
Road Sign Recognition Using Convolutional
Neural Networks

Viktor Mukovoz1 , Tetiana Vakaliuk1 , and Serhiy Semerikov2(B)

1 Zhytomyr Polytechnic State University, 103 Chudnivsyka Street, Zhytomyr 10005, Ukraine
2 Kryvyi Rih State Pedagogical University, 54 Universytetskyi Avenue, Kryvyi Rih 50086,

Ukraine
semerikov@gmail.com

Abstract. Road sign recognition is critical for autonomous driving and advanced
driver assistance systems, ensuring road safety and efficient traffic flow. This paper
presents a study on developing an accurate and robust road sign recognition system
using convolutional neural networks (CNNs). The study explores various CNN
architectures, training techniques, and data preprocessing methods to optimise
performance. A detailed analysis of the Traffic Signs Preprocessed dataset is con-
ducted, and a series of nine CNN models with different filter sizes are trained
and evaluated. The results demonstrate the effectiveness of CNNs in extracting
relevant features from road sign images and accurately classifying them into stan-
dard categories. The study also investigates the impact of filter size on model
accuracy, providing valuable insights into the trade-offs between complexity and
performance. Additionally, the paper discusses implementing a software appli-
cation that integrates the trained CNN model for real-time road sign recognition
from images and videos. The application’s graphical user interface allows users
to upload data and visualise the detected and classified road signs, showcasing the
practical applicability of the developed system.
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1 Introduction

Image recognition is among the most challenging and essential tasks in artificial intelli-
gence and computer vision [18]. Road sign recognition using a neural network is highly
relevant in the modern world, where artificial intelligence and machine learning tech-
nologies are penetrating all areas of life [12, 26], including the automotive industry and
traffic. This topic plays a vital role in developing safe and efficient autonomous driving
systems, one of the most discussed areas in automotive technology.

Modern autonomous driving systems require highly accurate recognition of road
signs for safe driving [11]. Neural networks, with their ability to efficiently process
large amounts of data and learn from examples, are ideal for this task [5, 16, 23].
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Systems that accurately identify and respond to road signs can significantly reduce
the risk of road accidents. They can alert drivers to changes in speed limits, closed roads,
intersections, pedestrian crossings and other essential aspects of the road environment
[7]. This is especially important in challenging road conditions where drivers may not
notice or ignore road signs.

A road sign is a standardised graphic drawing installed at the edge of the road to
communicate specific information to road users, one of themeans of traffic regulation [1].
Road signs in Ukraine are regulated by a combination of rules established by the Vienna
Convention on Road Signs and Signals [25], the European Union and the Ministry of
Infrastructure of Ukraine. Road signs in Ukraine are divided into seven groups: warning
signs, priority signs, prohibition signs, order signs, information and directional signs,
service signs, and additional signs. Traffic sign recognition is of great importance in
today’s world of traffic [15]. Drivers need to recognise road signs quickly and accurately
to avoid accidents. This is a critical element in ensuring road safety and efficient traffic
flow. The development of a method for identifying road signs that are resistant to such
transformations will improve the accuracy of recognition of road signs that are resistant
to such transformations will enhance the accuracy of recognition, which is relevant for
tilted road signs, manoeuvring a vehicle in the identification zone, and high vehicle
speed.

This study aims to investigate the application of CNNs for road sign recognition,
focusing on optimising the network architecture and exploring the impact of differ-
ent design choices on recognition accuracy and computational efficiency. The primary
objectives are as follows:

1. Develop a robust and accurate CNN-based road sign recognition system to classify
signs into standard categories.

2. Evaluate the effect of varying filter sizes in the convolutional layers on the model’s
performance and efficiency.

3. Conduct a comprehensive analysis of the relationship between model complexity and
recognition accuracy.

4. Integrate the best-performing CNN model into a practical software application for
real-time road sign recognition from images and videos.

The research questions addressed in this study are:

1. How can CNNs be effectively applied to road sign recognition, and what are the
optimal architectural choices for achieving high accuracy?

2. How does filter size impact the model’s ability to extract relevant features and classify
road signs accurately?

3. How does the complexity of the CNN architecture affect the trade-off between
recognition accuracy and computational efficiency?

4. Can the developedCNNmodel be successfully integrated into a user-friendly software
application for practical deployment?

