Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал:
http://elibrary.kdpu.edu.ua/xmlui/handle/123456789/7081
Повний запис метаданих
Поле DC | Значення | Мова |
---|---|---|
dc.contributor.author | Науменко, Марина Валеріївна | - |
dc.date.accessioned | 2023-05-16T11:49:25Z | - |
dc.date.available | 2023-05-16T11:49:25Z | - |
dc.date.issued | 2023 | - |
dc.identifier.citation | Науменко М. В. Електронні властивості наноструктур на основі β-Ga2O3 : дисертація на здобуття ступеня доктора філософії за спеціальністю 104 Фізика та астрономія (Фізика конденсованого стану) / наук. керівник - д-р фіз.-мат. наук, проф. Р. М. Балабай ; Криворізький державний педагогічний університет. Кривий Ріг, 2023. 174 с. | uk |
dc.identifier.uri | http://elibrary.kdpu.edu.ua/xmlui/handle/123456789/7081 | - |
dc.identifier.uri | https://doi.org/10.31812/123456789/7081 | - |
dc.description | 1. R. M. Balabai, М. V. Naumenko, Methodology of converting of the coordinates of the basis atoms in a unit cell of crystalline β-Ga2О3, specified in a monoclinic crystallographic system, in the laboratory cartesian coordinates for computer applications, Photoelectronics 29 (2020) 12-22. http://photoelectronics.onu.edu.ua/issue/view/13698. 2. Nishant Singh Jamwal, and Amirkianoosh Kiani, Gallium Oxide Nanostructures: A Review of Synthesis, Properties and Applications, Nanomaterials 2022, 12(12), 2061; https://doi.org/10.3390/nano12122061. 3. Chen, X.; Ren, F.; Gu, S.; Ye, J. Review of gallium-oxide-based solarblind ultraviolet photodetectors. Photonics Res. 2019, 7, 381-415, https://doi.org/10.1364/PRJ.7.000381. 4. S. I. Stepanov, V. I. Nikolaev, V. E. Bourgov, A. E. Romanov, Gallium Oxide: properties and applications – a review, Rev. Adv. Mater. Sci. 44 (2016) 63- 86 5. Z. Galazka, β-Ga2O3 for wide-bandgap electronics and optoelectronics, Semicond. Sci. Technol. 33 (11) (2018) 113001, https://doi.org/10.1088/1361- 6641/aadf78. 6. J. Park, R. McClintock, M. Razeghi, Ga2O3 metal-oxide-semiconductor field effect transistors on sapphire substrate by MOCVD, Semicond. Sci. Technol. 34 (8) (2019) 08LT01, https://doi.org/10.1088/1361-6641/ab2c17. 7. Z. Y. Hu, K. Nomoto, W. S. Li, N. Tanen, K. Sasaki, A. Kuramata, T. Nakamura, D. Jena, H. G. Xing, Enhancement-Mode Ga2O3 vertical transistors with breakdown voltage >1 kV, IЕЕЕ Electr. Device L 39 (6) (2018) 869, https://doi.org/ 10.1109/LED.2018.2830184. 8. Z. Y. Hu, K. Nomoto, W. S. Li, L. J. Zhang, J. H. Shin, N. Tanen, T. Nakamura, D. Jena, H. G. Xing, Demonstration of Ga2O3 trench MOS-type Schottky barrier diodes, IEEE 75th Annual Device Research Conf. (Drc) 1-2 (2017) 17082338, https://doi.org/ 10.1109/D RC.2017.7999399. 9. J. C. Yang, F. Ren, M. Tadjer, S. J. Pearton, A. Kuramata, 2300V Reverse Breakdown Voltage Ga2O3 Schottky Rectifiers, Ecs. J. Solid State Scі. 7 (5) (2018) Q92, https://doi.org/10.1149/2.0241805jss. 10. S. Rafique, L. Han, and H. P. Zhao, Thermal annealing effect on βGa2O3 thin film solar blind photodetector heteroepitaxially grown on sapphire substrate, Phys Status Solidi A 214 (8) (2017) 1700063, https://doi.org/10.1002/pssa.201700063. 11. S. J. Pearton, Ren Fan, Tadjer Marko, Kim Jihyun, Perspective: Ga2O3 for ultra-high power rectifiers and MOSFETS, J. Appl. Phys. 124 (22) (2018) 220901, https://doi.org/10.1063/1.5062841. 12. H. Murakami, K. Nomura, K. Goto, K. Sasaki, K. Kawara, Q. T. Thieu, R. Togashi, Y. Kumagai, M. Higashiwaki, A. Kuramata, S. Yamakoshi, B. Monemar, A. Koukitu, Homoepitaxial growth of β-Ga2O3 layers by halide vapor phase epitaxy, Appl Phys Express 8 (1) (2015) 015503, https://doi.org/10.7567/APEX.8. 015503. 13. B. Kucukgok, D. J. Mandia, J. H. Leach, K. R. Evans, J. A. Eastman, H. Zhou, J. Hryn, J. W. Elam, A. Yanguas-Gil, Optical and structural properties of Si doped β-Ga2O3 (010) thin films homoepitaxially grown by halide vapor phase epitaxy, arXiv: Applied Physics (2019) https://doi.org/10.48550/arXiv.1906.09306. 14. T. Oishi, K. Harada, Y. Koga, M. Kasu, Conduction mechanism in highly doped β-Ga2O3 (201) single crystals grown by edge-defined film-fed growth method and their Schottky barrier diodes, Jpn. J. Appl. Phys. 55 (3) (2016) 030305, https://doi.org/10.7567/jjap.55.030305. 15. A. T. Neal, S. Mou, S. Rafique, H. Zhao, E. Ahmadi, J. S. Speck, K. T. Stevens, J. D. Blevins, D. B. Thomson, N. Moser, K. D. Chabak, G. H. Jessen, Donors and deep acceptors in β-Ga2O3, Appl. Phys. Lett. 113 (6), (2018) 062101, https://doi.org/ 10.1063/1.5034474. 16. K. Ghosh, U. Singisetti, Impact ionization in β-Ga2O3, J. Appl. Phys. 124 (8) (2018) 085707, https://doi.org/10.1063/1.5034120. 17. M. Higashiwaki, β-Ga2O3 material properties, growth technologies, and devices: a review, AAPPS Bull. 32 (2022) 3, https://doi.org/10.1007/s43673-021- 00033-0. 18. R. Roy, V. G. Hill, E. F. Osborn, Polymorphism of Ga2O3 and the system Ga2O3-H2O, J. Am. Chem. Soc. 74 (3) (1952) 719-722, https://doi.org/10.1021/ja01123a039. 19. H. Aida, К. Nishiguchi, Н. Takeda, N. Aota, K. Sunakawa. Y. Yaguchi, Growth of β-Ga2O3 single crystals by the edge-defined, film fed growth method, Japanese Journal of Applied Physics 47 (11R) (2008) 8506-8509, https://doi.org/10.1143/JJAP.47.8506. 20. S. Yoshioka, H. Hayashi, А. Kuwabara F. Oba, K. Matsunaga, I. Tanaka, Structures and energetics of Ga2O3 polymorphs, Journal of Physics: Condensed Matter. 19 (34) (2007) 346211, https://doi.org/10.1088/0953-8984/19/34/346211. 21. Geller, S. Crystal structure of β-Ga2O3, J. Chem. Phys. 33 (1960) 676- 684, https://doi.org/10.1063/1.1731237. 22. C. Cocchi, Н. Zschiesche, D. Nabok, А. Mogilatenko, М. Albrecht, Z. Galazka, Н. Kirmse, С. Draxl, С. Т. Koch, Atomic signatures of local environment from core-level spectroscopy in β-Ga2O3, Phys. Rev. B 94 (2016) 075147, https://doi.org/10.1103/PhysRevB.94.075147. 23. J. Ahman, G. Svensson, J. Albertsson, A reinvestigation of β-gallium oxide, Acta Cryst. C52 (1996) 1336, https://doi.org/10.1107/S0108270195016404. 24. D. Guo, Q. Guo, Z. Chen, Z. Wu, P. Li, W. Tang, Review of Ga2O3- based optoelectronic devices, Mater. Today Phys. 11 (2019) 100157, https://doi.org/10.1016/j.mtphys.2019.100157. 25. B. Anam, N. Gaston, Structural, thermal, and electronic properties of two-dimensional gallium oxide (β-Ga2O3) from first-principles design Chem. Phys. Chem. 22 (22) (2021) 2362-2370, https://doi.org/10.1002/cphc.202100267. 26. X. Luo, J. Yang, H. Liu, X. Wu, Y. Wang, Y. Ma, S.-H. Wei, X. Gong and H. Xiang, J. Am. Chem. Soc. 133 (2011) 16285-16290, https://doi.org/10.1021/ja2072753. 27. Y. Wang, M. Miao, J. Lv, L. Zhu, K. Yin, H. Liu, Y. Ma, An effective structure prediction method for layered materials based on 2D particle swarm optimization algorithm, J. Chem. Phys. 137 (2012) 224108, https://doi.org/10.1063/1.4769731. 28. F. Peng, M. Miao, H. Wang, Q. Li, Y. Ma, Predicted Lithium-Boron Compounds under High Pressure, J. Am. Chem. Soc. 134 (2012) 18599-18605, https://doi.org/10.1021/ja308490a. 29. B. A. Khalil, N. Gaston, Two-dimensional aluminium, gallium, and indium metallic crystals by first-principles design, J. Phys.: Condens. Matter. 33 (2021) 125901, https://doi.org/10.1088/1361-648X/abd3d9. 30. T. Onuma, S. Saito, K. Sasaki, K. Goto, T. Masui, T. Yamaguchi, T. Honda, A. Kuramata, M. Higashiwaki, Temperature-dependent exciton resonance energies and their correlation with IR-active optical phonon modes in β-Ga2O3 single crystals, Appl. Phys. Lett. 108 (10) (2016) 101904, https://doi.org/10.1063/1.4943175. 31. В. Tattersfield, First-principles investigation of doping and alloying of βGa2O3, McKelvey School of Engineering Theses & Dissertations (2020) 558, https://openscholarship.wustl.edu/eng_etds/558. 32. A. H. Burachenko, D. V. Biloplotov, I. A. Prudaiev, D.A. Sorokyn, V.F. Tarasenko, O. P. Tolbanov, Liuminestsentsiia krystaliv Ga2O3 pry zbudzhenni puchkom elektroniv, shcho vtikaiut, Optyka i spektroskopiia 123 (6) (2017) 861- 865, https://doi.org/10.7868/S0030403417110046. 33. V. I. Oleshko, V. F. Tarasenko, D. V. Biloplotov, S. S. Vilchynska, Spektralno-kinetychni zakonomirnosti svitinnia krystaliv Ga2O3 pry zbudzhenni puchkom elektroniv nanosekundnoi ta subnanosekundnoi diialnosti, Optyka ta spektroskopiia, 125 (5) (2018) 595-599, https://doi.org/10.21883/OS.2018. 11.46816.118-18. 34. B. M. Afanasiev, V. B. Bychkov, V. D. Lartsev V. P. Pudov, V. I. Solomonov, S. A. Shunailov, V. V. Heneralov, A. A. Hromov, Parametry elektronnykh puchkiv, shcho heneruiutsia pryskoriuvachamy RADAN-220 ta RADAN-EKSPERT, PTE 5 (2005) 88-92, https://elibrary.ru/item.asp?id=9156257. 35. Ye. Kh. Baksht, M. V. Yerofieiev, V. F. Tarasenko, V. I. Oleshko, Spektralni ta amplitudno-chasovi kharakterystyky vyprominiuvannia Cherenkova pry enerhiiakh elektroniv u sotni keV, Tomsk: STT (2020) 180 s. (Seriia «Vyprominiuvannia. Puchky. Plazma», Vyp. 4), https://earchive.tpu.ru/bitstream/11683/64319/1/m-2020-m39.pdf. 36. P. Vogt, O. Bierwagen, Reaction kinetics and growth window for plasma-assisted molecular beam epitaxy of Ga2O3: incorporation of Ga vs. Ga2O desorption, Appl. Phys. Lett. 108 (7) (2016) 072101, https://doi.org/10.1063/1.4942002. 37. K. Sasaki, A. Kuramata, T. Masui, E. G. Villora, K. Shimamura, S. Yamakoshi, Device-quality β-Ga2O3 epitaxial films fabricated by ozone molecular beam epitaxy, Appl. Phys. Express. 5 (3) (2012) 035502, https://doi.org/10.1143/APEX.5.035502. 38. E. Ahmadi, O. S. Koksaldi, S. W. Kaun, Y. Oshima, D. B. Short, U. K. Mishra, J. S. Speck, Ge doping of β-Ga2O3 films grown by plasma-assisted molecular beam epitaxy, Appl. Phys. Express. 10 (4) (2017) 041102, https://doi.org/10.7567/APEX.10.041102. 39. N. K. Kalarickal, Z. Xia, J. McGlone, S. Krishnamoorthy, W. Moore, M. Brenner, A. R. Arehart, S. A. Ringel, S. Rajan, Mechanism of Si doping in plasma assisted MBE growth of β-Ga2O3, Appl. Phys. Lett. 115 (15) (2019) 152106, https://doi.org/10.1063/1.5123149. 