Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал: http://elibrary.kdpu.edu.ua/xmlui/handle/123456789/6973
Повний запис метаданих
Поле DCЗначенняМова
dc.contributor.authorКів, Арнольд Юхимович-
dc.contributor.authorСоловйов, Володимир Миколайович-
dc.contributor.authorСемеріков, Сергій Олексійович-
dc.contributor.authorDanylchuk, Hanna B.-
dc.contributor.authorKibalnyk, Liubov O.-
dc.contributor.authorMatviychuk, Andriy V.-
dc.contributor.authorStriuk, Andrii M.-
dc.contributor.authorДанильчук, Ганна Борисівна-
dc.contributor.authorКібальник, Л.О.-
dc.contributor.authorМатвійчук, Андрій Вікторович-
dc.contributor.authorСтрюк, Андрій Миколайович-
dc.date.accessioned2023-01-02T10:28:33Z-
dc.date.available2023-01-02T10:28:33Z-
dc.date.issued2021-12-18-
dc.identifier.citationKiv A. E. Machine learning for prediction of emergent economy dynamics [Electronic resource] / Arnold E. Kiv, Vladimir N. Soloviev, Serhiy O. Semerikov, Hanna B. Danylchuk, Liubov O. Kibalnyk, Andriy V. Matviychuk, Andrii M. Striuk // Proceedings of the Selected and Revised Papers of 9th International Conference on Monitoring, Modeling & Management of Emergent Economy (M3E2-MLPEED 2021). Odessa, Ukraine, May 26-28, 2021 / Edited by : Arnold E. Kiv, Vladimir N. Soloviev, Serhiy O. Semerikov // CEUR Workshop Proceedings. – 2021. – Vol. 3048. – P. i-xxxi. – Access mode : http://ceur-ws.org/Vol-3048/paper00.pdfuk
dc.identifier.issn1613-0073-
dc.identifier.urihttps://ceur-ws.org/Vol-3048/paper00.pdf-
dc.identifier.urihttp://elibrary.kdpu.edu.ua/xmlui/handle/123456789/6973-
dc.identifier.urihttps://doi.org/10.31812/123456789/6973-
dc.description[1] A. Kiv, V. Soloviev, S. Semerikov, H. Danylchuk, L. Kibalnyk, A. Matviychuk, Experimental economics and machine learning for prediction of emergent economy dynamics, CEUR Workshop Proceedings 2422 (2019) 1–4. URL: http://ceur-ws.org/Vol-2422/paper00.pdf. [2] A. Kiv, P. Hryhoruk, I. Khvostina, V. Solovieva, V. Soloviev, S. Semerikov, Machine learning of emerging markets in pandemic times, CEUR Workshop Proceedings 2713 (2020) 1–20. URL: http://ceur-ws.org/Vol-2713/paper00.pdf. [3] H. Y. Kucherova, V. O. Los, D. V. Ocheretin, O. V. Bilska, E. V. Makazan, Innovative behavior of bitcoin market agents during COVID-19: recurrence analysis, CEUR Workshop Proceedings (2021). [4] H. Kucherova, O. Bilska, L. Serhieieva, Matrix models for assessing the taxation subjects’ interaction under uncertainty of socio-economic processes, CEUR Workshop Proceedings 2422 (2019) 371–384. [5] H. Kucherova, A. Didenko, O. Kravets, Y. Honcharenko, A. Uchitel, Scenario forecasting information transparency of subjects’ under uncertainty and development of the knowledge economy, CEUR Workshop Proceedings 2713 (2020) 81–106. [6] H. Kucherova, D. Ocheretin, V. Los, N. Venherska, Risks of the methodology for forecasting the price of bitcoin and the frequency of its online requests in the digitalization of economic systems, CEUR Workshop Proceedings 2732 (2020) 385–400. [7] D. Ocheretin, V. Los, H. Kucherova, O. Bilska, An alternative approach to modeling the country’s business climate in conditions of limited information, E3S Web of Conferences 166 (2020) 13024. doi: 10.1051/e3sconf/202016613024 . [8] S. Semerikov, H. Kucherova, V. Los, D. Ocheretin, Neural network analytics and forecasting the country’s business climate in conditions of the coronavirus disease (COVID-19), CEUR Workshop Proceedings 2845 (2021) 22–32. URL: http://ceur-ws.org/Vol-2845/Paper_3.pdf. [9] V. Los, D. Ocheretin, Prediction of