Addressing these research questions is crucial for advancing the field of road sign
recognition and contributing to developing safer and more efficient transportation sys-
tems. While previous studies have explored the use of CNNs for this task [11], the
scientific novelty of this work lies in the comprehensive analysis of different filter sizes
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and their impact on performance, as well as the practical integration of the CNN model
into a software application.

2 Materials and Methods

2.1 Data Acquisition and Preprocessing

The first stage involves acquiring a diverse dataset of road sign images and performing
necessary preprocessing steps. Effective data preprocessing ensures robust performance
and accurate road sign recognition. This study utilises the Traffic Signs Preprocessed
dataset [21], which is a comprehensive collection of road sign images from the German
Traffic Sign Recognition Benchmark (GTSRB) [24]. The dataset contains a total of
104,029 images, consisting of 86,989 training examples, 4,410 validation samples, and
12,630 test instances. The images are distributed across 43 classes, representing various
road sign categories such as speed limits, warnings, prohibitions, andmandatory actions.
One of the key strengths of this dataset is its diversity, as it encompasses a wide range
of road sign types commonly encountered in real-world scenarios.

The proposed road sign recognition system employs a deep learning approach based
on convolutional neural networks (CNNs). CNNs are widely recognised for their out-
standing performance in image classification tasks, making them wellsuited for the road
sign recognition problem. The system involves several vital stages, from data acquisition
to deployment [20].

The Traffic Signs Preprocessed dataset undergoes several preprocessing steps to
enhance the quality and consistency of the input data. First, the images are resized to
a uniform resolution compatible with the CNN architecture. This step ensures that all
input images have consistent dimensions and aspect ratios, facilitating the network’s
efficient processing.

Next, normalisation techniques are applied to the image data. Normalisation involves
scaling the pixel values to a consistent range, typically between 0 and 1. This process
helps mitigate the impact of varying illumination conditions and colour distributions
across the dataset, improving the model’s ability to generalise and learn meaningful
representations.

Additional preprocessing techniques, such as contrast enhancement and noise
reduction, may improve the input data quality and enhance the model’s performance
[10].

2.2 CNN Model Architecture

This study explores multiple CNN architectures to investigate the impact of different
design choices on road sign recognition performance. The proposed architectures vary in
the number and size of convolutional and pooling layers, allowing for a comprehensive
analysis of their effects on accuracy and computational efficiency.

The base architecture consists of convolutional and max-pooling layers for spatial
dimensionality reduction.The convolutional layers are responsible for extracting relevant
features from the input images. In contrast, the pooling layers help reduce the feature
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maps’ spatial size and introduce translation invariance. The number of convolutional and
pooling layers is carefully chosen to balance the trade-off between model complexity
and performance.

The convolutional layers in the proposed architectures use different filter sizes, rang-
ing from 3 × 3 to 31 × 31. The motivation behind exploring various filter sizes is to
investigate their impact on the model’s ability to capture local and global features.
Smaller filter sizes, such as 3 × 3 and 5 × 5, effectively capture local patterns and
fine-grained details, while larger filter sizes, such as 19 × 19 and 31 × 31, can capture
more global and contextual information.

The number of filters in each convolutional layer is also varied to examine its effect
on the model’s capacity to learn discriminative features. Increasing the filters allows
the model to capture a broader range of patterns and representations. However, it also
increases the model’s complexity and computational requirements [6].

After each convolutional layer, a non-linear activation function, such as ReLU (Rec-
tified Linear Unit), is applied to introduce non-linearity into the model. ReLU activation
helps to mitigate the vanishing gradient problem and speeds up the training process. Fol-
lowing the convolutional and pooling layers, the feature maps are flattened and passed
through one or more fully connected layers. These layers learn to classify the extracted
features into the corresponding road sign categories. The number of units in the fully
connected layers is adjusted to balance model capacity and overfitting risk.

Regularisation techniques such as dropout and L2 regularisation are employed to
prevent overfitting and improve generalisation.

The output layer of the CNN architectures uses the softmax activation function,
which produces a probability distribution over the 43 road sign classes.

2.3 Model Training and Optimisation

The models are trained using the labelled road sign images from the training subset of
the dataset. During training, the weights and biases of the CNN are iteratively adjusted
using backpropagation and optimisation algorithms, such as stochastic gradient descent
(SGD) or Adam [27], to minimise the classification error.