40. A. Mauze, Y. Zhang, T. Itoh, E. Ahmadi, J. S. Speck, Sn doping of (010) β-Ga2O3 films grown by plasma-assisted molecular beam epitaxy. Appl. Phys. Lett. 117 (22) (2020) 222102, https://doi.org/10.1063/5.0027870. 41. W. Mi, X. J. Du, C. N. Luan, H. D. Xiao, J. Ma, Electrical and optical characterizations of β-Ga2O3:Sn films deposited on MgO (110) substrate by MOCVD, Rsc. Adv. 4 (58) (2014) 30579, https://doi.org/10.1039/C4RA02479F. 42. Y. Peng, N. S. Yu, Y. Xiang, J. Liu, L. W. Cao, S. Y. Huang, One-step hydrothemal synthesis of nitrogen doped β-Ga2O3 nanostructure and its optical Properties, J. Nanosci. Nanotechno 18 (8) (2018) 5654, https://doi.org/10.1166/ jnn.2018.15376. 43. L. Yuan, H. P. Zhang, R. X. Jia, L. X. Guo, Y. Zhang, Y. Zhang, Appl. Surf. Sci. 433 (2018), 530, https://doi.org/10.1016/j.apsusc.2017.10.075. 44. A. Jayawardena, R. P. Ramamurthy, A. C. Ahyi, D. Morisette, S. Dhar, Interface trapping in (201) β-Ga2O3 MOS capacitors with deposited dielectrics, Appl. Phys. Lett. 112 (19) (2018) 192108, https://doi.org/10.1063/1.5019270. 45. M. A. Bhuiyan, H. Zhou, R. Jiang, E. X. Zhang, D. M. Fleetwood, P. D. Ye, T. P. Ma, Еffect of Аl2О3 passivation on electrical properties of β-Ga2O3 FET, IEEE Electr. Device Lett. 39 (7) (2018) 1022-1025, https://doi.org/10.1109/LED.2018.2841899. 46. H. Dong, W. X. Mu, Y. Hu, Q. M. He, B. Fu, H. W. Xue, Y. Qin, G. Z. Jian, Y. Zhang, S. B. Long, Z. T. Jia, H. B. Lv, Q. Liu, X. T. Tao, M. Liu, C-V and J-V investigation of HfO2/Al2O3 bilayer dielectrics MOSCAPs on (100) β-Ga2O3, AІР Adv. 8 (6) (2018) 065215, https://doi.org/10.1063/1.5031183. 47. H. Zhang, R. Jia, Y. Lei, X. Tang, Y. Zhang, Y. Zhang, Leakage current conduction mechanisms and electrical properties of atomic-layer-deposited HfO2/Ga2O3 MOS capacitors J. Phys. D: Appl. Phys. 51 (7) (2018) 075104, https://doi.org/10.1088/1361-6463/aaa60d. 48. S. J. Pearton, J. C. Yang, P. H. Cary, F. Ren, J. Kim, M. J. Tadjer, M. A. Mastro, A review of Ga2O3 materials, processing, and devices, Appl. Phys. Rev. 5 (1) (2018) 011301, https://doi.org/10.1063/1.5006941. 49. D. I. Shahin, M. J. Tadjer, V. D. Wheeler, A. D. Koehler, T. J. Anderson, C. R. Eddy, A. Christou, Electrical characterization of ALD HfO2 high-k dielectrics on (201) β-Ga2O3, Appl. Phys. Lett. 112 (4) (2018) 042107, https://doi.org/10.1063/1.5006276. 50. X. J. Du, Z. Li, C. N. Luan, W. G. Wang, M. X. Wang, X. J. Feng, H. D. Xiao, J. Ma, Preparation and characterization of Sn-doped β-Ga2O3 homoepitaxial films by MOCVD, J. Mater. Sci. 50 (8), 3252 (2015), https://doi.org/10.1007/s10853-015-8893-4. 51. H. Okumura, M. Kita, K. Sasaki, A. Kuramata, M. Higashiwaki, J. S. Speck, Systematic investigation of the growth rate of β-Ga2O3 (010) by plasmaassisted molecular beam epitaxy, Appl. Phys. Express 7 (9) (2014) 095501, https://doi.org/10.7567/APEX.7.095501. 52. S. Lee, K. Kaneko, S. Fujita, Homoepitaxial growth of beta gallium oxide films by mist chemical vapor deposition, Jpn. J. Appl. Phys. 55 (12) (2016) 1202B8, https://doi.org/10.7567/JJAP.55.1202B8. 53. M. Baldini, M. Albrecht, A. Fiedler, K. Irmscher, R. Schewski, G. Wagner, Choice-Si- and Sn-Doped Homoepitaxial β-Ga2O3 Layers Grown by MOVPE on (010)-oriented substrates, Ecs J. Solid State Sc. 6 (2) (2017) Q3040- Q3044, https://doi.org/10.1149/2.0081702jss. 54. M. Baldini, M. Albrecht, A. Fiedler, K. Irmscher, D. Klimm, R. Schewski, G. Wagner, Semiconducting Sn-doped β-Ga2O3 homoepitaxial layers grown by metal organic vapour-phase epitaxy, J. Mater. Sci 51 (7) (2016) 3650, https://doi.org/10.1007/s10853-015-9693-6. 55. D. Gogova, M. Schmidbauer, A. Kwasniewski, Homo- and heteroepitaxial growth of Sn-doped β-Ga2O3 layers by MOVPE, Crystengcomm 17 (35) (2015) 6744, https://doi.org/10.1039/C5CE01106J. 56. M. Orita, H. Ohta, M. Hirano, H. Hosono, Deep-ultraviolet transparent conductive β-Ga2O3 thin films, Appl. Phys. Lett. 77 (25) (2000) 4166, https://doi.org/10.1063/1.1330559. 57. M. Singh, M. A. Casbon, M. J. Uren, J. W. Pomeroy, S. Dalcanale, S. Karboyan, P. J. Tasker, M. H. Wong, K. Sasaki, A. Kuramata, S. Yamakoshi, M. Higashiwaki, M. Kuball. Pulsed large signal RF performance of field-plated Ga2O3 MOSFETs, IEEE Electron Device Lett. 39 (2018) 1572, https://doi.org/10.1109/LED.2018.2865832. 58. A. K. Singh, M. Gupta, V. Sathe, Y. S. Katharria, Effect of annealing temperature on β-Ga2O3 thin films deposited by RF sputtering method, Superlattices Microstruct., 156 (2021) 106976, https://doi.org/10.1016/j.spmi.2021.106976. 59. M. K. Yadav, A. Mondal, S. Das, S. K. Sharma, A. Bag, Impact of annealing temperature on band-alignment of PLD grown Ga2O3/Si (100) heterointerface, J. Alloys. Compd. 819 (2020) 153052, https://doi.org/10.1016/j.jallcom.2019.153052. 60. H. Shen, K. Baskaran, Y. Yin, K. Tian, L. Duan, X. Zhao, А. Tiwari, Effect of thickness on the performance of solar blind photodetectors fabricated using PLD grown β-Ga2O3 thin films, J. Alloys. Compd. 822 (2020) 153419, https://doi.org/10.1016/j.jallcom.2019.153419. 61. Z. Li, T. Jiao, J. Yu, D. Hu, Y. Lv, W. Li, X. Dong, B. Zhang, Y. Zhang, Z. Feng, G. Li, G. Du, Single crystalline β-Ga2O3 homoepitaxial films grown by MOCVD, Vacuum 178 (2020) 109440, https://doi.org/10.1016/ j.vacuum.2020.109440. 62. Q. Cao, L. He, H. Xiao, X. Feng, Y. Lv, J. Ma, β-Ga2O3 epitaxial films deposited on Epi-GaN/sapphire (0001) substrates by MOCVD, Mater. Sci. Semicond. Process 77 (2018) 58, https://doi.org/10.1016/j.mssp.2018.01.010. 63. C. Dezelah, J. Niinistö, K. Arstila, L. Niinistö, C. H. Winter, Atomic layer deposition of Ga2O3 films from a dialkylamido-based precursor, Chem. Mater. 18 (2006) 471, https://doi.org/10.1021/cm0521424. 64. S. H. Lee, K. M. Lee, S. W. Lee, Influences of process temperature on a phase of Ga2O3 thin films grown by atomic layer deposition on sapphire. Bull. Korean Chem. Soc.41 (2020) 1190, https://doi.org/10.1002/bkcs.12135. 65. D. Hiller, J. Julin, A. Chnani, S. Strehle, Silicon surface passivation by ALD-Ga2O3: thermal vs. plasma-enhanced atomic layer deposition, IEEE J. Photovolt. 10 (2020) 959, https://doi.org/10.1109/JPHOTOV.2020.2989201. 66. K. Sasaki, M. Higashiwaki, A. Kuramata, T. Masui, S. Yamakoshi, MBE Grown Ga2O3 and its power device applications, J. Cryst. Growth 378 (2013) 591, https://doi.org/10.1016/j.jcrysgro.2013.02.01. 67. A. S. Pratiyush, Z. Xia, S. Kumar, Y. Zhang, C. Joishi, R. Muralidharan, S. Rajan, D. N. Nath, MBE-grown β-Ga2O3-based Schottky UV-C photodetectors with rectification ratio ~107. IEEE Photonics Technol. Lett. 30 (2018) 2025, https://doi.org/10.1109/LPT.2018.2874725. 68. Y. Yang, X.-Y. Zhang, C. Wang, F.-B. Ren, R.-F. Zhu, C.-H. Hsu, W.- Y. Wu, М. Wuu, P. Gao, Y.-J. Ruan, S.-Y. Lien, W.-Z. Zhu, Compact Ga2O3 thin films deposited by plasma enhanced atomic layer deposition at low temperature, Nanomaterials 12 (2022) 1510, https://doi.org/10.3390/nano12091510. 69. D. Choi, K.-B. Chung, J.-S. Park, Low temperature Ga2O3 atomic layer deposition using gallium tri-isopropoxide and water. thin solid films 546 (2013) 31, https://doi.org/10.1016/j.tsf.2013.03.066. 70. X.-Y. Zhang, Y. Yang, Z.-X. Zhang, X.-P. Geng, C.-H. Hsu, W.-Y. Wu, S.-Y. Lien, W.-Z. Zhu, Deposition and characterization of RP-ALD SiO2 thin films with different oxygen plasma powers, Nanomaterials 11 (5) (2021) 1173, https://doi.org/10.3390/nano11051173. 71. C.-H. Hsu, Z.-X. Zhang, P.-H. Huang, W.-Y. Wu, S.-L. Ou, S.-Y. Lien, C.-J. Huang, M.-K. Lee, W.-Z. Zhu, Effect of plasma power on the structural properties of tin oxide prepared by plasma-enhanced atomic layer deposition, Ceram. Int. 47 (2021) 8634-8641, https://doi.org/10.1016/j.ceramint.2020.11.232. 72. H. Y. He, M. A. Blanco, R. Pandey, Electronic and thermodynamic properties of β-Ga2O3, Appl. Phys. Lett. 88 (2006) 3, https://doi.org/10.1063/1.2218046. 73. K. Yamaguchi, First principles study on electronic structure of β-Ga2O3, Solid State Commun. 131 (2004) 739-744, https://doi.org/10.1016/j.ssc.2004.07.030. 74. C. Li, J. L. Yan, L. Y. Zhang, G. Zhao, Electronic structures and optical properties of Zn-doped β-Ga2O3 with different doping sites, Chin. Phys. B 21 (2012) 6, https://doi.org/10.1088/1674-1056/21/12/127104. 75. L. K. Ping, M. A. Mohamed, A. K. Mondal, M. F. M. Taib, M. H. Samat, D. D. Berhanuddin, P. S. Menon, R. Bahru, First-principles studies for electronic structure and optical properties of strontium doped β-Ga2O3, Мcromachines 12 (2021) 16, https://doi.org/10.3390/mi12040348. 76. Y. Zhao, J. Yan, First-principles study of n-type tin/fluorine codoped beta-gallium oxides, J. Semicond. 36 (2015) 82004, https://doi.org/10.1088/1674- 4926/36/8/082004. 77. L. Y. Zhang, J. L. Yan, Y. J. Zhang, T. Li, X. W. Ding, First-principles study on electronic structure and optical properties of N-doped p-type β-Ga2O3, Sci. China-Phys. Mech. Astron. 55 (2012) 19-24, https://doi.org/10.1007/s11433- 011-4582-8. 78. Y. J. Zhang, J. L. Yan, G. Zhao, W. F. Xie, First-principles study on electronic structure and optical properties of Sn-doped β-Ga2O3, Phys. B-Condens. Matter. 405 (2010) 3899-3903, https://doi.org/10.1016/j.physb.2010.06.024. 79. J. Furthmuller, F. Bechstedt, Quasiparticle bands and spectra of Ga2O3 polymorphs, Phys. Rev. B 93 (2016) 16, https://doi.org/10.1103/ PhysRevB.93.115204. 80. L. P. Dong, R. X. Jia, B. Xin, B. Peng, Y. M. Zhang, Effects of oxygen vacancies on the structural and optical properties of β-Ga2O3, Sci. Rep. 7 (2017) 12, https://doi.org/10.1038/srep40160. 81. X. F. Ma, Y. M. Zhang, L. P. Dong, R. X. Jia, First-principles calculations of electronic and optical properties of aluminum-doped β-Ga2O3 with intrinsic defects, Results Phys. 7 (2017) 1582-1589, https://doi.org/10.1016/j.rinp.2017.04.023. 