business confidence index based on a system of economic indicators, CEUR Workshop Proceedings 2422 (2019) 237–248. [10] Y. Makazan, V. Los, Methodical approach to the assessment of human capital level of machine-building enterprises, E3S Web of Conferences 166 (2020) 13012. doi: 10.1051/e3sconf/202016613012 . [11] N. K. Maksyshko, O. V. Vasylieva, Comparative analysis of the stock quotes dynamics for IT and the entertainment industry companies based on the characteristics of memory depth, CEUR Workshop Proceedings (2021). [12] N. Maksyshko, O. Vasylieva, Diagnostics of persistence for quotes dynamics in high-tech stock markets, CEUR Workshop Proceedings 2422 (2019) 467–478. [13] N. Maksyshko, O. Vasylieva, I. Kozin, V. Perepelitsa, Comparative analysis of the attractiveness of investment instruments based on the analysis of market dynamics, CEUR Workshop Proceedings 2713 (2020) 219–238. [14] N. Maksyshko, O. Vasylieva, A. Polova, Method of investment projects evaluation for territorial communities taking into account the concept of sustainable development, E3S Web of Conferences 166 (2020) 13020. doi: 10.1051/e3sconf/202016613020 . [15] A. O. Bielinskyi, O. A. Serdyuk, S. O. Semerikov, V. N. Soloviev, Econophysics of cryptocurrency crashes: a systematic review, CEUR Workshop Proceedings (2021). [16] A. Bielinskyi, A. Matviychuk, O. Serdyuk, S. Semerikov, V. Solovieva, V. Soloviev, Correlational and non-extensive nature of carbon dioxide pricing market, CEUR Workshop Proceedings (2021). [17] A. E. Kiv, V. N. Soloviev, E. Y. Tarasova, T. I. Koycheva, K. V. Kolesnykova, Analysis and application of semantic networks in education, CEUR Workshop Proceedings (2021). [18] A. Bielinskyi, V. Soloviev, S. Semerikov, V. Solovieva, Detecting stock crashes using Levy distribution, CEUR Workshop Proceedings 2422 (2019) 420–433. URL: http://ceur-ws.org/Vol-2422/paper34.pdf. [19] V. Soloviev, O. Serdiuk, S. Semerikov, A. Kiv, Recurrence plot-based analysis of financial-economic crashes, CEUR Workshop Proceedings 2713 (2020) 21–40. URL: http://ceur-ws.org/Vol-2713/paper01.pdf. [20] V. Soloviev, A. Bielinskyi, O. Serdyuk, V. Solovieva, S. Semerikov, Lyapunov exponents as indicators of the stock market crashes, CEUR Workshop Proceedings 2732 (2020) 455–470. URL: http://ceur-ws.org/Vol-2732/20200455.pdf. [21] A. Bielinskyi, S. Semerikov, O. Serdyuk, V. Solovieva, V. Soloviev, L. Pichl, Econophysics of sustainability indices, CEUR Workshop Proceedings 2713 (2020) 372–392. URL: http://ceur-ws.org/Vol-2713/paper41.pdf. [22] V. Derbentsev, S. Semerikov, O. Serdyuk, V. Solovieva, V. Soloviev, Recurrence based entropies for sustainability indices, E3S Web of Conferences 166 (2020) 13031. doi: 10.1051/e3sconf/202016613031 . [23] I. Khvostina, V. Oliinyk, S. Semerikov, V. Solovieva, V. Yatsenko, O. Kohut-Ferens, Hazards and risks in assessing the impact of oil and gas companies on the environment, IOP Conference Series: Earth and Environmental Science 628 (2021) 012027. doi: 10.1088/1755-1315/628/1/012027 . [24] A. O. Bielinskyi, I. Khvostina, A. Mamanazarov, A. Matviychuk, S. Semerikov, O. Serdyuk, V. Solovieva, V. N. Soloviev, Predictors of oil shocks. Econophysical approach in environmental science, IOP Conference Series: Earth and Environmental Science 628 (2021) 012019. doi: 10.1088/1755- 1315/628/1/012019 . [25] P. V. Zahorodko, S. O. Semerikov, V. N. Soloviev, A. M. Striuk, M. I. Striuk, H. M. Shalatska, Comparisons of performance between quantum-enhanced and classical machine learning algorithms on the