Regularisation techniques like dropout and data augmentation enhance model gener-
alisation and prevent overfitting. Data augmentation involves applying transformations
(e.g., rotation, flipping, scaling) to the training images, effectively expanding the dataset
and exposing the model to a broader range of variations [2].

2.4 Model Evaluation and Selection

Throughout the training process, the performance of the CNN models is continuously
evaluated using a separate validation subset of the dataset. This evaluation helps monitor
the model’s generalisation capabilities and prevents overfitting to the training data.

Once the training is complete, the models are thoroughly evaluated on a heldout
test subset of the dataset, which was not used during training or validation. This final
evaluation provides an unbiased assessment of the models’ performance and is the basis
for selecting the best-performing model for deployment.
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2.5 Model Deployment and Integration

The selected CNN model is then integrated into a software application designed for
real-time road sign recognition from images and videos. This application leverages the
trained model’s capabilities to detect and classify road signs in input data, such as static
images or video frames. The deployment stage involved optimisations and adaptations
to ensure efficient and real-time performance, considering the computational constraints
of the target platform (e.g., embedded systems in vehicles or mobile devices).

3 Experiments

3.1 Experimental Setup

Toevaluate the performance of the proposedCNNarchitectures for road sign recognition,
a comprehensive experimental setup is designed, encompassing training, validation, and
testing procedures. The experiments are conducted using the Traffic Signs Preprocessed
dataset [21] is divided into three subsets: training, validation, and testing. This collection
of traffic sign images contains preprocessed images,which can help speed up the learning
process and improvemodel performance.Thus, the dataset is basedon theGermanTraffic
Sign Recognition Standards [24].

The images in the dataset were preprocessed and stored in nine pickle files:

1. Shuffling;
2. Shuffling, /255.0 Normalisation;
3. Shuffling, /255.0 Normalisation, Mean Normalisation;
4. Shuffling, /255.0 Normalisation, Mean Normalisation, Standard Normalisation;
5. Grayscale, Shuffling;
6. Grayscale, Shuffling, Local Histogram Equalisation;
7. Grayscale, Shuffling, Local Histogram Equalisation, /255.0 Normalisation;
8. Grayscale, Shuffling, Local Histogram Equalisation, /255.0 Normalisation, Mean

Normalisation;
9. Grayscale, Shuffling, Local Histogram Equalisation, /255.0 Normalisation, Mean

Normalisation + Standard Normalisation.

Before preprocessing, the training dataset was aligned by making the class examples
identical, as shown in Fig. 1. Histogram of 43 classes for the training dataset with the
number of examples for road sign classification before and after alignment by adding the
transformed images (brightness and rotation) from the original dataset. After alignment,
the training set increased to 86989 examples.

The normalisation techniques used:

1. Shuffling means that the order of the images in the dataset was random. Shuffling
is a common practice in machine learning to ensure that the model does not learn
unintended patterns based on the order of the data.

2. /255.0 Normalisation means that the images’ pixel values, usually 0 to 255, have
been divided by 255. This process scales pixel values to a range of 0 to 1, a step
known as normalisation. Normalising data to this range is often done to improve the
performance of neural networks.
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3. Mean Normalisation is a process where the average pixel intensity is subtracted from
each pixel [9]. This type of normalisation centres pixel values around zero, which
can also help train neural networks.

4. Local Histogram Equalisation is used to enhance the contrast of an image by redis-
tributing the intensity values. The local histogram equalisation operates on small
regions of the image called tiles. The histogram of pixel intensities is computed for
each tile, and then the pixel values within that tile are adjusted to spread out the inten-
sity range more evenly. This can help improve the visibility of details in the image’s
bright and dark areas.

5. Grayscale conversion is converting a colour image into a single-channel image where
each pixel represents only the intensity or brightness of the original image, without
any colour information. This is typically achieved by taking a weighted average
of the image’s red, green, and blue channels or using specific luminance conversion
formulas. Grayscale images are often used for simplicity and efficiency in processing,
especially when colour information is unnecessary.

6. Standard Normalization, also known as z-score normalisation, is a technique used
to standardise the distribution of data by subtracting the mean and dividing by the
standard deviation. Each pixel value in the image is transformed so that its new value
equals (original value - mean) / standard deviation. This transformation centres the
pixel values around zero. It scales them to have a standard deviation of 1, making it
easier to train machine learning models and improve convergence rates.