82. H. Y. He, R. Orlando, M. A. Blanco, R. Pandey, E. Amzallag, I. Baraille, M. Rerat, First-principles study of the structural,electronic, and optical properties of Ga2O3 in its monoclinic and hexagonal phases, Phys. Rev. B 74 (2006) 195123, https://doi.org/10.1103/PhysRevB.74.195123. 83. H. Peelaers, C. G. Van de Walle, Brillouin zone and band structure of βGa2O3, Phys. Status Solidi B-Basic Solid State Phys. 252 (2015) 828-832, https://doi.org/10.1002/pssb.201451551. 84. A. Navarro-Quezada, S. Alamé, N. Esser, J. Furthmüller, F. Bechstedt, Z. Galazka, D. Skuridina, P. Vogt, Near valence-band electronic properties of semiconducting β-Ga2O3 (100) single crystals, Phys. Rev. B 92 (2015) 195306, https://doi.org/10.1103/PhysRevB.92.195306. 85. J. B. Varley, J. R. Weber, A. Janotti, C. G. Van de Walle, Oxygen vacancies and donor impurities in β-Ga2O3, Appl. Phys. Lett. 97 (2010) 142106, https://doi.org/ 10.1063/1.3499306. 86. Y. Zhang, A. Neal, Z. Xia, C. Joishi, J. M. Johnson, Y. Zheng, S. Bajaj, M. Brenner, D. Dorsey, K. Chabak, G. Jessen, J. Hwang, S. Mou, J. P. Heremans, S. Rajan, Demonstration of high mobility and quantum transport in modulationdoped β-(AlxGa1−x)2O3/Ga2O3 heterostructures, Appl. Phys. Lett. 112 (17) (2018) 173502, https://doi.org/10.1063/1.5025704. 87. T. Onuma, S. Saito, K. Sasaki, T. Masui, T. Yamaguchi, T. Honda, M. Higashiwaki, Valence band ordering in β-Ga2O3 studied by polarized transmittance and reflectance spectroscopy, Jpn. J. Appl. Phys. 54 (11) (2015) 112601, https://doi.org/10.7567/JJAP.54.112601. 88. T. Zacherle, P. C. Schmidt, М. Martin, Ab-initio calculations on the defect structure of β-Ga2O3, Physical review B 87 (2013) 235206, https://doi.org/10.1103/ PhysRevB.87.235206. 89. J. L. Lyons, A survey of acceptor dopants for β-Ga2O3, Semiconductor Science and Technology 33 (5) (2018) 05LT02 https://doi.org/10.1088/1361- 6641/aaba98. 90. A. Kyrtsos, M. Matsubara, E. Bellotti, On the feasibility of p-type Ga2O3, Appl. Phys. Lett., 112 (2018) 032108, https://doi.org/10.1063/1.5009423. 91. K. A. Mengle, G. S. Shi, D. Bayerl, E. Kioupakis, First-principles calculations of the near-edge optical properties of β-Ga2O3, Appl. Phys. Lett., 109 (2016) 212104, https://doi.org/10.1063/1.4968822. 92. А. Mock, R. Korlacki, C. Briley, V. Darakchieva, B. Monemar, Y. Kumagai, K. Goto, M. Higashiwaki, M. Schubert, Band-to-band transitions, selection rules, effective mass and exciton binding energy parameters in monoclinic β-Ga2O3, Phys. Rev. B, 96 (2017) 245205, https://doi.org/10.1103/PhysRevB.96.245205. 93. C. Q. Zhang, F. Liao, X. Liang, H. X. Gong, Q. Liu, L. Li, X. F. Qin, X. Huang, C. J. Huang, Electronic transport properties in metal doped beta-Ga2O3: a first principles study, Phys. B 562 (2019) 124, https://doi.org/10.1016/j.physb.2019.03.004. 94. Q. D. Ho, T. Frauenheim, P. Deák, Theoretical confirmation of the polaron model for the Mg acceptor in β-Ga2O3, J. Appl. Phys., 124 (2018) 145702, https://doi.org/10.1063/1.5049861. 95. X. F. Cai, F. P. Sabino, A. Janotti, S. H. Wei, Approach to achieving a ptype transparent conducting oxide: doping of bismuth-alloyed Ga2O3 with a strongly correlated band edge state, Phys. Rev. B, 103 (2021) 115205, https://doi.org/10.1103/PhysRevB.103.115205. 96. T. Gake, Y. Kumagai, F. Oba, First-principles study of self-trapped holes and acceptor impurities in Ga2O3 polymorphs, Phys. Rev. Mater., 3 (2019) 044603, https://doi.org/10.1103/PhysRevMaterials.3.044603. 97. H. Peelaers, J. L. Lyons, J. B. Varley, C. G. Van de Walle, Deep acceptors and their diffusion in Ga2O3, APL Mater., 7 (2019) 022519, https://doi.org/10.1063/1.5063807. 98. J. N. Ma, J. Y. Lin, J. Y. Liu, F. Li, Y. C. Liu, G. C. Yang, Achieving high conductivity p-type Ga2O3 through Al-N and In-N co-doping, Chem. Phys. Lett. 746 (2020) 137308, https://doi.org/10.1016/j.cplett.2020.137308. 99. L. Dong, R. X. Jia, C. Li, B. Xin, Y. M. Zhang, Ab initio study of Ndoped β-Ga2O3 with intrinsic defects: the structural, electronic and optical properties, J. Alloys Compd., 712 (2017) 379, https://doi.org/10.1016/j.jallcom.2017.04.020. 100. L. Li, F. Liao, X. T. Hu, The possibility of n-p codoping to realize рtype β-Ga2O3, Superlattices Microstruct., 2020, 141, 106502, https://doi.org/10.1016/j.spmi.2020. 106502. 101. C. Ma, Z. Wu, Z. Jiang, Y. Chen, W. Ruan, H. Zhang, H. Zhu, G. Zhang, J. Kang, T.-Y. Zhang, J. Chub, Z. Fang, Exploring the feasibility and conduction mechanisms of p-type nitrogen-doped β-Ga2O3 with high hole mobility, J. Mater. Chem. C, 10 (2022) 6673-6681, https://doi.org/10.1039/d1tc05324h. 102. H. He, R. Orlando, M. A. Blanco, R. Pandey, E. Amzallag, I. Baraille, M. Rérat, First-principles study of the structural, electronic, and optical properties of Ga2O3 in its monoclinic and hexagonal phases, Phys. Rev. B. 74 (2006) 195123, https://doi.org/ 10.1103/PhysRevB.74.195123. 103. J. B. Varley, A. Janotti, C. Franchini, C. G. Van de Walle, Role of selftrapping in luminescence and p-type conductivity of wide-band-gap oxides, Phys. Rev. B. 85 (8) (2012) 081109, https://doi.org/10.1103/PhysRevB.85.081109. 104. P. Deak, Q. Duy Ho, F. Seemann, B. Aradi, M. Lorke, T. Frauenheim, Choosing the correct hybrid for defect calculations: a case study on intrinsic carrier trapping in β-Ga2O3, Phys. Rev. B. 95 (7) (2017) 075208, https://doi.org/10.1103/ PhysRevB.95.075208. 105. Y. Li, A. Trinchi, W. Wlodarski, K. Galatsis, K. Kalantar-zadeh, Investigation of the oxygen gas sensing performance of Ga2O3 thin films with different dopants, https://doi.org/10.1016/S0925-4005(03)00171-0. 106. N. Ueda, H. Hosono, R. Waseda, H. Kawazoe, Synthesis and control of conductivity of ultraviolet transmitting β-Ga2O3 single crystals, Appl. Phys. Lett. 70 (1997) 3561, https://doi.org/10.1063/1.119233. 107. M. Passlack, N. E. J. Hunt, E. F. Schubert, G. J. Zydzik, M. Hong, J. P. Mannaerts, R. L. Opila, R. J. Fischer, Dielectric properties of electron‐beam deposited Ga2O3 films, Appl. Phys. Lett. 64 (1994) 2715, https://doi.org/10.1063/1.111452. 108. S. Müller, H. von Wenckstern, D. Splith, F. Schmidt, M. Grundmann, Control of the conductivity of Si-doped β-Ga2O3 thin films via growth temperature and pressure, Phys. Status Solidi A 211 (2014) 34, https://doi.org/10.1002/pssa.201330025. 109. Е. Aubay, D. Gourier, Magnetic bistability and Overhauser shift of conduction electrons in gallium oxide, Phys. Rev. B 47 (1993) 15023, https://doi.org/10.1103/ PhysRevB.47.15023. 110. L. L. Liu, M. K. Li, D. Q. Yu, J. Zhang, H. Zhang, C. Qian, Z. Yang, Fabrication and characteristics of N-doped β-Ga2O3 nanowires, Appl. Phys. A 98 (2010) 831, https://doi.org/10.1007/s00339-009-5538-y. 111. Q. Feng, J. Liu, Y. Yang, D. Pan, Y. Xing, X. Shi, X. Xia, H. Liang, Catalytic growth and characterization of single crystalline Zn doped p-type βGa2O3 nanowires, J. Alloys Compd. 687 (2016) 964-968, https://doi.org/10.1016/j.jallcom.2016.06.274. 112. M. K. Hudait, P. Modak, S. Hardikar, S. B. Krupanidhi, Zn incorporation and band gap shrinkage in 𝑝-type GaAs, J. Appl. Phys. 82 (1997) 4931, https://doi.org/ 10.1063/1.366359. 113. G. J. van Gurp, T. van Dongen, G. M. Fontijn, J. M. Jacobs, D. L. A. Tjaden, Interstitial and substitutional Zn in InP and InGaAsP, J. Appl. Phys. 65, 553 (1989), http://doi.org/10.1063/1.343140. 114. S. S. Pan, G. H. Li, L. B. Wang, Y. D. Shen, Y. Wang, T. Mei, X. Hu, Surface localized exciton emission from undoped SnO2 nanocrystal films, Appl. Phys. Lett. 95 (2009) 222112, https://doi.org/10.1063/1.3524196. 115. P. Hohenberg, W. Kohn, Inhomogeneous Electron Gas, Phys. Rev. 136 (1964) B864, https://doi.org/10.1103/PhysRev.136.B864. 116. W. Kohn, L. J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. 140 (1965) A1133, https://doi.org/10.1103/ PhysRev.140.A1133. 117. P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50 (1994) 17953, https://doi.org/10.1103/PhysRevB.50.17953. 118. G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59 (1999) 1758, https://doi.org/10.1103/ PhysRevB.59.1758. 119. G. Kresse, J. Furthmuller, Efficient iterative schemes for ab initio totalenergy calculations using a plane-wave basis set, Phys. Rev. B 54 (1996) 11169, https://doi.org/10.1103/PhysRevB.54.11169. 120. J. P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (1996) 3865, https://doi.org/10.1103/PhysRevLett.77.3865. 121. J. Heyd, G. E. Scuseria, M. Ernzerhof, Hybrid functionals based on a screened Coulomb potential, J. Chem. Phys. 118 (2003) 8207, https://doi.org/10.1063/1.1564060. 122. J. Heyd, G. E. Scuseria, M. Ernzerhof, Erratum: “Hybrid functionals based on a screened Coulomb potential” J. Chem. Phys. 124 (2006) 219906, https://doi.org/10.1063/1.2204597. 123. A. Kyrtsos, M. Matsubara, E. Bellotti, Migration mechanisms and diffusion barriers of vacancies in Ga2O3, Phys. Rev. B 95 (2017) 245202, https://doi.org/10.1103/PhysRevB.95.245202. 124. S. Lany, A. Zunger, Polaronic hole localization and multiple hole binding of acceptors in oxide wide-gap semiconductors, Phys. Rev. B 80 (2009) 085202, https://doi.org/10.1103/PhysRevB.80.085202. 125. D. O. Scanlon, G. W. Watson, On the possibility of p-type SnO2, J. Mater. Chem. 22 (2012) 25236, https://doi.org/10.1039/C2JM34352E. 126. K. H. L. Zhang, K. Xi, M. G. Blamire, R. G. Egdell, P-type transparent conducting oxides, J. Phys.: Condens. Matter 28 (2012) 383002, https://doi.org/10.1088/0953-8984/28/38/383002. 127. J. Robertson, S. J. Clark, Limits to doping in oxides, Phys. Rev. B 83 (2011) 075205, https://doi.org/10.1103/PhysRevB.83.075205. 128. T. Minami, T. Miyata, T. Yamamoto, Work function of transparent conducting multicomponent oxide thin films prepared by magnetron sputtering, Surf. Coat. Technol., 108 (1998) 583, https://doi.org/10.1016/S0257- 8972(98)00592-1. 