Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал:
http://elibrary.kdpu.edu.ua/xmlui/handle/0564/1078
Повний запис метаданих
Поле DC | Значення | Мова |
---|---|---|
dc.contributor.author | Ganchuk, A. | - |
dc.contributor.author | Derbentsev, V. | - |
dc.contributor.author | Соловйов, Володимир Миколайович | - |
dc.date.accessioned | 2017-07-21T07:02:25Z | - |
dc.date.available | 2017-07-21T07:02:25Z | - |
dc.date.issued | 2006 | - |
dc.identifier.citation | Ganchuk A. Multifractal properties of the Ukraine stock market / A. Ganchuk, V. Derbentsev, V. Soloviev. – 1 Aug. 2006. – arXiv:physics/0608009v1 [physics.data-an] | uk |
dc.identifier.uri | http://elibrary.kdpu.edu.ua/handle/0564/1078 | - |
dc.identifier.uri | https://doi.org/10.48550/arXiv.physics/0608009 | - |
dc.description | [1] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez , D.-U. Hwang, Physics Reports 424 (2006) 175 – 308 [2] B.B. Mandelbrot and J.W. van Ness, SIAM Review 10 (1968) 422-437 [3] V. Plerou, P. Gopikrishnan, L.A.N. Amaral, M. Meyer and H.E. Stanley, Phys. Rev. E 60 (1999) 6519-6529 [4] P. Gopikrishnan, V. Plerou, L.A.N. Amaral, M. Meyer and H.E. Stanley, Phys. Rev. E 60 (1999) 5305-5316 [5] V. Plerou, P. Gopikrishnan, L.A.N. Amaral, X. Gabaix and H.E. Stanley, Phys. Rev. E 62 (2000) R3023-R3026 [6] V. Plerou, P. Gopikrishnan, B.Rosenow, L. A. N. Amaral, T.Guhr, H. E. Stanley Phys.Rev E, 65 (2002) 066126 [7] S. Drozdz, J. Kwapien, F. Gruemmer, F. Ruf and J. Speth, Acta Phys. Pol. B 34 (2003) 4293-4305 [8] J. F.Muzy, E. Bacry, and A. Arneodo, Phys. Rev. Lett. 67 (1991), 3515 [9] J.W. Kantelhardt, S.A. Zschiegner, E. Koscielny-Bunde, A. Bunde, Sh. Havlin and H.E. Stanley, Physica A 316 (2002) 87-114 | - |
dc.description.abstract | Recently the statistical characterizations of financial markets based on physics concepts and methods attract considerable attentions. We used two possible procedures of analyzing multifractal properties of a time series. The first one uses the continuous wavelet transform and extracts scaling exponents from the wavelet transform amplitudes over all scales. The second method is the multifractal version of the detrended fluctuation analysis method (MF- DFA). The multifractality of a time series we analysed by means of the difference of values singularity stregth αmax and αmin as a suitable way to characterise multifractality. Singularity spectrum calculated from daily re- turns using a sliding 1000 day time window in discrete steps of 1. . . 10 days. We discovered that changes in the multifractal spectrum display distinctive pattern around significant “drawdowns”. Finally, we discuss applications to the construction of crushes precursors at the financial markets. | uk |
dc.language.iso | en | uk |
dc.subject | multifractal | uk |
dc.subject | stock market | uk |
dc.subject | singularity spectrum | uk |
dc.title | Multifractal properties of the Ukraine stock market | uk |
dc.type | Article | uk |
Розташовується у зібраннях: | Кафедра інформатики та прикладної математики |
Файли цього матеріалу:
Файл | Опис | Розмір | Формат | |
---|---|---|---|---|
0608009v1.pdf | Article | 97.58 kB | Adobe PDF | Переглянути/Відкрити |
Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.