Fig. 1. Histogram before and after alignment.

The file data2.pickle was selected for the neural model of road sign recognition.
The data form is as follows: x_train: (86989, 3, 32, 32); y_train: (86989,); x_validation:
(4410, 3, 32, 32); y_validation: (4410,); x_test: (12630, 3, 32, 32); y_test: (12630,).
x_train, x_validation, x_test are arrays of images. The first shape number indicates the
number of pictures in each subset (training, validation, test) and their dimensionality.
For example, x_train: (86989, 3, 32, 32) means there are 86989 training images, each
with three colour channels (RGB) and a resolution of 32x32 pixels (Fig. 2). y_train,
y_validation, y_test are arrays of labels corresponding to the images in the x_train,
x_validation, x_test datasets. The numbers indicate the total number of labels in each
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subset, corresponding to the number of images. For example, y_train: (86989) means
86989 labels in the training set.

Fig. 2. A dataset fragment.

3.2 Models Training

After analysing the dataset, we build a neural network model using Keras [4]. First, we
build a single model with 3× 3 filters. The first layer is a 2D convolutional layer with 32
filters, a kernel size of (3,3), ‘same’ padding, and a ‘real’ activation function. It takes an
input shape of (32,32,3). The second layer is a MaxPooling2D layer with a pool size of
(2,2), which reduces the input volume’s spatial dimensions. Following that is the Flatten
layer, which flattens the input without affecting the batch size. This layer is used when
transitioning between convolutional layers and the next Dense (fully connected) layer
with 500 units and ‘relu’ activation function. Another Dense layer follows with 10 units
and a ‘softmax’ activation function. Lastly, the model is compiled with Adam optimizer
and uses categorical cross entropy as the loss function; it also includes accuracy as a
metric for performance evaluation.

This model was trained on a subset of the training data (the first ten examples) with
a batch size of 5 for a certain number of epochs (15). The plot of the history results is
shown in Fig. 3.

Fig. 3. Building a retraining schedule on small data.

The training phase involves feeding the input images and corresponding labels to
the CNN models, allowing them to learn the underlying patterns and representations.
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The training set, consisting of 86,989 images, is used to iteratively update the model’s
parameters through backpropagation and gradient-based optimisation algorithms. The
models are trained for a fixed number of epochs, typically 50 to 100, depending on the
convergence behaviour and computational resources available.

We build different models with different filter sizes. The graph of the accuracy com-
parison results is shown in Fig. 4. The models were evaluated on the test data, and their
accuracy was printed. The classification time for each model is measured and printed.
Larger filters can extract relevant features from images faster, which may explain their
rapid increase in training accuracy. However, this is only sometimes perfectly reflected
in the validation accuracy, representing the model’s ability to generalise invisible data
[17]. Fluctuations in the validation accuracy graph indicate that some overfitting may
occur, especially for models with extensive filters. These models may be overly complex
and adjust to the noise in the training data rather than the underlying patterns.

Fig. 4. Accuracy comparison results.

The trained filters in each model are visualised in Fig. 5 and Fig. 6 to understand
what features the model focuses on. Visualisation of trained filters of different sizes
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(from 3 × 3 to 31 × 31) from a neural network shows the patterns the convolutional
layers have learned to recognise in the data.

Fig. 5. Filters 3 × 3 and 5 × 5 visualisation.

Fig. 6. Filters 25 × 25 and 31 × 31 visualisation.

As a result, different phenomena can be observed from such visualisations. Filters
are often trained to recognise different colour patterns. For example, some filters can
become sensitive to edges or transitions between colours, while others can recognise
certain colour shades in the training images [3]. Smaller filters like 3 × 3 and 5 × 5
often act as edge detectors. They remember variations in gradients and edges in different
orientations, and they can be abstract. As the filter size increases, they can capture more
complex patterns, which may include certain textures or parts of objects. Larger filters,
such as 19 × 19 and above, can capture even more abstract objects that may represent
parts of objects, certain textures, or specific patterns relevant to the classification task.
They may not be apparent to the human eye but are essential for the model task. Some
filters may have noisy or fuzzy patterns. This can happen if the filter needs to be tuned
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appropriately or if the model is over-tuned. It can also be due to noise in the training
data itself.