129. J. Robertson, B. Falabretti, in Handbook of Transparent Conductors, edited by D. Ginley, H. Hosono, D. C. Paine (Springer, New York, 2011), Chap. 2, pp. 27-50 130. Z. Galazka, K. Irmscher, R. Uecker, R. Bertram, M. Pietsch, A. Kwasniewski, M. Naumann, T. Schulz, R. Schewski, D. Klimm, M. Bickermann, On the bulk β-Ga2O3 single crystals grown by the Czochralski method, J. Cryst. Growth 404 (2014) 184, https://doi.org/10.1016/j.jcrysgro.2014.07.021. 131. M. H. Wong, K. Goto, Y. Morikawa, A. Kuramata, S. Yamakoshi, H. Murakami, Y. Kumagai, M. Higashiwaki, All-ion-implanted planar-gate current aperture vertical Ga2O3 MOSFETs with Mg-doped blocking layer, Appl. Phys. Express 11 (6) (2018) 064102, https://doi.org/10.7567/APEX.11.064102. 132. Feng, Z., Bhuiyan, A. F. M. A. U., Kalarickal, N. K., Rajan, S., & Zhao, H. (2020). Mg acceptor doping in MOCVD (010) β-Ga2O3, Applied Physics Letters 117 (22) (2020) 222106, https://doi.org/10.1063/5.0031562. 133. M. Higashiwaki, K. Sasaki, A. Kuramata, T. Masui, S. Yamakoshi, Gallium oxide (Ga2O3) metal-semiconductor field-effect transistors on singlecrystal β-Ga2O3 (010) substrates, Appl. Phys. Lett. 100 (2012) 013504, https://doi.org/10.1063/1.3674287. 134. M. Higashiwaki, K. Sasaki, T. Kamimura, M. H. Wong, D. Krishnamurthy, A. Kuramata, T. Masui, S. Yamakoshi, Depletion-mode Ga2O3 metal-oxide-semiconductor field-effect transistors on β-Ga2O3 (010) substrates and temperature dependence of their device characteristics, Appl. Phys. Lett. 103 (2013) 123511, https://doi.org/10.1063/1.4821858. 135. К. Konishi, K. Goto, H. Murakami, Y. Kumagai, A. Kuramata, S. Yamakoshi, M. Higashiwaki, 1-kV vertical Ga2O3 field-plated Schottky barrier diodes, Appl. Phys. Lett. 110 (2017) 103506, https://doi.org/10.1063/1.4977857. 136. J. Yang, S. Ahn, F. Ren, S. J. Pearton, S. Jang, A. Kuramata, High breakdown voltage (201) β-Ga2O3 schottky rectifiers, IEEE Electron Device Lett. 38 (2017) 906, https://doi.org/10.1109/LED.2017.2703609. 137. M. H. Wong, K. Sasaki, A. Kuramata, S. Yamakoshi, M. Higashiwaki, Field-plated Ga2O3 MOSFETs with a breakdown voltage of over 750 V, IEEE Electron Device Lett. 37 (2016) 212, https://doi.org/10.1109/LED.2015.2512279. 138. A. J. Green, K. D. Chabak, E. R. Heller, R. C. Fitch, M. Baldini, A. Fiedler, K. Irmscher, G. Wagner, Z. Galazka, S. E. Tetlak, A. Crespo, K. Leedy, G. H. Jessen, 3.8-MV/cm breakdown strength of MOVPE-grown Sn-doped β-Ga2O3 MOSFETs, IEEE Electron Device Lett. 37 (2016) 902-905, https://doi.org/10.1109/LED.2016.2568139. 139. H. Zhou, M. Si, S. Alghamadi, G. Qiu, L. Yang, P. D. Ye, Highperformance depletion/enhancement-ode β-Ga2O3 on insulator (gooi) field-effect transistors with record drain currents of 600/450 mA/mm, IEEE Electron Device Lett. 38 (2017) 103-106, https://doi.org/10.1109/LED.2016.2635579. 140. H. Zhou, K. Maize, G. Qiu, A. Shakouri, P. D. Ye, β-Ga2O3 on insulator field-effect transistors with drain currents exceeding 1.5 A/mm and their self-heating effect, Appl. Phys. Lett. 111 (2017) 092102, https://doi.org/10.1063/1.5000735. 141. A. J. Green, K. D. Chabak, M. Baldini, N. Moser, R. Gilbert, R. C. Fitch, G. Wagner, Z. Galazka, J. McCandless, A. Crespo, K. Leedy, G. H. Jessen, β-Ga2O3 MOSFETs for radio frequency operation, IEEE Electron Device Lett. 38 (2017) 790, https://doi.org/10.1109/LED.2017.2694805. 142. J. Zhang, C. Xia, Q. Deng, W. Xu, H. Shi, F. Wu, J. Xu, Growth and characterization of new transparent conductive oxides single crystals β-Ga2O3: Sn, J. Phys. Chem. Solids 67 (2006) 1656, https://doi.org/10.1016/j.jpcs.2006.02.018. 143. N. Suzuki, S. Ohira, M. Tanaka, T. Sugawara, K. Nakajima, T. Shishido, Fabrication and characterization of transparent conductive Sn-doped βGa2O3 single crystal, Phys. Status Solidi C 4 (2007) 2310, https://doi.org/10.1002/pssc.200674884. 144. E. G. Vıllora, K. Shimamura, Y. Yoshikawa, T. Ujiie, K. Aoki, Electrical conductivity and lattice expansion of β-Ga2O3 below room temperature, Appl. Phys. Lett. 92 (2008) 202120, https://doi.org/10.1063/1.2910770. 145. A. Kuramata, K. Koshi, S. Watanabe, Y. Yamaoka, T. Masui, S. Yamakoshi, High-quality β-Ga2O3 single crystals grown by edge-defined film-fed growth, Jpn. J. Appl. Phys., Part 1 55, 1202A2 (2016), https://doi.org/10.7567/JJAP.55.1202A2. 146. D. Gogova, G. Wagner, M. Baldini, M. Schmidbauer, K. Irmscher, R. Schewski, Z. Galazka, Structural properties of Si-doped β-Ga2O3 layers grown by MOVPE, J. Cryst. Growth 401 (2014) 665, https://doi.org/10.1016/ j.jcrysgro.2013.11.056. 147. S. Rafique, L. Han, A. T. Neal, S. Mou, M. J. Tadjer, R. H. French, H. Zhao, Heteroepitaxy of n-type β-Ga2O3 thin films on sapphire substrate by low pressure chemical vapor deposition, Appl. Phys. Lett. 109 (2016) 132103, https://doi.org/10.1063/1.4963820. 148. M. Higashiwaki, K. Sasaki, K. Goto, K. Nomura, Q. T. Thieu, R. Togashi, H. Murakami, Y. Kumagai, B. Monemar, A. Koukitu, A. Kuramata, S. Yamakoshi, in 73rd Annual Device Research Conference (DRC), Columbus, Ohio, 21 June 2015, pp. 29-30. 149. M. Higashiwaki, K. Konishi, K. Sasaki, K. Goto, K. Nomura, Q. T. Thieu, R. Togashi, H. Murakami, Y. Kumagai, B. Monemar, A. Koukitu, A. Kuramata, S. Yamakoshi, Temperature-dependent capacitance-voltage and current–voltage characteristics of Pt/Ga2O3 (001) Schottky barrier diodes fabricated on n-Ga2O3 drift layers grown by halide vapor phase epitaxy, Appl. Phys. Lett. 108 (2016) 133503, https://doi.org/10.1063/1.4945267. 150. S. Krishnamoorthy, Z. Xia, S. Bajaj, M. Brenner, S. Rajan, Delta-doped β-gallium oxide field-effect transistor, Appl. Phys. Express 10 (2017) 051102, https://doi.org/10.7567/APEX.10.051102. 151. A. Parisini, R. Fornari, Analysis of the scattering mechanisms controlling electron mobility in β-Ga2O3 crystals, Semicond. Sci. Technol. 31 (2016) 035023, https://doi.org/10.1088/0268-1242/31/3/035023. 152. T. Oishi, Y. Koga, K. Harada, M. Kasu, High-mobility β-Ga2O3 (201) single crystals grown by edge-defined film-fed growth method and their Schottky barrier diodes with Ni contact, Appl. Phys. Express 8 (2015) 031101, https://doi.org/10.7567/APEX.8.031101. 153. N. Ma, N. Tanen, A. Verma, Z. Guo, T. Luo, H. G. Xing, D. Jenna, Intrinsic electron mobility limits in β-Ga2O3, Appl. Phys. Lett. 109 (2016) 212101, https://doi.org/10.1063/1.4968550. 154. A. T. Neal, S. Mou, R. Lopez, J. V. Li, D. B. Thomson, K. D. Chabak, G. H. Jessen, Incomplete ionization of a 110 meV unintentional donor in β-Ga2O3 and its effect on power devices, Sci. Rep. 7 (2017) 13218, https://doi.org/10.1038/s41598-017-13656-x. 155. N. T. Son, K. Goto, K. Nomura, Q. T. Thieu, R. Togashi, H. Murakami, Y. Kumagai, A. Kuramata, M. Higashiwaki, A. Koukitu, S. Yamakoshi, B. Monemar, E. Janzen, Electronic properties of the residual donor in unintentionally doped β-Ga2O3, J. Appl. Phys. 120 (2016) 235703, https://doi.org/10.1063/1.4972040. 156. M. Higashiwaki, A. Kuramata, H. Murakami, Y. Kumagai, State-ofthe-art technologies of gallium oxide power devices, J. Phys. D 50 (2017) 333002, https://doi.org/10.1088/1361-6463/aa7aff. 157. N. Moser, J. McCandless, A. Crespo, K. Leedy, A. Green, A. Neal, S. Mou, E. Ahmadi, J. Speck, K. Chabak, N. Peixoto, G. Jessen, Ge-Doped β-Ga2O3 MOSFETs, IEEE Electron Device Lett. 38 (6) (2017) 775, https://doi.org/10.1109/ LED.2017.2697359. 158. T. Onuma, S. Fujioka, T. Yamaguchi, M. Higashiwaki, K. Sasaki, T. Masui, T. Honda, Correlation between blue luminescence intensity and resistivity in β-Ga2O3 single crystals, Appl. Phys. Lett. 103 (2013) 041910, https://doi.org/10.1063/1.4816759. 159. T. Harwig, J. Schoonman, Electrical properties of β-Ga2O3 single crystals. II, J. Solid State Chem. 23, (1978) 205, https://doi.org/10.1016/0022- 4596(78)90066-X. 160. C. Tang, J. Sun, N. Lin, Z. Jia, W. Mu, X. Tao, X. Zhao, Electronic structure and optical property of metal-doped Ga2O3: a first principles study, RSC Adv. 6 (2016) 78322, https://doi.org/10.1039/C6RA14010F. 161. H. He, W. Li, H. Z. Xing, E. J. Liang, First Principles Study on the Electronic Properties of Cr, Fe, Mn and Ni Doped β-Ga2O3, Adv. Mater. Res. 535- 537 (2012) 36, https://doi.org/10.4028/www.scientific.net/AMR.535-537.36. 162. Hongchao Zhai, Zhengyuan Wu, Zhilai Fang Recent progress of Ga2O3-based gas sensors, Ceramics International 48 (17) (2022) 24213-24233, https://doi.org/10.1016/ j.ceramint.2022.06.066. 163. M. Fleischer, H. Meixner, Gallium oxide thin films: a new material for high-temperature oxygen sensors, Sensors and аctuutom B, 4 (1991) 437, https://doi.org/ 10.1016/0925-4005(91)80148-D. 164. M. Fleischer, H. Meixner, Sensing reducing gases at high temperatures using long-term stable Ga2O3 thin films. Sens. Actuators B Chem. 6 (1992) 257- 261, https://doi.org/10.1016/0925-4005(92)80065-6. 165. A. Many, Y. Goldstein, N. B. Grover, Semconductor Surfaces, North Hollad, Amsterdam,1965, 512 pp., https://doi.org/10.1016/0039-6028(66)90011-2. 166. S. R. Morrison, Experimental Methods, In: The chemical physics of surfaces. Springer, Boston, MA (1977) https://doi.org/10.1007/978-1-4615-8007- 2_3. 167. P. Kofstad, Diffusion, and electrical conductivity in binary metal oxides, Nonstoichiometry, Wiley, New York, 1983. 168. M. Fleischer, H. Meixner Gallium oxide thin films: a new material for high-temperature oxygen sensors, Sens. Actuators B: Chem., 4 (1991), 437-441, https://doi.org/10.1016/0925-4005(91)80148-D. 169. U. Lampe, M. Fleischer, H. Meixner Lambda measurement with Ga2O3, Sens. Actuators B: Chem, 17 (1994) 187-196, https://doi.org/10.1016/0925- 4005(93)00880-8. 170. A. Afzal, β-Ga2O3 nanowires and thin films for metal oxide semiconductor gas sensors: sensing mechanisms and performance enhancement strategies, Journal of Materiomics 5 (4) (2019) 542-557, https://doi.org/10.1016/j.jmat.2019.08.003. 