Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал: http://elibrary.kdpu.edu.ua/xmlui/handle/123456789/6520
Назва: Proteolytic processes in organism of different age rats exposed to xenoestrogens
Автори: Lykholat, T. Y.
Lykholat, O. A.
Marenkov, O. M.
Kvitko, M. O.
Panfilova, H. L.
Savosko, V. M.
Belic, Y. V.
Vyshnikina, O. V.
Lykholat, Y. V.
Квітко, Максим Олександрович
Савосько, Василь Миколайович
Бєлик, Юлія Віліївна
Лихолат, Юрій Васильович
Ключові слова: endocrine disrupting chemicals
effect of xenoestrogens
proteolytic processes
different age rats
Дата публікації: 2022
Бібліографічний опис: Lykholat, T. Y., Lykholat, O. A., Marenkov, O. M., Kvitko, M. O., Panfilova, H. L., Savosko, V. N., Belic, Y. V., Vyshnikina, O. V. & Lykholat, Y. V. (2022). Proteolytic processes in organism of different age rats exposed to xenoestrogens. Journal of Physics: Conference Series, 1049, 012046. DOI:10.1088/1742-6596/2288/1/012013
Короткий огляд (реферат): Endocrine disrupting chemicals (EDCs) are a group of compounds that affect the endocrine system, frequently found in everyday products and epidemiologically associated with several diseases. The human population is now ubiquitously exposed to EDCs in daily life. The main way of getting xenoestrogens to the body is the contaminated food. The effects of xenoestrogens on the proteolytic processes of different age rats were determination. The experiments were conducted on Wistar rats exposed to exogenous estrogen for 45 days. At the beginning of the experiment 3-month-old pubertal animals and 6-month-old sexually mature rats were involved. The research materials were organ tissue and blood serum of the rats. The objects were indexes of activity of trypsin and its obligatory inhibitors α1 - antitrypsin (α1-AT) and α2-macroglobulin (α2-MG), cysteine cathepsins B and L, the molecules of middle mass (MMM) level. In summary, the eating food contaminated by exoestrogens led to changes in the proteolytic system and the development of endogenous intoxication, which are also organ-specific and dependent on the age of the animals: a higher level of activity of the inhibitory link and the content of MMM was observed in rats in the puberty period, which leads to a decrease in the potential of the protective mechanisms of the organism and can become a trigger dysfunctional systems of natural detoxification and biotransformation. Inhibition of apoptosis is the main consequence found in the body of experimental rats. This phenomenon can lead to processes that inhibit one of the main mechanisms that reject damaged cells from the population. Females who were in puberty were more susceptible to dietary synthetic estrogens. In contrast to adult animals of the same sex, whose indicators indicate the importance of age characteristics of the body for the ability to perceive the effects of xenoestrogens. Rats became less sensitive to the effects of these substances with age. The difference in experimental animals was due to changes in the rate of detoxification pathway reactions, and not in the metabolism of estrogens entering the body, in particular, with food.
Опис: [1] Yilmaz B, Terekeci H, Sandal S and Kelestimur F 2020 Rev Endocr Metab Disord 21 127–147 URL https://doi.org/10.1007/s11154-019-09521-z. [2] Street M E and Shemesh M 2018 Int J Mol Sci 19 1647 URL https://doi.org/10.3390/ijms19061647. [3] Savosko V, Komarova I, Lykholat Y, Yevtushenko E and Lykholat T 2021 Journal of Physics: Conference Series 1840 URL https://doi.org/10.1088/1742-6596/1840/1/012011 [4] Bals R 2010 Best Pract. Res. Clin. Gastroenterol. 5 629–633 URL https://doi.org/10.1016/j.bpg.2010. 08.006. [5] Gonsioroski A, Mourikes V E and Flaws J A 2020 Int J Mol Sci 12,21 1929 URL https://doi.org/10. 3390/ijms21061929. [6] Yu W, Mourikes V E and Flaws J A 2020 Int J Mol Sci 12 1929 URL https://link.springer.com/article/ 10.1007/s11356-019-04402-z [7] Lykholat T, Lykholat O and Antonyuk S 2016 tsitologia i genetika. 50 40–51 URL https://pubmed.ncbi. nlm.nih.gov/27266184/ [8] Jodar L V, Santos F A, Zucolotto V and Janegitz B C 2018 J. Solid State Electrochem 22 1431–1438 URL https://doi.org/10.1007/s10008-017-3726-9 [9] Basley K, Davenport B, Vogiatzis K and Goulson D 2018 Peer J. 17(6) URL https://doi:10.7717/peerj. 4258. [10] Chang H, Shen X, Shao B and Wu F 2018 Environ Pollut. 