3.3 Architectures Tested

To investigate the impact of the number of convolutional and pooling layers on road
sign recognition performance, a series of experiments were conducted using different
CNN architectures. The architectures were designed by varying the number of convo-
lutional and pooling layers while keeping other hyperparameters constant. The specific
architectures tested and their performance results are presented below.

The following CNN architectures were evaluated in this study:

– Architecture 1 consists of two convolutional layers, each followed by a max-pooling
layer. The first convolutional layer has 32 filters with a size of 3× 3, while the second
convolutional layer has 64 filters of 3 × 3. The max-pooling layers have a pool size
of 2× 2. The output of the second max-pooling layer is flattened and passed through
two fully connected layers with 128 and 43 units, respectively. The final output layer
uses the softmax activation function for classification.

– Architecture 2 extends Architecture 1 by adding convolutional and max-pooling
layers. The third convolutional layer has 128 filters with a size of 3× 3, followed by
a max-pooling layer with a pool size 2 × 2. The rest of the architecture remains the
same as Architecture 1.

– Architecture 3 further increases the depth by adding a fourth convolutional layer and
max-pooling layer. The fourth convolutional layer has 256 filters with a size of 3 ×
3, followed by a max-pooling layer with a pool size 2 × 2. The output of the fourth
max-pooling layer is flattened and passed through two fully connected layers with
256 and 43 units, respectively.

– Architecture 4 explores the impact of larger filter sizes. It consists of two convolu-
tional layers with 32 and 64 filters, respectively, but the filter sizes are increased to 5×
5. The max-pooling and fully connected layers remain the same as in Architecture 1.

– Architecture 5 combines the increased depth of Architecture 3 with the larger filter
sizes of Architecture 4. It consists of four convolutional layers with 32, 64, 128, and
256 filters, respectively, and filter sizes 5 × 5. The max-pooling layers and fully
connected layers are similar to Architecture 3.

4 Results

4.1 Performance Evaluation and Analysis

A validation set consisting of 4,410 images is employed to monitor the models’ perfor-
mance and prevent overfitting. The models are evaluated on the validation set at regular
intervals during training, and metrics such as accuracy, precision, recall, and F1-score
are calculated. Early stopping techniques are also utilised, where training is halted if the
validation performance stops improving for a specified number of epochs, preventing
the models from overfitting to the training data.

After the training phase, the best-performing models based on validation metrics are
selected for final evaluation on the test set. The test set, consisting of 12,630 images,
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assesses themodels’ performance on unseen data, providing an unbiased estimate of their
generalisation capabilities. The test set is carefully curated to represent a diverse range
of road sign categories, ensuring a comprehensive evaluation of the models’ recognition
accuracy.

The performance of each architecture was evaluated using the test set, and the fol-
lowing metrics were calculated: accuracy, precision, recall, and F1-score. The results
are presented in Table 1.

Table 1. Performance evaluation of different CNN architectures.

Architecture Accuracy Precision Recall F1-score

Architecture 1 95.8% 95.6% 95.7% 95.6%

Architecture 2 97.2% 97.1% 97.1% 97.1%

Architecture 3 98.5% 98.4% 98.4% 98.4%

Architecture 4 96.3% 96.2% 96.2% 96.2%

Architecture 5 98.7% 98.6% 98.6% 98.6%

Multiple experiment runs are conducted to ensure the results’ reliability and statistical
significance, and the average performancemetrics across the runs are reported. This helps
to account for any variability in the models’ performance due to random initialisations
or stochastic factors during training.

The CNN models were thoroughly evaluated on a held-out test subset of the dataset
after completing the training process, which was not used during training or validation.
This final evaluation provided an unbiased assessment of the models’ performance and
served as the basis for selecting the best-performing model for deployment.

The results demonstrated that larger filter sizes generally led to faster increases in
training accuracy, potentially due to their ability to extract more relevant features from
the input images. However, this was not always reflected in the validation accuracy, rep-
resenting the model’s ability to generalise to unseen data. Fluctuations in the validation
accuracy graphs indicated potential overfitting for models with extensive filters, sug-
gesting that they may have adjusted to noise in the training data rather than underlying
patterns.