171. X. D. Wang, C. J. Summers, Z. L. Wang, Large-Scale HexagonalPatterned Growth of Aligned ZnO Nanorods for Nano-optoelectronics and Nanosensor Arrays, Nano Lett. 4 (2004) 423-426, https://doi.org/10.1021/nl035102c. 172. K. Girija, S. Thirumalairajan, V. R. Mterlaro, D. Mangalaraj, Catalyst Free Vapor-Solid Deposition of Morphologically Different β-Ga2O3 nanostructure thin films for selective CO gas sensor at low temperature, Anal. Methods 8 (2016) 3224-3235, https://doi.org/10.1039/c6ay00391e. 173. H. Kim, C. Jin, S. An, C. Lee, Fabrication and CO gas-sensing properties of Pt-functionalized Ga2O3 nanowires, Ceramics International 38 (2012) 3563–3567 https://doi.org/10.1016/j.ceramint.2011.12.072. 174. F. Wang, Z. Han, L. Tong, Fabrication and characterization of β-Ga2O3 optical nanowires, Physica E 30 (2005) 150, https://doi.org/10.1016/j.physe.2005.08.001. 175. H. J. Chun, Y. S. Choi, S. Y. Bae, H. W. Seo, S. J. Hong, S. Park, H. Yang, Controlled structure of gallium oxide nanowires, J. Phys. Chem. B 107 (2003) 9042, https://doi.org/10.1021/jp034728o. 176. P. Guha, S. Chakrabarti, S. Chaudhuri, Synthesis of β-Ga2O3 nanowire from elemental Ga metal and its photoluminescence study, Physica E 23 (2004) 81, https://doi.org/10.1016/j.physe.2004.01.003. 177. N. D. Cuong, Y. W. Park, S. G. Yoon, Microstructural and electrical properties of Ga2O3 nanowires grown at various temperatures by vapor–liquid– solid technique Sensors and Actuators B: Chemical 140 (1) (2009) 240-244, https://doi.org/ 10.1016/j.snb.2009.04.020. 178. Z . Liu, T . Yamazaki, Y . Shen, Т. Kikuta, N . Nakatani, Y. Li, O2 and CO sensing of Ga2O3 multiple nanowire gas sensors, Sens. Actuators B: Chem. 129 (2008) 666-670, https://doi.org/10.1016/j.snb.2007.09.055. 179. R. Pilliadugula, N. G. Krishnan, Effect of pH dependent morphology on room temperature NH3 sensing performances of β-Ga2O3, Mater. Sci. Semicond. Process. 112 (2020) 105007, https://doi.org/10.1016/j.mssp.2020.105007. 180. J . Zhu, Z. Xu, S. Ha, D. Li, K . Zhang, H . Zhang, J. Feng, Gallium oxide for gas sensor applications: a comprehensive review, Materials. 15 (20) (2022) 7339, https://doi.org/10.3390/ma15207339. 181. W. Ang, W. Zhao, P.L. Hua, L.W. Wei, X. Li, D.X. Chen, H. Wei, Room-temperature NH3 gas sensor based on hydrothermally grown ZnO nanorods, Chin. Phys. Lett. 28 (2011) 080702, https://doi.org/10.1088/0256- 307X/28/8/080702. 182. M. Stankova, X. Vilanova, J. Calderer, E. Liobet, J. Brezmes, I. Gracia, C. Cane, X. Correig, Sensitivity and selectivity improvement of RF sputtered WO3 microphotoplate gas sensors, Sens. Actuators B: Chem. 113 (2006) 241-248, https://doi.org/10.1016/j.snb.2005.02.056. 183. R. Pandeeswari, B.G. Jeyaprakash, High sensing response of β-Ga2O3 thin film towards ammonia vapours: influencing factors at room temperature, Sens. Actuators: B Chem. 195 (2014) 206-214, https://doi.org/10.1016/j.snb.2014.01.025. 184. H.-J. Lin, J. P. Baltrus, H. Gao, Y. Ding, C.-Y. Nam, P. Ohodnicki, PuX. Gao, Perovskite nanoparticle-sensitized Ga2O3 nanorod arrays for CO detection at high temperature, ACS Appl. Mater. Interfaces 8 (14) (2016) 8880-8887, https://doi.org/10.1021/acsami.6b01709. 185. G. Kiss, O. H. Krafcsik, K. Kovacs, V.K. Josepovits, M. Fleischer, H. Meixner, P. Deák, F. Réti, Impedance spectroscopic and secondary ion mass spectrometric studies of β-Ga2O3/O2 interaction. Thin Solid Films 391 (2) (2001) 239-242, https://doi.org/10.1016/S0040-6090(01)00988-9. 186. C. Y. Wang, R. W. Becker, T. Passow, W. Pletschen, K. Köhler, V. Cimalla, O. Ambacher, Photon stimulated sensor based on indium oxide nanoparticles I: Wide-concentration-range ozone monitoring in air, Sensor. Actuat.: B Chem. 152 (2011) 235-240, https://doi.org/10.1016/j.snb.2010.12.014. 187. M. Panayotova, V. Panayotov, T. Oliinyk, Gallium and indium nanomaterials for environmental protection, E3S Web of Conferences 166 (2020) 01008, https://doi.org/10.1051/e3sconf/202016601008. 188. K. Schwarz, Р. Blaha, DFT calculations of solids in the ground state, Structures on Different Time Scales: Published by De Gruyter 2018, https://doi.org/10.1515/9783110433920-003. 189. M. Levy, Electron densities in search of Hamiltonians, Phys. Rev. A, 26 (1982) 1200-1208, https://doi.org/10.1103/PhysRevA.26.1200. 190. E. H. Lieb, Density functionals for Coulomb systems, Int. J. Quant. Chem., 24 (1983) 243-277, https://doi.org/10.1002/qua.560240302. 191. A. D. Becke, Perspective: fifty years of density-functional theory in chemical physics, J. Chem. Phys. 140 (2014) 18A301, https://doi.org/10.1063/1.4869598. 192. K. Lejaeghere, G. Bihlmayer, T. Björkman, P. Blaha, S. Blügel, V. Blum, D. Caliste, I. E. Castelli, S. J. Clark, A. Dal Corso, S. de Gironcoli, T. Deutsch, J. K. Dewhurst, I. Di Marco, C. Draxl, M. Dułak, O. Eriksson, J. A. Flores-Livas, K. F. Garrity, L. Genovese, P. Giannozzi, M. Giantomassi, S. Goedecker, X. Gonze, O. Grånäs, E. K. U. Gross, A. Gulans, F. Gygi, D. R. Hamann, P. J. Hasnip, N. A. W. Holzwarth, D. Iuşan, D. B. Jochym, F. Jollet, D. Jones, G. Kresse, K. Koepernik, E. Küçükbenli, Y. O. Kvashnin, I. L. M. Locht, S. Lubeck, M. Marsman, N. Marzari, U. Nitzsche, L. Nordström, T. Ozaki, L. Paulatto, C. J. Pickard, W. Poelmans, M. I. J. Probert, K. Refson, M. Richter, G.- M. Rignanese, S. Saha, M. Scheffler, M. Schlipf, K. Schwarz, S. Sharma, F. Tavazza, P. Thunström, A. Tkatchenko, M. Torrent, D. Vanderbilt, M. van Setten, V. Van Speybroeck, J.M. Wills, J. R. Yates, G.-X. Zhang, Reproducibility in density-functional theory calculations of solids, Science 351 (2016) aad3000, https://doi.org/10.1126/science.aad3000. 193. O. H. Shklovskyi, A. V. Berehovyi, Teoriia funktsionalu elektronnoi shchilnosti dlia atomiv ta prostykh molekul: monohrafiia, Bielhorod: VD “Bilhorod” NDU “BielDU” (2014) 188 s. 194. D. M. Ceperley, B. J. Alder, Ground state of the electron gas by a stochastic method, Phys. Rev. Lett. 45 (1980) 566-569, https://doi.org/10.1103/ PhysRevLett.45.566. 195. J. P. Perdew, S. Kurth, A. Zupan, P. Blaha. Accurate density functional with correct formal properties: a step beyond the generalized gradient approximation, Phys. Rev. Lett. 82 (1999) 2544-2547, https://doi.org/10.1103/PhysRevLett.82.2544. 196. F. Tran, J. Stelzl, P. Blaha, Rungs 1 to 4 of DFT Jacob’s ladder: extensive test on the lattice constant, bulk modulus, and cohesive energy of solids, J. Chem. Phys., 144 (2016) 204120, https://doi.org/10.1063/1.4948636. 197. J. Sun, A. Ruzsinszky, J. P. Perdew, Strongly constrained and appropriately normed semilocal density functional, Phys. Rev. Lett. 115 (2015) 036402, https://doi.org/10.1103/PhysRevLett.115.036402. 198. J. Tao, Y. Mo, Accurate semilocal density functional for condensedmatter physics and quantum chemistry, Phys. Rev. Lett. 117 (2016) 073001, https://doi.org/10.1103/PhysRevLett.117.073001. 199. J. P. Perdew, M. Ernzerhof, K. Burke, Rationale for mixing exact exchange with density functional approximations, J. Chem. Phys., 105 (22) (1996) 9982, https://doi.org/10.1063/1.472933. 200. V. I. Anisimov, I. V. Solovyev, M. T. Czyz̀yk M. A. Korotin, G. A. Sawatzky, Density-functional theory and NiO photoemission spectra, Phys. Rev. B 48 (1993) 16929-16934, https://doi.org/10.1103/PhysRevB.48.16929. 201. S. Grimme, A. Hansen, J. G. Brandenburg, C. Bannwarth, Dispersioncorrected mean-field electronic structure methods, Chem. Rev. 116 (2016) 5105- 5154, https://doi.org/10.1021/acs.chemrev.5b00533. 202. F. Mittendorfer, A. Garhofer, J. Redinger, J. Klimes, J. Harl, G. Kresse, Graphene on Ni(111): strong interaction and weak adsorption, Phys. Rev. B 84 (2011) 201401, https://doi.org/10.1103/PhysRevB.84.201401. 203. F. Tran, P. Blaha, K. Schwarz, How close are the Slater and Becke– Roussel potentials in solids? J. Chem. Theory Comput. 11 (2015) 4717-4726, https://doi.org/10.1021/acs.jctc.5b00675. 204. M. Hybertsen, S. Louie, Self-energy approach to quasiparticle energies using a density functional treatment of dielectric screening, Adv. Quantum Chem. 21 (1990) 155-174, https://doi.org/10.1016/S0065-3276(08)60596-1. 205. F. Tran, P. Blaha, Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential, Phys. Rev. Lett. 102 (2009) 226401, https://doi.org/10.1103/PhysRevLett.102.226401. 206. D. Koller, F. Tran, P. Blaha, Merits and limits of the modified Becke– Johnson exchange potential, Phys. Rev. B 83 (2011)195134, https://doi.org/ 10.1103/PhysRevB.83.195134. 207. T. Koopmans, Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den einzelnen Elektronen eines Atoms, Physics 1 (1934) 104-113, https://doi.org/10.1016/S0031-8914(34)90011-2. 208. J. F. Janak. Proof that 𝜕E/𝜕ni = ϵ in density-functional theory, Phys. Rev. B 18 (1978) 7165-7168, https://doi.org/10.1103/PhysRevB.18.7165. 209. J. C. Slater, The self-consistent field for crystals, Int. J. Quant. Chem. 3 (1970) 727, https://doi.org/10.1002/qua.560040737. 210. K. Schwarz, On Slater’s transition state concept for ionization energies, Chem. Phys. 7 (1975) 100–107, https://doi.org/10.1016/0301-0104(75)85029-4. 211. J. P. Perdew, R. G. Parr, M. Levy, J. L. Balduz, Density-functional theory for fractional particle number: derivative discontinuities of the energy, Phys. Rev. Lett. 49 (1982) 1691-1695, https://doi.org/10.1103/ PhysRevLett.49.1691. 212. N. Hadjisavvas, A. Theophilou, Rigorous formulation of Slater’s transition-state theory for excited states, Phys. Rev. A 32 (1985) 720-724, https://doi.org/10.1103/physreva.32.720. 213. J. C. Slater, J. B. Mann, T. M. Wilson, J. H. Wood. Nonintegral occupation numbers in transition atoms in crystals, Phys. Rev. 184 (1969) 672- 694, https://doi.org/10.1103/PhysRev.184.672. 214. E. Kabliman, P. Blaha, K. Schwarz, Ab initio study of stabilization of the misfit layer compound (PbS)1.14TaS2, Phys. Rev. B 82 (2010) 125308, https://doi.org/10.1103/PhysRevB.82.125308. 215. P. Mori-Sànchez, A. J. Cohen, W. Yang, Many-electron self-interaction error in approximate density functionals, J. Chem. Phys. 125 (2006) 201102, https://doi.org/10.1063/1.2403848. 