IBM Quantum Experience, Journal of Physics: Conference Series 1840 (2021) 012021. doi: 10.1088/1742-6596/1840/1/012021 . [26] A. O. Bielinskyi, V. N. Soloviev, Complex network precursors of crashes and critical events in the cryptocurrency market, CEUR Workshop Proceedings 2292 (2018) 37–45. [27] A. O. Tarasenko, Y. V. Yakimov, V. N. Soloviev, Convolutional neural networks for image classification, CEUR Workshop Proceedings 2546 (2019) 101–114. [28] V. N. Soloviev, S. P. Yevtushenko, V. V. Batareyev, Comparative analysis of the cryptocurrency and the stock markets using the Random Matrix Theory, CEUR Workshop Proceedings 2546 (2019) 87–100. [29] V. Soloviev, A. Bielinskyi, V. Solovieva, Entropy analysis of crisis phenomena for DJIA index, CEUR Workshop Proceedings 2393 (2019) 434–449. [30] V. Soloviev, N. Moiseienko, O. Tarasova, Modeling of cognitive process using complexity theory methods, CEUR Workshop Proceedings 2393 (2019) 905–918. [31] V. Soloviev, V. Solovieva, A. Tuliakova, A. Hostryk, L. Pichl, Complex networks theory and precursors of financial crashes, CEUR Workshop Proceedings 2713 (2020) 53–67. [32] A. Kiv, V. Soloviev, E. Tarasova, T. Koycheva, K. Kolesnykova, Semantic knowledge networks in education, E3S Web of Conferences 166 (2020) 10022. doi: 10.1051/e3sconf/202016610022 . [33] V. N. Soloviev, A. O. Bielinskyi, N. A. Kharadzjan, Coverage of the coronavirus pandemic through entropy measures, CEUR Workshop Proceedings 2832 (2020) 24–42. URL: http://ceur-ws.org/Vol-2832/paper02.pdf. [34] A. O. Bielinskyi, S. V. Hushko, A. V. Matviychuk, O. A. Serdyuk, S. O. Semerikov, V. N. Soloviev, Irreversibility of financial time series: a case of crisis, CEUR Workshop Proceedings (2021). [35] A. Matviychuk, O. Novoseletskyy, S. Vashchaiev, H. Velykoivanenko, I. Zubenko, Fractal analysis of the economic sustainability of industrial enterprise, CEUR Workshop Proceedings 2422 (2019) 455–466. [36] A. Matviychuk, I. Strelchenko, S. Vashchaiev, H. Velykoivanenko, Simulation of the crisis contagion process between countries with different levels of socio-economic development, CEUR Workshop Proceedings 2393 (2019) 485–496. [37] V. Derbentsev, A. Matviychuk, N. Datsenko, V. Bezkorovainyi, A. Azaryan, Machine learning approaches for financial time series forecasting, CEUR Workshop Proceedings 2713 (2020) 434–450. [38] S. M. Ivanov, M. M. Ivanov, Big Data based marketing forecasting, CEUR Workshop Proceedings (2021). [39] S. Ivanov, Modeling company sales based on the use of SWOT analysis and ishikawa charts, CEUR Workshop Proceedings 2422 (2019) 385–394. [40] M. Ivanov, Cloud-based digital marketing, CEUR Workshop Proceedings 2422 (2019) 395–404. [41] M. Ivanov, S. Ivanov, N. Terentieva, V. Maltiz, J. Kalyuzhnaya, Fuzzy modeling in human resource management, E3S Web of Conferences 166 (2020) 13010. doi: 10.1051/e3sconf/202016613010 . [42] I. I. Chaikovska, P. M. Hryhoruk, M. Y. Chaikovskyi, Fuzzy model for complex risk assessment of an enterprise investment project, CEUR Workshop Proceedings (2021). [43] P. Hryhoruk, N. Khrushch, S. Grygoruk, Model for assessment of the financial security level of the enterprise based on the desirability scale, CEUR Workshop Proceedings 2422 (2019) 169–180. [44] P. Hryhoruk, S. Grygoruk, N. Khrushch, T. Hovorushchenko, Using non-metric multidimensional scaling for assessment of regions’ economy in the context of their sustainable development, CEUR Workshop Proceedings 2713 (2020) 315–333. [45] N. Khrushch, P. Hryhoruk, T. Hovorushchenko, S. Lysenko, L. Prystupa, L. Vahanova, Assessment