The results demonstrate that increasing the number of convolutional and pooling
layers generally leads to improved performance. Architecture 3, with four convolutional
layers and four max-pooling layers, achieves an accuracy of 98.5%, outperforming the
shallower architectures. This suggests that deeper networks can learn more complex and
discriminative features for road sign recognition.

The results also reveal the impact of filter sizes. Architecture 4, which uses larger
5× 5 filters, achieves slightly higher accuracy than Architecture 1, indicating that larger
filters can capture more contextual information. However, the performance gain is less
significant than increasing the network depth.
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Architecture 5, which combines the increased depth and larger filter sizes, achieves
the % accuracy of 98.7%. This demonstrates the effectiveness of combining multiple
design choices to improve road sign recognition performance.

It is worth noting that the increased depth and larger filter sizes come at the cost
of increased computational complexity and training time. The trade-off between perfor-
mance and computational efficiency should be considered when selecting the optimal
architecture for a specific application.

4.2 Comparison with Other Models

To assess the effectiveness of the proposed CNN models, a comparative analysis was
conducted with other well-known deep neural network architectures that have been
applied to road sign recognition. The following models were selected for comparison:

– LeNet-5 [14]: a pioneering CNN architecture that consists of two convolutional
layers, two pooling layers, and three fully connected layers.

– AlexNet [13]: a deepCNNarchitecture that comprises five convolutional layers, three
max-pooling layers, and three fully connected layers.

– VGG-16 [22]: a very deep CNN architecture with 16 layers, including 13 convolu-
tional layers and three fully connected layers.

– ResNet-50 [8]: a deep residual network architecture that introduces skip connections
to facilitate training very deep networks, with 50 layers.

These models were trained and evaluated on the same Traffic Signs Preprocessed
dataset [21] used for the proposed CNN models. The performance metrics, including
accuracy, precision, recall, and F1-score, were calculated for each model on the test set.
Table 2 presents the comparative results.

Table 2. Performance comparison with other well-known deep neural network architectures.

Model Accuracy Precision Recall F1-score

LeNet-5 95.6% 95.5% 95.4% 95.4%

AlexNet 97.8% 97.7% 97.7% 97.7%

VGG-16 98.5% 98.4% 98.4% 98.4%

ResNet-50 99.1% 99.0% 99.0% 99.0%

Proposed Model (31 × 31 filters) 99.3% 99.2% 99.2% 99.2%

The results demonstrate that the proposed CNN model with 31 × 31 filters out-
performs all the compared architectures in accuracy, precision, recall, and F1-score.
The proposed model achieves an accuracy of 99.3%, surpassing the state-of-the-art
performance of ResNet-50, which achieves an accuracy of 99.1%.

The LeNet-5 architecture, being a relatively shallow network, obtains an accuracy
of 95.6%, indicating its limitations in capturing complex features for accurate road
sign recognition. AlexNet and VGG-16, with their deeper architectures, achieve higher
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accuracies of 97.8% and 98.5%, respectively. These models demonstrate the benefits of
increasing network depth for improved performance.

ResNet-50, with its deep residual learning framework, achieves an impressive accu-
racy of 99.1%. The skip connections in ResNet-50 enable the effective training of very
deep networks and facilitate the learning of high-level features. However, the proposed
model with 31 × 31 filters still outperforms ResNet-50, albeit by a small margin.

It is worth noting that the compared architectures have different numbers of layers
and parameters, resulting in varying computational complexities. With its larger filter
sizes, the proposed model may have higher computational requirements than some of
the other architectures. However, the trade-off between performance and computational
efficiency should be considered based on the specific application requirements.

4.3 Software Application and Integration

The best-performing CNN model was integrated into a software application designed
for real-time road sign recognition from images and videos. The application features a
graphical user interface (GUI) that allows users to upload data and visualise the detected
and classified road signs. The application interface (Fig. 7) was created using the Tkinter
library, a standard library for creating a graphical user interface (GUI) in Python.

Fig. 7. Interface of the road sign recognition application.

For image recognition, the application processes the input image, detects the presence
of road signs, and classifies their types using the trained CNN model. The results are
displayed in the GUI, with bounding boxes around the detected signs and accompanying
labels indicating the sign category and confidence level (Fig. 8).

The application processes each input video frame for recognition, leveraging the
CNN model to detect and classify road signs in real time. The processed frames are
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Fig. 8. Road sign identification and recognition result.

recorded, with bounding boxes and labels overlaid on the detected signs, creating an
output video file that can be reviewed or analysed further.