219. K. Held, Electronic structure calculations using dynamical mean field theory, Adv. Phys. 65 (2007) 829-926, https://doi.org/10.1080/ 00018730701619647. 220. S. Cottenier, Density Functional Theory and the family of (L)APWMethods: A Step-by-Step Introduction. Wiley VCH, New York, 2002-2013. Freely available at http://www.wien2k.at/reguser/textbooks. 221. G. H. K. Madsen, P. Blaha, K. Schwarz, L. Nordström, E. Sjöstedt, Efficient linearization of the augmented plane-wave method, Phys. Rev. B 64 (2001) 195134, https://doi.org/10.1103/PhysRevB.64.195134. 222. D. Singh, L. Nordström, Plane Waves, Pseudopotentials and the LAPW Method. Springer, New York, 2006. 223. K. Schwarz, Electrons, In A. Authier (Ed.), International Tables for Crystallography, Volume D, Physical Properties of Crystals, pages 294-313, Kluwer Academic Publ., Dordrecht, 2003. 224. V. N. Strocov, M. Shi, M. Kobayashi, C. Monney, X. Wang, J. Krempasky, T. Schmitt, L. Patthey, H. Berger, P. Blaha, Three-dimensional electron realm in VSe2 by soft-x-ray photoelectron spectroscopy: origin of chargedensity waves, Phys. Rev. Lett. 109 (2012) 086401, https://doi.org/10.1103/ PhysRevLett.109.086401. 225. Y. Kim, M. Marsman, G. Kresse, F. Tran, P. Blaha, Towards efficient band structure and effective mass calculations for III-V direct band-gap semiconductors, Phys. Rev. B 82 (2010) 205212, https://doi.org/10.1103/PhysRevB.82.205212. 226. Чернікова О. М. Моделі активації ковалентного зв’язування в реакціях окислення наноструктурними каталізаторами: дис. ... канд. фіз.-мат. наук: 01.04.07. Київ, 2016. 134 с. 227. Кравцова Д. Ю. Електронна структура та фізико-хімічні властивості мета- і наноматеріалів каталізаторами: дис. ... канд. фіз.-мат. наук: 01.04.07. Одеса, 2018. 131 с. 228. Здещиц А. В. Електронні властивості гібридних наноструктур: дис. ... канд. фіз.-мат. наук: 01.04.07. Одеса, 2019. 140 с. 229. Соломенко А. Г. Функціоналізація двовимірних напівпровідникових матеріалів: дис. ... канд. фіз.-мат. наук: 01.04.07. Одеса, 2020. 107 с. 230. Прихожа Ю. О. Матеріали для анодів літій-іонних акумуляторів матеріалів: дис. ... докт. філ. зі спец. 104: Фізика та астрономія. Кривий Ріг, 2021. 112 с. 231. Балабай Р. М. Особливості розподілу електронної густини в нанорозмірних функціональних матеріалах: дис. ... док. фіз.-мат. наук: 01.04.07. Київ, 2014. 278 с. 232. Мерзликін П. В. Функціональні твердотільні наноструктури: дис. ... канд. фіз.-мат. наук: 01.04.07. Одеса, 2012. 124 с. 233. Балабай Р. М. Обчислювальні методи із перших принципів у фізиці твердого тіла: квантово-механічна молекулярна динаміка: монографія. Кривий Ріг: Видавничий дім (2009) 124 с. 235. K. D. Chabak, K. D. Leedy, A. J. Green1 S. Mou, A. T. Neal, T. Asel, E. R. Heller, N. S. Hendricks1, K. Liddy, A. Crespo, Lateral β-Ga2O3 field effect transistors, Semicond. Sci. Technol. 35 (2020) 013002, https://doi.org/10.1088/ 1361-6641/ab55fe. 236. М. Higashiwaki, К. Sasaki, Н. Murakami, Y. Kumagai, А. Koukitu, А. Kuramata, Т. Masui, S. Yamakosh, Recent progress in Ga2O3 power devices, Semicond. Sci. Technol. 31 (2016) 034001, https://doi.org/10.1088/0268- 1242/31/3/034001. 237. М. Higashiwaki, Н. Murakami, Y. Kumagai, А. Kuramata, Current status of Ga2O3 power devices, Jpn. J. Appl. Phys. 55 (11) (2016) 1202A1, https://doi.org/10.7567/JJAP.55.1202A1. 238. Н. Higashiwaki, А. Kuramata, Н. Murakami, Y. Kumagai, State-oftheart technologies of gallium oxide power devices, J. Phys. D Appl. Phys. 50 (2017) 333002, https://doi.org/10.1088/1361-6463/aa7aff. 239. M. A. Mastro, A. Kuramata, J. Calkins, J. Kim, F. Ren, S. J. Pearton, Opportunities and future directions for Ga2O3, ECS J. Solid State Sci. Technol. 6 (2017) P356-P359, https://doi.org/10.1149/2.0031707jss. 240. H. Peelaers, C. G. Van de Walle, Brillouin zone and band structure of β-Ga2O3, Phys. Stat. Solidi B252 (2015) 828-832, https://doi.org/ 10.1002/pssb.201451551. 241. M. P. Shaskolska Krystalohrafiia, M.: Vyshcha shk. (1976) 459 s. 242. N. Henry, K. Lonsdale, International tables for X-ray crystallography / N. Henry, K. Lonsdale Symmetry Groups The Kynoch Press, Birmingham, 1999; Vol. 1, p. 372. 243. International tables for X-ray diffraction, A, Dordrecht-Boston (1983) 244. E. G. Villora, K. Shimamura, Y. Yoshikawa, K. Aoki, N. Ichinose. Large-size β-Ga2O3 single crystals and wafers, J. Cryst. Growth 270 (2004) 420, https://doi.org/10.1016/j.jcrysgro.2004.06.027. 245. K. Adachi, H. Ogi, N. Takeuchi, N. Nakamura, H. Watanabe, T. Ito, Y. Ozaki, Unusual elasticity of monoclinic β-Ga2O3, Appl. Phys. 124 (2018) 085102, https://doi.org/10.1063/1.5047017. 246. J. Su, R. Guo, Z. Lin, S. Zhang, J. Zhang, J. Chang, Y. Hao, Unusual electronic and optical properties of two-dimensional Ga2O3 predicted by density functional theory, J. Phys. Chem. C122 (2018) 24592, https://doi.org/10.1021/ acs.jpcc.8b08650. 247. J. Li, L. An, C. Lu, J. Liu, Conversion between hexagonal GaN and βGa2O3 nanowires and their electrical transport properties, Nano Lett.6 (2006) 148, https://doi.org/10.1021/nl051265k. 248. P. Jiang, X. Qian, X. Li, R. Yang, Three-dimensional ani-sotropic thermal conductivity tensor of single crystalline β-Ga2O3, Appl. Phys. Lett. 113 (2018) 232105, https://doi.org/10.1063/1.5054573. 249. J. Su, J. Zhang, R. Guo, Z. Lin, M. Liu, J. Zhang, J. Chang, Y. Hao, Mechanical and thermodynamic properties of two-dimensional monoclinic Ga2O3, Materials and Design 184 (2019) 108197, https://doi.org/10.1016/ j.matdes.2019.108197. 250. K.-W. Ang, K.-J. Chui, V. Bliznetsov, C.-H. Tung, A. Du,N. Balasubramanian, G. Samudra, M. F. Li, Y.-C. Yeo, Lattice strain analysis of transistor structures with silicon-germanium and silicon-carbon source/drain stressors, Appl. Phys. Lett. 86 (2005) 093102, https://doi.org/10.1063/1.1871351. 251. E. Chikoidze, D. J. Rogers, F. H. Teherani, C. Rubio, G. Sauthier, H. J. Von Bardeleben, T. Tchelidze, C. Ton-That, A. Fellous, P. Bove, E. V. Sandana, Y. Dumont, A. Perez-Tomas, Puzzling robust 2D metallic conductivity in undoped β-Ga2O3 thin films, Mater. Today Phys. 8 (2019) 10, https://doi.org/10.1016/ j.mtphys.2018.11.006. 252. S. Luan, L. Dong, R. Jia, Analysis of the structural, anisotropic elastic and electronic properties of β-Ga2O3 withvarious pressures, J. Cryst. Growth 505 (2019) 74, https://doi.org/10.1016/j.jcrysgro.2018.09.031. 253. H. He, M. A. Blanco, R. Pandey, Electronic and thermo-dynamic properties of β-Ga2O3, Appl. Phys. Lett. 88 (2006) 261904, https://doi.org/10.1063/1.2218046. 254. R. Ahrling, J. Boy, M. Handwerg, O. Chiatti, R. Mitdank, G. Wagner, Z. Galazka, S. F. Fischer, Transport properties and finite size effects in β-Ga2O3 thin films, ScientificReports 9 (2019) 13149, https://doi.org/10.1038/ s41598-019- 49238-2. 255. R. Balabai, A. Solomenko, Flexible 2D layered material junctions, Appl. Nanosc. 9 (2019) 1011, https://doi.org/10.1007/s13204-018-0709-9. 256. X.-Q. Zheng, J. Lee, S. Rafique, L. Han, C. A. Zorman, H. Zhao, Ph. X.-L. Feng, Free-standing β-Ga2O3 thin diaphragms, Electronic Materials 47 (2) (2018) 973, https://doi.org/10.1007/s11664-017-5978-7. 257. R. Balabai, D. Kravtsova, Hardness of diamond-cBN nanocomposite, Diamond and Related Materials 82 (2018) 56, https://doi.org/10.1016/ j.diamond.2017.12.016. 258. D. Kwak, Y. Lei, R. Maric, Ammonia gas sensors: а comprehensive review, Talanta, 204 (2019) 713, https://doi.org/10.1016/j.talanta.2019.06.034. 259. T. Waitz, T. Wagner, C.-D. Kohl, M. Tiemann, New mesoporous metal oxides as gas sensors, Stud. Surf. Sci. Catal. 174 (2008) 401, https://doi.org/10.1016/S0167-2991(08)80227-3. 260. C. Wang, L. Yin, L. Zhang, D. Xiang, R. Gao, Metal oxide gas sensors: sensitivity and influencing factors, Sensors, 10 (2010) 2088, https://doi.org/10.3390/s100302088. 261. G. F. Fine, L. M. Cavanagh, A. Afonja, Metal Oxide Semi-Conductor Gas Sensors in Environmental Monitoring, R. Binions, Sensors, 10 (2010) 5469, https://doi.org/10.3390/s100605469. 262. A. Afzal, N. Cioffi, L. Sabbatini, L. Torsi, NOx sensors based on semiconducting metal oxide nanostructures: Progress and perspectives, Sens. Actuators B: Chemical, 171-172 (2012) 25, https://doi.org/10.1016/ j.snb.2012.05.026. 263. Gas sensing Fundamentals (Eds. C.-D. Kohl and T. Wagner) (BerlinHeidelberg: Springer-Verlag: 2014). 264. A. Mirzaeі, G. Neri, Microwave-assisted synthesis of metal oxide nanostructures for gas sensing application: а review, Sens Actuators B: Chemical, 237 (2016) 749, https://doi.org/10.1016/j.snb.2016.06.114. 265. A. Mirzaei, S. G. Leonardi, G. Neri, Detection of hazardous volatile organic compounds (VOCs) by metal oxide nanostructures-based gas sensors: A review, Ceram. Int., 42 (2016) 15119, https://doi.org/10.1016/ j.ceramint.2016.06.145. 266. P. T. Moseley, Progress in the development of semiconducting metal oxide gas sensors: a review, Meas. Sci Technol., 28 (2017) 082001, https://doi.org/ 10.1088/1361-6501/aa7443. 267. G. Korotcenkov, B. K. Cho, Metal oxide composites in conductometric gas sensors: аchievements and challenges, Sens. Actuators B: Chemical, 244 (2017) 182, https://doi.org/10.1016/j.snb.2016.12.117. 268. J. Zhang, Z. Qin, D. Zeng, C. Xie, Metal-oxide-semiconductor based gas sensors: screening, preparation, and integration, Phys. Chem. Chem. Phys., 19: 6313 (2017); https://doi.org/10.1039/C6CP07799D. 269. X. Gao, T. Zhang, An overview: facet-dependent metal oxide semiconductor gas sensors, Sens. Actuators B: Chemical, 277 (2018) 604, https://doi.org/10.1016/j.snb.2018.08.129. 270. E. Llobet, E. Navarrete, F. E. Annanouch, M. Alvarado, E. González, J. L. Ramírez, A. Romero, X. Vilanova, M. Domínguez-Pumar, S. Vallejos, and I. Grácia, 2018 IEEE Sens. 1 (2018) 8589734, https://doi.org/10.1109/ICSENS. 271. A. Dey, Semiconductor metal oxide gas sensors: а review, Mater. Sci Eng. B, 229 (2018) 206, https://doi.org/10.1016/j.mseb.2017.12.036. 