of bank’s financial security levels based on a comprehensive index using information technology, CEUR Workshop Proceedings 2713 (2020) 239–260. [46] P. Hryhoruk, N. Khrushch, S. Grygoruk, Assessment model of regions’ economy in the context of their sustainable development, E3S Web of Conferences 166 (2020) 13023. doi: 10.1051/e3sconf/202016613023 . [47] P. M. Hryhoruk, N. A. Khrushch, S. S. Grygoruk, Modeling structural changes in the regional economic development of Ukraine during the COVID-19 pandemic, CEUR Workshop Proceedings (2021). [48] V. Stadnyk, P. Izhevskiy, N. Khrushch, S. Lysenko, G. Sokoliuk, T. Tomalja, Strategic priorities of innovation and investment development of the Ukraine’s economy industrial sector, CEUR Workshop Proceedings 2713 (2020) 145–166. [49] M. V. Shkvaryliuk, L. T. Horal, I. M. Khvostina, N. I. Yashcheritsyna, V. I. Shiyko, The use of genetic algorithms for multicriteria optimization of the oil and gas enterprises financial stability, CEUR Workshop Proceedings (2021). [50] I. Khvostina, N. Havadzyn, L. Horal, N. Yurchenko, Emergent properties manifestation in the risk assessment of oil and gas companies, CEUR Workshop Proceedings 2422 (2019) 157–168. [51] L. Horal, I. Khvostina, N. Reznik, V. Shiyko, N. Yashcheritsyna, S. Korol, V. Zaselskiy, Predicting the economic efficiency of the business model of an industrial enterprise using machine learning methods, CEUR Workshop Proceedings 2713 (2020) 334–351. [52] E. Kryzhanivs’kyi, L. Horal, I. Perevozova, V. Shiyko, N. Mykytiuk, M. Berlous, Fuzzy cluster analysis of indicators for assessing the potential of recreational forest use, CEUR Workshop Proceedings 2713 (2020) 125–144. [53] M. Havrylenko, V. Shiyko, L. Horal, I. Khvostina, N. Yashcheritsyna, Economic and mathematical modeling of industrial enterprise business model financial efficiency estimation, E3S Web of Conferences 166 (2020) 13025. doi: 10.1051/e3sconf/202016613025 . [54] I. Khvostina, S. Semerikov, O. Yatsiuk, N. Daliak, O. Romanko, E. Shmeltser, Casual analysis of financial and operational risks of oil and gas companies in condition of emergent economy, CEUR Workshop Proceedings 2713 (2020) 41–52. URL: http://ceur-ws.org/Vol-2713/paper02.pdf. [55] I. Khvostina, V. Oliinyk, V. Yatsenko, L. Mykhailyshyn, U. Berezhnytska, Modeling the optimal management of the distribution of profits of an oil and gas company taking into account risks, CEUR Workshop Proceedings 2713 (2020) 68–80. [56] H. B. Danylchuk, L. O. Kibalnyk, O. A. Kovtun, O. I. Pursky, Z. Stachowiak, Fuzzy modelling of the country’s migration attractiveness, CEUR Workshop Proceedings (2021). [57] O. I. Pursky, T. V. Dubovyk, I. O. Buchatska, I. S. Lutsenko, H. B. Danylchuk, Computational method determining integral risk indicators of regional socio-economic development, CEUR Workshop Proceedings (2021). [58] G. V. Berezhna, O. V. Aleinikova, O. A. Kovtun, H. B. Danylchuk, V. O. Babenko, P. P. Nechypurenko, Training on gender mainstreaming in project management: case of international donor programs and projects for Ukrainian local communities’ development, CEUR Workshop Proceedings (2021). [59] S. Semerikov, S. Chukharev, S. Sakhno, A. Striuk, V. Osadchyi, V. Solovieva, T. Vakaliuk, P. Nechypurenko, O. Bondarenko, H. Danylchuk, Our sustainable coronavirus future, E3S Web of Conferences 166 (2020) 00001. doi: 10.1051/e3sconf/202016600001 . [60] H. Danylchuk, L. Kibalnyk, O. Serdiuk, Critical phenomena study in economic systems using a damped oscillations