Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал:
http://elibrary.kdpu.edu.ua/xmlui/handle/0564/1245
Повний запис метаданих
Поле DC | Значення | Мова |
---|---|---|
dc.contributor.author | Ків, Арнольд Юхимович | - |
dc.contributor.author | Maximova, T. I. | - |
dc.contributor.author | Соловйов, Володимир Миколайович | - |
dc.date.accessioned | 2017-08-16T20:13:57Z | - |
dc.date.available | 2017-08-16T20:13:57Z | - |
dc.date.issued | 1999-12 | - |
dc.identifier.citation | Kiv A. E. Microstructure of the relaxed (001) Si surface / A. E. Kiv, T. I. Maximova, V. N. Soloviev // The 9th Israel Material Engineering Conference – IMEC-9: Programs and Abstracts; The 28th Annual Conference of the Israeli Polymers & Plastics Society; In Conjunction with the Israel Materials & Processes Society. December 6-7, 1999. Technion - Israel Institute of Technology, Haifa, Israel. – P. 193. | uk |
dc.identifier.uri | http://elibrary.kdpu.edu.ua/handle/0564/1245 | - |
dc.identifier.uri | https://doi.org/10.31812/0564/1245 | - |
dc.description.abstract | We have applied molecular dynamics method and semi-empirical potential [1] to obtain the realistic picture of Si surface layers relaxation.The starting configuration was taken as a parallelepiped containing 864 atoms. There were 12 layers with 72 atoms in each one. Periodic boundary conditions were used in two dimensions. At first all atoms were in normal lattice positions. The relaxation of Si surface, which corresponds to (001) plane was investigated. MD method was applied in its standard form i.e. the equations of motion were solved by using of the central difference scheme. The time-step was 10-14s. | uk |
dc.language.iso | en | uk |
dc.subject | molecular dynamics | uk |
dc.subject | semi-empirical potential | uk |
dc.subject | periodic boundary conditions | uk |
dc.subject | angle distribution function | uk |
dc.subject | quasi-disordered phase | uk |
dc.title | Microstructure of the relaxed (001) Si surface | uk |
dc.type | Article | uk |
Розташовується у зібраннях: | Кафедра інформатики та прикладної математики |
Файли цього матеріалу:
Файл | Опис | Розмір | Формат | |
---|---|---|---|---|
Kiv_Maximova_Soloviev.pdf | Abstract | 8.32 MB | Adobe PDF | Переглянути/Відкрити |
Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.