272. A. Oprea, D. Degler, N. Barsan, A. Hemeryck, J. Rebholz, Gas sensors based on conducting metal oxides: basic understanding, Technology and Applications (Eds. N. Barsan and K. Schierbaum) (Elsevier: 2019), Ch. 3, p. 61- 165, https://doi.org/10.1016/B978-0-12-811224-3.00003-2. 273. Z. Li, H. Li, Z. Wu, M. Wang, J. Luo, H. Torun, P. Hu, C. Yang, M. Grundmann, X. Liud, Y. Fu, Advances in designs and mechanisms of semiconducting metal oxide nanostructures for high-precision gas sensors operated at room temperature, Mater. Horiz., 6 (2019) 470, https://doi.org/10.1039/C8MH01365A. 274. T. Schwebel, M. Fleischer, H. Meixner, A selective, temperature compensated O2 sensor based on Ga2O3 thin films, Sens. Actuators B: Chemical, 65, Iss. 1–3: 176 (2000); https://doi.org/10.1016/S0925-4005(99)00326-3. 275. M. Ogita, K. Higo, Y. Nakanishi, Y. Hatanaka, Ga2O3 thin film for oxygen sensor at high temperature, Appl. Surf. Sci., 175-176 (2001) 721, https://doi.org/10.1016/S0169-4332(01)00080-0. 276. M. Fleischer, J. Giber, H. Meixner, H2-induced changes in electrical conductance of β-Ga2O3 thin-film systems, Appl. Phys. A 54 (1992) 560, https://doi.org/10.1007/BF00324340. 277. T. Schwebel, M. Fleischer, H. Meixner, C. D. Kohl, CO-Sensor for domestic use based on high temperature stable Ga2O3 thin films, Sens. Actuators B: Chemical, 49, Iss. 1–2: 46 (1998); https://doi.org/10.1016/S0925- 4005(97)00334-1. 278. Q. Bui, L. Largeau, N. Jegenyes, O. Mauguin, L. Travers, X. Lafosse, C. Dupuis, J.-C. Harmand, M. Tchernycheva, N. Gogneau, GaN/Ga2O3 core/shell nanowires growth: nanostructures for future CO-sensors developments, Appl. Sci., 9 (2019) 3528, https://doi.org/10.20944/preprints201907.0049.v1. 279. A. Kolmakov, Y. Zhang, G. Cheng, M. Moskovits, Detection of CO and O2 using tin oxide nanowire sensors, Adv. Mater. 15 (2003) 997, https://doi.org/ 10.1002/adma.200304889. 280. E. Comini, G. Faglia, G. Sberveglieri, Z. W. Pan, Z. L. Wang, Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts, Appl. Phys. Lett. 81 (2002) 1869, https://doi.org/10.1063/1.1504867. 281. Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, J. P. Li, C. L. Lin, Erratum: “Shortest intersubband transition wavelength (1.68 μm) achieved in AlN/GaN multiple quantum wells by metalorganic vapor phase epitaxy”, Appl. Phys. Lett., 84 (2004) 3654, https://doi.org/10.1063/1.1748852. 282. A. Ponzoni, E. Comini, G. Sberveglieri, J. Zhou, S. Deng, N. Xu, Y. Ding, Z. Wang, Ultrasensitive and highly selective gas sensors using three-dimensional tungsten oxide nanowire networks, Appl. Phys. Lett., 88 (2006) 20, https://doi.org/10.1063/1.2203932. 283. C. S. Rout, A. Govindaraj, C. N. R. Rao, High-sensitivity hydrocarbon sensors based on tungsten oxide nanowires, J. Mater. Chem., 16 (2006) 3936, https://doi.org/10.1039/B607012B. 284. D. H. Zhang, Z. Q. Liu, C. Li, T. Tang, X. L. Liu, S. Han, B. Lei, C. W. Zhou, Detection of NO2 down to ppb Levels Using Individual and Multiple In2O3 Nanowire Devices, Nano Lett. 4 (2004) 1919, https://doi.org/10.1021/nl0489283. 285. H. Z. Zhang, Y. C. Kong, Y. Z. Wang, X. Du, Z. G. Bai, J. J. Wang, D. P. Yu, Y. Ding, Q. L. Huang, S. Q. Feng, Ga2O3 nanowires prepared by physical evaporation, Solid State Commun., 109 (1999) 677, https://doi.org/10.1016/S0038- 1098(99)00015-0. 286. X. C. Wu, W. H. Song, W. D. Huang, M. H. Pu, B. Zhao, Y. P. Sun, J. J. Du, Crystalline gallium oxide nanowires: intensive blue light emitters, Chem. Phys. Lett. 328 (2000) 5, https://doi.org/10.1016/S0009-2614(00)00899-X. 287. P. Feng, X. Y. Xie, Y. G. Liu, Q. Wan, T. H. Wang, Achieving fast oxygen response in individual β-Ga2O3 nanowires by ultraviolet illumination, Appl. Phys. Lett., 89 (2006) 112114, https://doi.org/10.1063/1.2349278. 288. Z. Liu, T. Yamazaki, Y. Shen, T. Kikuta, N. Nakatani, and Y. Li, Sens. Actuators B: Chemical, 129, Iss. 2 (2008) 666, https://doi.org/10.1016/ j.snb.2007.09.055. 289. Z. F. Liu, T. Yamazaki, Y. B. Shen, T. Kikuta, N. Nakatani, T. Kawabata, Room temperature gas sensing of 𝑝-type TeO2 nanowires, Appl. Phys. Lett. 90 (2007) 173119, https://doi.org/10.1063/1.2732818. 290. T. Zhang, J. Lin, X. Zhang, Y. Huang, X. Xu, Y. Xue, J. Zou, C. Tang, Single-crystalline spherical β-Ga2O3 particles: Synthesis, N-doping and photoluminescence properties, J. of Lumin. 140 (2013) 30, https://doi.org/ 10.1016/j.jlumin.2013.02.031. 291. M. Razeghi, R. McClintock, D. Pavlidis, F. H. Teherani, A review of the growth, doping & applications of β-Ga2O3 thin films, In: Rogers D. J., Look D. C., Teherani F. H., editors, Oxide-based Materials and Devices IX, Proc. of SPIE (2018) 10533, https://doi.org/10.1117/12.2302471. 292. S. Ren, J. Ma, H. Zhao, X. Fu, The effort of finding a p-type β-Ga2O3 - a review of theoretical and experimental research Proceedings, Seventh Symposium on Novel Photoelectronic Detection Technology and Applications (2021) 117631Y, https://doi.org/10.1117/12.2586313. 293. B. E. Kananen, L. E. Halliburton, E. M. Scherrer, K. T. Stevens, G. K. Foundos, K. B. Chang, N. C. Giles, Electron paramagnetic resonance study of neutral Mg acceptors in β-Ga2O3 crystals, Appl. Phys. Lett. 111 (7) (2017) 072102, https://doi.org/10.1063/1.4990454. 294. A. Luchechko, V. Vasyltsiv, L. Kostyk, O. Tsvetkova, A.I. Popov, Shallow and deep trap levels in X-ray irradiated β-Ga2O3: Mg Nucl. Inst. Methods Phys. Res. B 441 (2019) 12-17, https://doi.org/10.1016/j.nimb.2018.12.045. 295. J. R. Ritter, J. Huso, P. T. Dickens, J. B. Varley, K. G. Lynn, M. D. McCluskey, Compensation and hydrogen passivation of magnesium acceptors in β-Ga2O3, Appl. Phys. Let., 113 (5) (2018) 052101, https://doi.org/10.1063/1.5044627. 296. J. L. Lyons, A survey of acceptor dopants for β-Ga2O3 Semicond, Sci. Technol. 33 (5) (2018) 05LT02, https://doi.org/10.1088/1361-6641/aaba98. 297. C. H. Park, S. B. Zhang, S.-H. Wei, Origin of p-type doping difficulty in ZnO: the impurity perspective, Phys Rev B 66 (2002) 073202, https://doi.org/10.1103/PhysRevB.66.073202. 298. L. Liu, M. Li, D. Yu, J. Zhang, H. Zhang, C. Qian, Z. Yang, Fabrication and characteristics of N-doped β-Ga2O3 nanowires, Appl. Phys. A 98 (4) (2010) 831-835, https://doi.org/10.1007/s00339-009-5538-y. 299. E. Chikoidze, A. Fellous, A. Perez-Tomas, G. Sauthier, T. Tchelidze, C. Ton-That, T. T. Huynh, M. Phillips, S. Russell, M. Jennings, B. Berini, F. Jomard, Y. Dumont, P-type β-gallium oxide: a new perspective for power and optoelectronic devices, Mater. Today Phys. 3 (2017) 118-126, https://doi.org/10.1016/ j.mtphys.2017.10.002. 300. R. Balabai, V. Zdeschits, M. Naumenko, Mechanical modification of electronic properties of ultrathin β-Ga2O3 Films, Ukr. J. Phys. 66 (2021) 1048, https://doi.org/10.15407/ujpe66.12.1048 301 R. Balabai, M. Naumenko, Sensory sensitivity to the form of β-Ga2O3 nanoparticles, Nanosistemi, Nanomateriali, Nanotehnologii 20 (3) (2022) 617-629, https://www.imp.kiev.ua/nanosys/media/pdf/2022/3/nano_vol20_iss3_p067p0629_ 2022.pdf. 302. L. Dong, R. Jia, C. Li, B. Xin, Y. Zhang, Ab initio study of N-doped βGa2O3 with intrinsic defects: the structural, electronic and optical properties, J. of Alloys and Compounds 712C (2017) 379-385, https://doi.org/0.1016/ j.jallcom.2017.04.020. 303. J. R. Ritter, J. Huso, P. T. Dickens, J. B. Varley, K. G. Lynn, M. D. McCluskey, Compensation and hydrogen passivation of magnesium acceptors in β-Ga2O3, Appl. Phys. Let. 113 (5) (2018) 052101, https://doi.org/10.1063/1.5044627. 304. Ye. N. Gribanov, O. I. Markov, Yu. V. Khripunov, Quantum-chemical modeling bismuth-based clusters, Mater. Phys. and Mechan.43 (2020) 72-83, https://doi.org/10.18720/MPM.4312020_9. 305. B. Cheng, E. T. Samulski, Fabrication and characterization of nanotubular semiconductor oxides In2O3 and Ga2O3, Journal of Materials Chemistry, 11 (2001) 2901, https://doi.org/10.1039/B108167E. 306. B. Zhang, P.-X. Gao, Metal oxide nanoarrays for chemical sensing: a review of fabrication methods, sensing modes, and their inter-correlations, Front. Mater. 6 (55) (2019), https://doi.org/10.3389/fmats.2019.00055. 307. Y. Zhang, J. Yang; Q. Li, X. Cao, Preparation of Ga2O3 nanoribbons and tubes by electrospinning, J. Cryst. Growth, 308 (2007) 180, https://doi.org/10.1016/j.jcrysgro.2007.07.036. 308. N. W. Gong, M. Y. Lu, C. Y. Wang, Y. Chen, L. J. Chen, Au(Si)-filled β-Ga2O3 nanotubes as wide range high-temperature nanothermometers. Appl. Phys. Lett. 92 (2008) 073101, https://doi.org/10.1063/1.2840574. 309. H. Jiang, Y. Chen, Q. Zhou, Y. Su, H. Xiao, L. Zhu, Temperature dependence of Ga2O3 micro/nanostructures via vapor phase growth, Mater. Chem. Phys. 103 (2007) 14, https://doi.org/10.1016/j.matchemphys.2007.02.031. 310. T. Braniste, M. Dragoman, S. Zhukov, M. Aldrigo, V. Ciobanu, S. Iordanescu, L. Alyabyeva, F. Fumagalli, G. Ceccone, S. Raevschi, F. Schütt, R. Adelung, P. Colpo, B. Gorshunov, I. Tiginyanu, Aero-Ga2O3 Nanomaterial Electromagnetically Transparent from Microwaves to Terahertz for Internet of Things Applications, Nanomaterials, 10 (6) (2020) 1047, https://doi.org/10.3390/nano10061047. 311. Ziyao Zhou, Changyong Lan, SenPo Yip, Renjie Wei, Dapan Li, Lei Shu, Johnny C. Ho, Towards high-mobility In2xGa2–2xO3 nanowire field-effect transistors, Nano Research, 11 (11) (2018) 5935, https://doi.org/10.1007/ s12274- 018-2106-9. 312. G. F. Yang, P. Chen, Z. G. Yu, B. Liu, Z. L. Xie, X. Q. Xiu, P. Han, H. Zhao, X. M. Hua, R. Zhang, and et al. Fabrication of GaN Nanocolumns with Semipolar Plane Using Ni nano-island masks, Semicond. Technol., 36, 417 (2011). 313. H. S. Kim, G. Y. Yeom, J. W. Lee, T. I. Kim, Characteristics of inductively coupled Cl2/BCl3 plasmas during GaN etching, J. Vac. Sci. Technol. A 17 (1999) 2214, https://doi.org/10.1116/1.581749. 