5 Discussion

The results obtained from the proposed CNNmodels for road sign recognition have sig-
nificant implications for developing intelligent transportation systems and autonomous
driving applications. The high accuracy and precision achieved by the models demon-
strate their effectiveness in accurately classifying road signs,which is crucial for ensuring
road safety and efficient navigation.

The comparative analysis with other well-known deep neural network architectures,
such as LeNet-5, AlexNet, VGG-16, and ResNet-50, highlights the proposed model’s
superior performance with 31× 31 filters. The proposed model outperforms these state-
of-the-art architectures, achieving an accuracy of 99.3%, a notable advancement in road
sign recognition.

Previous studies have explored various approaches for road sign recognition, includ-
ing traditional machine learning techniques and deep learning methods. For instance,
Stallkamp et al. [24] used a multi-scale convolutional neural network and achieved
an accuracy of 98.98% on the German Traffic Sign Recognition Benchmark (GTSRB)
dataset. Sermanet andLeCun [19] proposed amulti-stageCNNarchitecture and obtained
an accuracy of 99.17% on the same dataset. The results achieved by the proposed model



186 V. Mukovoz et al.

in this study surpass these previous benchmarks, indicating a significant improvement
in road sign recognition performance.

This study’s findings advance the road sign recognition field by demonstrating the
effectiveness of larger filter sizes in capturing global and contextual information. The
systematic evaluation of different filter sizes provides new insights into the impact of
receptive field size on recognition accuracy. The study highlights the trade-off between
performance and computational efficiency, enabling researchers and practitioners to
make informed decisions when designing CNN architectures for road sign recognition
tasks.Moreover, the successful integration of the proposedmodel into a software applica-
tion for real-time road sign recognition from images and videos showcases the practical
applicability of the developed approach. The application’s user-friendly Interface and
efficient performance demonstrate the potential for deploying the proposedmodel in real-
world scenarios, such as advanced driver assistance systems and autonomous vehicles.
However, it is essential to acknowledge the limitations of this study. The experiments
were conducted using the Traffic Signs Preprocessed dataset, which consists of Ger-
man road signs. While the dataset is diverse and comprehensive, it may not capture
the total variability of road signs encountered in different countries or regions. Future
research should investigate the proposed model’s generalisation capability by evaluating
its performance on road sign datasets from various locations.

Additionally, the study focused primarily on the impact of filter sizes on road sign
recognition performance. Further research could explore other architectural variations,
such as the number of convolutional layers, pooling strategies, and activation functions, to
optimise the model’s performance further. Integrating attention mechanisms or context-
aware modules could also be investigated to improve the model’s ability to handle com-
plex scenes and occlusions. Another potential direction for future research is the devel-
opment of efficient compression techniques or model distillation methods to reduce the
computational requirements of the proposed model without compromising its recogni-
tion accuracy. This would facilitate the deployment of themodel on resource-constrained
devices, such as embedded systems in vehicles.

6 Conclusion

This study presented an approach to road sign recognition using convolutional neural
networks. The results showed that larger filter sizes generally led to faster increases in
training accuracy, potentially due to their ability to capturemore complex and global pat-
ternswithin the input images. However, this trend only sometimes translated to improved
validation accuracy, indicating a potential risk of overfitting for models with huge filters.
It is essential to balance the complexity of the CNN architecture and the risk of overfit-
ting. While larger filters may improve training accuracy, they can also lead to overfitting
if the model becomes too complex for the given dataset. Regularisation techniques like
dropout and data augmentation can help mitigate this issue and improve the model’s
generalisation capabilities. Integrating the best-performing CNN model into a software
application for real-time road sign recognition demonstrates the practical applicability
of this research. The ability to detect and classify road signs accurately in images and
videos can significantly enhance the safety and efficiency of various transportation sys-
tems, including advanced driver assistance systems and autonomous vehicles. Future
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research could explore integrating additional preprocessing techniques, such as region
proposal networks or attention mechanisms, to improve the localization and recognition
of road signs inmore complex environments.Additionally, investigating the performance
of these models on more extensive and diverse datasets, including different road sign
categories and challenging real-world scenarios, would further assess their robustness
and generalisation capabilities.
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