model, CEUR Workshop Proceedings 2422 (2019) 211–225. [61] H. Danylchuk, O. Ivanylova, L. Kibalnyk, O. Kovtun, T. Melnyk, O. Serdiuk, V. Zaselskiy, Modelling of trade relations between EU countries by the method of minimum spanning trees using different measures of similarity, CEUR Workshop Proceedings 2713 (2020) 167–186. [62] H. Danylchuk, L. Kibalnyk, O. Kovtun, A. Kiv, O. Pursky, G. Berezhna, Modelling of cryptocurrency market using fractal and entropy analysis in COVID-19, CEUR Workshop Proceedings 2713 (2020) 352–371. [63] H. Danylchuk, O. Kovtun, L. Kibalnyk, O. Sysoiev, Monitoring and modelling of cryptocurrency trend resistance by recurrent and R/S-analysis, E3S Web of Conferences 166 (2020) 13030. doi: 10.1051/e3sconf/202016613030 . [64] O. Kovtun, A. Opalenko, O. Ivanylova, Assessment of the economy structural changes based on the consistency, CEUR Workshop Proceedings 2422 (2019) 27–37. [65] L. O. Kondratenko, H. T. Samoylenko, A. E. Kiv, A. V. Selivanova, O. I. Pursky, T. O. Filimonova, I. O. Buchatska, Computer simulation of processes that influence adolescent learning motivation, CEUR Workshop Proceedings 2879 (2020) 495–506. [66] O. Pursky, A. Selivanova, T. Dubovyk, T. Herasymchuk, Software implementation of e-trade business process management information system, CEUR Workshop Proceedings 2546 (2019) 171–181. [67] O. Pursky, T. Dubovyk, I. Moroz, I. Buchatska, A. Savchuk, The price competition simulation at the blended trading market, CEUR Workshop Proceedings 2422 (2019) 15–26. [68] O. Pursky, T. Dubovyk, I. Gamova, I. Buchatska, Computation algorithm for integral indicator of socio-economic development, CEUR Workshop Proceedings 2393 (2019) 919–934. [69] O. I. Pursky, T. V. Dubovyk, V. O. Babenko, V. F. Gamaliy, R. A. Rasulov, R. P. Romanenko, Computational method for studying the thermal conductivity of molecular crystals in the course of condensed matter physics, Journal of Physics: Conference Series 1840 (2021) 012015. doi: 10.1088/1742- 6596/1840/1/012015 . [70] R. V. Ivanov, Y. V. Sherstennikov, V. M. Porokhnya, T. V. Grynko, Modelling the logistics system of an enterprise producing two type of goods, CEUR Workshop Proceedings (2021).uk
dc.description.abstractThis is an introductory text to a collection of selected papers and revised from the M3E2 2021: 9th International Conference on Monitoring, Modeling & Management of Emergent Economy, which held in Odessa National University of Economics, Odessa, Ukraine, on the May 26-28, 2021. It consists of introduction, conference review and some observations about the event and its future.uk
dc.language.isoenuk
dc.subjectdynamics of emergent markets in crisis and post-crisis perioduk
dc.subjecteconophysicsuk
dc.subjectglobal challenges for economic theory and practice in Europeuk
dc.subjectinformation systems and technologies in economicsuk
dc.subjectinnovation models of economic developmentuk
dc.subjectmodeling of hospitality sphere developmentuk
dc.subjectmodels of global transformationsuk
dc.subjectmonitoring, modeling and forecasting in the banking sectoruk
dc.subjectmonitoring, modeling, forecasting and preemption of crisis in socio-economic systemsuk
dc.subjectrisk management models in emergent economyuk
dc.titleMachine learning for prediction of emergent economy dynamicsuk
dc.typeArticleuk
Розташовується у зібраннях:Кафедра інформатики та прикладної математики

Файли цього матеріалу:
Файл Опис РозмірФормат 
paper00.pdf2.53 MBAdobe PDFПереглянути/Відкрити


Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.