314. M. Y. Hsieh, C. Y. Wang, L. Y. Chen, M. Y. Ke, J. Huang, InGaNGaN nanorod light emitting arrays fabricated by silica nanomasks, IEEE J. Quantum Electron. 44 (2008) 468, https://doi.org/10.1109/JQE.2007.916665. 315. J. Lin, R. Zong, M. Zhou, Y. Zhu, Photoelectric catalytic degradation of methylene blue by C60-modified TiO2 nanotube array, Appl. Catal. B Environ. 89 (2009) 425, https://doi.org/10.1016/j.apcatb.2008.12.025. 316. T. J. Hsueh, S. J. Chang, C. L. Hsu, Y. R. Lin, I. C. Chen, ZnO nanotube ethanol gas sensors, J. Electrochem. Soc., 155, K152 (2008); https://iopscience.iop.org/article/10.1149/ 1.2952535. 317. A. Star, Y. Lu, K. Bradley, G. Grüner, Nanotube optoelectronic memory devices, Nano Lett. 4 (2004) 1587, https://doi.org/10.1021/nl049337f. 318. J. Han, Z. Liu, K. Guo, B. Wang, X. Zhang, T. Hong, High-efficiency photoelectrochemical electrodes based on ZnIn2S4 sensitized ZnO nanotube arrays, Appl. Catal. B Environ., 163 (2015) 179, https://doi.org/10.1016/ j.apcatb.2014.07.040. 319. Z. Zhuang, X. Guo, B. Liu, F. Hu, Y. Li, T. Tao, J. Dai, T. Zhi, Z. Xie, P. Chen, D. Chen, H. Ge, X. Wang, M. Xiao, Y. Shi, Y. Zheng, R. Zhang, High color rendering index hybrid III-nitride/nanocrystals white light-emitting diodes, Adv. Funct. Mater., 26 (2016) 36, https://doi.org/10.1002/adfm.201502870. 320. B. Liu, D. Chen, H. Lu, T. Tao, Z. Zhuang, Z. Shao, W. Xu, H. Ge, T. Zhi, F. Ren, J. Ye, Z. Xie, R. Zhang, Hybrid light emitters and UV solar-blind avalanche photodiodes based on ІІІ-nitride semiconductors, Adv. Mater. 32 (2020) 1904354, https://doi.org/10.1002/adma.201904354. 321. Y. C. Choi, W. S. Kim, Y. S. Park, S. M. Lee, D. J. Bae, Y. H. Lee, G.- S. Park, W. B. Choi, N. S. Lee, J. M. Kim, Catalytic growth of beta-Ga2O3 nanowires by arc discharge, Adv. Mater., 12 (10), https://doi.org/10.1002/(SICI)1521-4095(200005)12:10<746::AID-ADMA746> 3.0.CO;2-N. 322. S. Ding, L. Zhang, Y. Li, X. Xiu, Z. Xie, T. Tao, B. Liu, P. Chen, R. Zhang, Y. Zheng, A selective etching route for large-scale fabrication of β-Ga2O3 micro-/nanotube arrays, Nanomaterials, 11 (2021) 3327, https://doi.org/10.3390/ nano11123327. 323. H. Liang, Y. Chen, X. Xia, C. Zhang, R. Shen, Y. Liu, Y. Luo, G. Du, A preliminary study of SF6 based inductively coupled plasma etching techniques for beta gallium trioxide thin film, Mater. Sci. Semicond. Proc. 39 (2015) 582, https://doi.org/10.1016/j.mssp.2015.05.065. 324. J. E. Hogan, S.W. Kaun, E. Ahmadi, Y. Oshima, J. S. Speck, Chlorinebased dry etching of β-Ga2O3, Semicond. Sci. Technol. 31 (2016) 065006, https://doi.org/10.1088/0268-1242/31/6/065006. 325. J. Yang, S. Ahn, F. Ren, S. Pearton, R. Khanna, K. Bevlin, D. Geerpuram, A. Kuramata, Inductively coupled plasma etching of bulk, single-crystal Ga2O3, J. Vac. Sci. Technol. B 35 (2017) 031205, https://doi.org/10.1116/1.4982714. 326. Z. Lin, X. Xiu, S. Zhang, X. Hua, Z. Xie, R. Zhang, P. Han, Y. Zheng, Arrays of GaN nano-pillars fabricated by nickel nano-island mask, Mater. Lett. 108 (2013) 250, https://doi.org/10.1016/j.matlet.2013.07.005. 327. L. Zhang, X. Xiu, Y. Li, Y. Zhu, X. Hua, Z. Xie, T. Tao, B. Liu, P. Chen, R. Zhang, X. Xiu, Y. Li, Y. Zhu , X. Hua, Z. Xie, T. Tao, B. Liu, P. Chen, R. Zhang, Y. Zheng, Solar-blind ultraviolet photodetector based on vertically aligned single-crystalline β-Ga2O3 nanowire arrays, Nanophotonics 9 (2020) 4497, https://doi.org/10.1515/nanoph-2020-0295. 328. S. Wang, Y. W. Li, X. Q. Xiu, L. I. Zhang, X.-M. Hua, Z.-L. Xie, T. Tao, B. Liu, P. Chen, R. Zhang, Synthesis and characterization of β-Ga2O3@GaN nanowires, Chin. Phys. B 28 (2019) 028104, https://doi.org/10.1088/1674- 1056/28/2/028104. 329. T. Yamada, J. Ito, R. Asahara, K. Watanabe, M. Nozaki, S. Nakazawa, Y. Anda, M. Ishida, T. Ueda, A. Yoshigoe, T. Hosoi, T. Shimura, H. Watanabe, Comprehensive study on initial thermal oxidation of GaN (0001) surface and subsequent oxide growth in dry oxygen ambient, J. Appl. Phys. 121 (2017) 035303, https://doi.org/10.1063/1.4974458. 330. J. H. Choi, M. H. Ham, W. Lee, J. M. Myoung, Fabrication and characterization of GaN/amorphous Ga2O3 nanocables through thermal oxidation, Solid State Commun. 142 (2007) 437, https://doi.org/10.1016/j.ssc.2007.03.034. 331. L. Zhang, Y. Li, X. Xiu, G. Xin, Z. Xie, T. Tao, B. Liu, P. Chen, R. Zhang, Y. Zheng, Preparation of vertically aligned GaN@Ga2O3 core-shell heterostructured nanowire arrays and their photocatalytic activity for degradation of Rhodamine B., Superlattices Microstruct. 143 (2020) 106556, https://doi.org/10.1016/ j.spmi.2020.106556. 332. J. P. Rex, Y. F. Kwong, Lim Hwee San,The influence of deposition temperature on the structural, morphological and optical properties of micro-size structures of beta-Ga2O3, Results in Physics, 14 (2019) 102475, https://doi.org/10.1016/j.rinp.2019.102475. 333. S. Wang, K. Chen, H. Zhao, C. He, C. Wu, D. Guo, N. Zhao, G. Ungar, J. Shen, X. Chu, P. Li, W. Tangb, β-Ga2O3 nanorod arrays with high light-toelectron conversion for solar-blind deep ultraviolet photodetection, RSC Adv. 9 (2019) 6064, https://doi.org/10.1039/c8ra10371b. 334. M. C. Johnson, Shaul Aloni, D. E. McCready, E. D. BourretCourchesne, Controlled vapor-liquid-solid growth of indium, gallium, and tin oxide nanowires via chemical vapor transport, Crystal Growth & Design, 6 (8) (2006) 1936, https://doi.org/10.1021/cg050524g. 335. B. Alhalaili, R. J. Bunk, H. Mao, H. Cansizoglu, R. Vidu, J. Woodall, M. Saif Islam, Gallium oxide nanowires for UV detection with enhanced growth and material properties, Scientific Reports, 10, 21434 (2020); https://doi.org/10.1038/s41598-020-78326-x. 336. M. Law, J. Goldberger, P. Yang, Semiconductor nanowires and nanotubes, Annu. Rev. Mater. Res. 34 (2004) 83, https://doi.org/10.1146/ annurev.matsci.34.040203.112300. 337. H. Zeng, G. Zhang, K. Nagashima, T. Takahashi, T. Hosomi, T. Yanagida, Metal-oxide nanowire molecular sensors and their promises, Chemosensors, 9 (2) (2021) 41, https://doi.org/10.3390/chemosensors9020041. 338. Ab initio calculation. Web source: http://sites.google.com/ a/kdpu.edu.ua/calculationphysics. 339. Р. М. Балабай, А. Ю. Ків, Н. В. Моісеєнко Розрахунки із перших принципів характеристик домішко-дефектних комплексів у кремнії при великих концентраціях домішок, УФЖ, 50 (3) 2005 255-259. http://archive.ujp.bitp.kiev.ua/files/journals/50/3/500308p.pdf. 340. L. K. Ping, M. A. Mohamed, A. K. Mondal, M. F. M. Taib, M. H. Samat, D. D. Berhanuddin, P. S. Menon, R. Bahru, First-Principles studies for electronic structure and optical properties of strontium doped β-Ga2O3, Micromachines 12 (4) (2021) 348, https://doi.org/10.3390/mi12040348. | uk |
dc.description.abstract | Виконано теоретичні розрахунки з використанням функціоналу електронної густини, псевдопотенціалу із перших принципів, власного програмного коду щодо оцінювання електронних властивостей різних наноструктур на основі β-Ga2O3. Визначено керувальні впливи товщини, типу вiльної поверхнi, механiчної дiї стиснення на провiдні властивості надтонких плiвок β-Ga2O3. Встановлено, що плівка з поверхнею (010) товщиною 0,304 нм, яка трактувалася як 2D-об’єкт, у вихідному (нестисненому) стані має величину забороненої зони майже в п’ять разів більше, ніж у масивного кристалу β- Ga2O3. Плівка з неплоскою поверхнею (100) товщиною 1,29 нм під час стиснення до 30 % має величину забороненої зони, що рівна нулеві. Під час стиснення надтонких плівок утворюються орієнтаційні дефекти хімічних зв’язків, що проявляються в різкій та немонотонній зміні ширин електронних заборонених зон. Досліджено сенсорну чутливість наночастинок β-Ga2O3 різних форм (сферичної та призмоподібної) до газових молекул CO, NH3, O3, що локалізувалися або поблизу атомів Ga чи О. Встановлено, що наночастинки обох форм можуть служити ефективними резистивними детекторами молекул CO і NH3. Більш яскрава реакція на молекули СО була зафіксована у сферичної частинки, а щодо молекул NH3 – у призмоподібної частинки. Проте активна ділянка наночастинок, як детекторів локалізувалася біля атомів Ga. На молекули О3 ефективно реагували тільки сферичні наночастинки, збільшуючи свою провідність. Встановлено синергетичні властивості масивів нанодротів на основі β- Ga2O3 за допомогою визначення ступеня впливу дротів один на одного залежно від геометричних параметрів їх взаємного розташування в масиві й електронні характеристики масиву дротів як єдиного цілого. Масиви дротів β-Ga2O3 циліндричної форми і більшого діаметра виявляють більш контрольовані та фізично аргументовані синергетичні електронні характеристики, ніж масиви дротів циліндричної форми меншого діаметра та призмоподібної форми. Оцінено ефективність легування р-типу нанооб’єктів на основі β-Ga2O3 різними металами та неметалами. Вказано перспективні домішки р-типу: атоми двовалентних металів – Mg, Ca, Zn, що заміщують атоми галію та атоми неметалу N, що заміщують різно позиційовані атоми кисню. | uk |
dc.language.iso | uk | uk |
dc.publisher | Криворізький державний педагогічний університет | uk |
dc.subject | β-Ga2O3 | uk |
dc.subject | наноструктури | uk |
dc.subject | функціонал електронної густини | uk |
dc.subject | псевдопотенціал із перших принципів | uk |
dc.subject | просторові розподіли густини валентних електронів | uk |
dc.subject | густини електронних станів | uk |
dc.subject | ширини валентних і заборонених зон | uk |
dc.subject | провідність | uk |
dc.subject | сенсорна чутливість | uk |
dc.subject | домішки заміщення | uk |
dc.subject | акцепторний рівень | uk |
dc.subject | синергетичні властивості | uk |
dc.title | Електронні властивості наноструктур на основі β-Ga2O3 | uk |
dc.type | Thesis | uk |
Розташовується у зібраннях: | Дисертації докторів філософії |
Файли цього матеріалу:
Файл | Опис | Розмір | Формат | |
---|---|---|---|---|
dis_Naumenko_М.pdf | 7.17 MB | Adobe PDF | Переглянути/Відкрити |
Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.