and machine learning” in LMS Moodle at training students of specialty “Rolling stock”. AIP Conf. Proc. 2624(1), 050056 (2023). https://doi.org/10.1063/5.0133923 Vásquez-Bermúdez, M., Aguirre-Munizaga, M., Hidalgo-Larrea, J.: Analysis of CoI presence indicators in a Moodle forum using unsupervised learning techniques. In: Valencia-García, R., Bucaram-Leverone, M., Del Cioppo-Morstadt, J., Vera-Lucio, N., Centanaro-Quiroz, P.H. (eds.) CITI 2023. CCIS, vol. 1873, pp. 27–38. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-45682-4_3 Vitez, A.: Course module instances report (2022). https://moodle.org/plugins/report_coursemodstats. Accessed 12 May 2024 Vlasenko, K.V., Chumak, O.O., Lovianova, I.V., Achkan, V.V., Sitak, I.V.: Personal e-Learning Environment of the Maths teacher’ online course as a means of improving ICT competency of a Mathematics teacher. J. Phys. Conf. Ser. 2288(1), 012038 (2022). https://doi.org/10.1088/1742-6596/2288/1/012038 Article Google Scholar Vlasenko, K.V., Volkov, S.V., Lovianova, I.V., Sitak, I.V., Chumak, O.O., Bohdanova, N.H.: Exploring usability principles for educational online courses: a case study on an open platform for online education. Educ. Technol. Q. 2023(2), 173–187 (2023). https://doi.org/10.55056/etq.602uk
dc.description.abstractThis study is dedicated to researching the interconnectedness of Moodle resources and activities and their influence on student learning outcomes. We developed a conceptual model using a quantitative structural equation modelling approach based on the social constructionist pedagogy underlying Moodle’s development and the university’s regulations regarding Moodle’s course structure and assessment. The model is comprised of five elements: Information, Resources, Activities, Communication, and Assessment. The modelling results revealed a strong positive relationship between the Activities construct (interactive learning activities) and the Communication construct, suggesting that increased utilisation of interactive activities within Moodle courses is associated with higher levels of communication and engagement. Additionally, a moderate positive relationship was observed between the Resources and Activities construct, indicating that the availability and variety of resources within a Moodle course are linked to the inclusion of diverse learning activities. Furthermore, a moderate positive relationship was found between the Information construct (course description, syllabus, introduction) and the Assessment construct (student grades), implying that well-designed and informative course materials are associated with better student performance on assessments. Notably, the study did not find evidence of a significant direct relationship between Communication or Activities and the Assessment construct, suggesting that their impact on assessment performance is more complex and influenced by other factors. The research highlights that the mere use of Moodle tools does not guarantee the implementation of adaptive learning for students of pedagogical universities. To truly leverage the potential of adaptive learning, instructors and course designers must employ a deliberate and strategic approach, integrating appropriate pedagogical strategies and using Moodle’s adaptive capabilities in alignment with specific learning objectives and student needs.uk
dc.language.isoenuk
dc.publisherSpringer, Chamuk
dc.subjectMoodleuk
dc.subjectstructural equation modellinguk
dc.subjectadaptive learninguk
dc.subjectpedagogical universitiesuk
dc.subjectstudent learning outcomesuk
dc.subjectMoodle tools interconnectednessuk
dc.titleExploring the Interplay of Moodle Tools and Student Learning Outcomes: A Composite-Based Structural Equation Modelling Approachuk
dc.typeBook chapteruk
Розташовується у зібраннях:Кафедра інформатики та прикладної математики

Файли цього матеріалу:
Файл Опис РозмірФормат 
ITEST_2024_vol_2-429-446_Fadieieva_Semerikov.pdf485.27 kBAdobe PDFПереглянути/Відкрити


Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.