17 881–888 URL https://doi:10.1016/j. envpol.2018.01.003. [11] Katibi K K, Santos F A, Zucolotto V and Janegitz B C 2021 Polymers (Basel) 13 392 URL https: //doi.org/10.3390/polym13030392. [12] Radzikowska E, Janicki K, Maciejewski R and Madej B 2001 Ann. Univ. Mariae Curie Sklodowska Med. 213–219 URL https://doi.org/10.1002/dvdy.10134. [13] Tang J 2019 Steroids 145 23–31 URL https://doi.org/10.1016/j.steroids.2019.02.010 [14] Finnegan M C, Baxter L R, Maul J D, Hanson L M and Hoekstra F P 2017 Environ Toxicol Chem. 19836 2838–2848 URL https://doi:10.1002/etc.3846. [15] Hano T, Ohkubo N, Kono K and Tanaka H 2015 Bull Environ Contam Toxicol. 95 340–343 URL https://doi:10.1007/s00128-015-1552-2. [16] Celino-Brady F T, Lerner D T and Seale A P 2021 Front Endocrinol (Lausanne) 25 619361 URL https://doi.org/10.3389/fendo.2020.619361 [17] Morgan M, Deoraj A, Felty Q and Roy D 2017 Mol Cell Endocrinol. 5 89–102 URL https://doi: 10.1016/j.mce.2016.10.003. [18] Xu P, Zhou X, Xu D, Xiang Y, Ling W and Chen M 2018 Int J Environ Res Public Health. 15 125 URL https://doi.org/10.3390/ijerph15010125 [19] Kamaz M, Wickramasinghe S, Eswaranandam S, Zhang W, Jones S, Watts M J and Qian X 2019 Int J Environ Res Public Health. 16 1363 URL https://doi.org/10.3390/ijerph16081363 [20] Moreira F, Santana E R and Spinelli A 2020 Sci Rep. 10 1955 URL https://www.nature.com/articles/ s41598-020-58931-6 [21] Aziz M and Ojumu T 2020 Membranes (Basel) 10 37 URL https://doi.org/10.3390/membranes10030037. [22] Zhang T, Zhou X, Ren X, Zhang X, Wu J, Wang S and Wang Z 2021 Front Endocrinol (Lausanne) 3 696106 URL https://doi.org/10.3389/fendo.2021.696106 [23] Kotsariev O S, Antonyuk S V and Lykholat O A 2015 Fiziolohichnyi zhurnal 47 36–41 URL https://www.ujecology.com/abstract/ introduction-success-of-less-common-species-from-the-genus-berberis-l-44976.html [24] Lykholat O A, Grigoryuk I P and Lykholat T Y 2016 Annals of Agrarian Science 14 335–339 URL https://doi.org/10.1016/j.aasci.2016.09.012 [25] Bramwell L, Glinianaia S V, Rankin J, Rose M, Fernandes A, Harrad S and Pless-Mulolli P 2016 Environ Int. URL https://doi.org/10.1016/j.envint.2016.02.017. [26] Roy N, Mascolo E, Lazzaretti C, Paradiso E, D Alessandro S, Zareba K, Simoni M and Casarini L 2021 Front Endocrinol (Lausanne) 8 791763 URL https://doi.org/10.3389/fendo.2021.791763 [27] Kumar M, Sarma D, Shubham S, Kumawat M, Verma V, Prakash A and Tiwari R 2020 Front Public Health. 24 553850 URL https://doi.org/10.3389/fpubh.2020.553850 [28] Nadal A, Fuentes E, Ripoll C, Villar-Pazos S, Castellano-Munoz M, Soriano S, Martinez-Pinna J, Quesada I and Alonso-Magdalena P 2018 J Steroid Biochem Mol Biol. 16–22 URL https://doi.org/10.1016/j. jsbmb.2017.01.014. [29] Carli F, Ciociaro D and Gastaldelli A 2022 Metabolites 10 167 URL https://doi.org/10.3390/ metabo12020167. [30] Lizunkova P, Engdahl E, Borbely G, Gennings C, Lindh C, Bornehag C and Ruegg J 2022 J. Int J Mol Sci. 19 2320 URL https://doi.org/10.3390/ijms23042320 [31] Korol D L and Wang W 2018 Physiol Behav. 1 67–78 URL https://doi.org/10.1016/j.physbeh.2017.11. 022. [32] Muscogiuri G, Barrea L, Laudisio D, Savastano S and Colao A 2017 Arch Toxicol. 91 3469–3475 URL https://doi.org/10.1007/s00204-017-2071-1. [33] Schupp T, Allmendinger H, Bossuyt B T A, Hidding B, Tury B and West R 2017 Rev Environ Contam Toxicol. 39–72 URL https://doi.org/10.1007/398_2016_6. [34] Nakagomi M, Suzuki E, Saito Y and Nagao T 2017 J Appl Toxicol. URL https://doi:10.1002/jat.3574. [35] Chen K L A, Zhao Y C, Hieronymi K, Smith B and Madak-Erdogan Z 2017 PLoS One. 12 e0189911 URL https://doi.org/10.1371/journal.pone.0189911. [36] Cavalieri E, Chakravarti D, Guttenplan J, Hart E, Ingle J, Jankowiak R, Muti P, Rogan E, Russo J, Santen R and Sutter T 2006 Biochim Biophys Acta. 1766 63–78 URL https://doi.org/10.1016/j.bbcan.2006. 03.001. [37] Paulose T, Speroni L, Sonnenschein C and Soto A M 2015 Reprod Toxicol. 58–65 URL https://doi: 10.1016/j.reprotox.2014.09.012. [38] Watt J and Schlezinger J J 2015 Toxicology. 4 66–77 URL https://doi:10.1016/j.tox.2015.03.006. [39] Jana B, Meller K A, Czajkowska M and Ca lka J 2018 Ann Anat. 2 135–141 URL https://doi:10.1016/j. aanat.2017.11.010. [40] Xu Y 2017 Ann Anat. 337–357 URL https://doi:10.1007/978-3-319-70178-3_16. [41] Iwasa T, Matsuzaki T, Tungalagsuvd A, Munkhzaya M, Yiliyasi M, Kato T, Kuwahara A and Irahara M 2016 Behav Brain Res. 1 35–43 URL https://doi:10.1016/j.bbr.2016.04.048. [42] Manikkam M, Tracey R, Guerrero-Bosagna C and Skinner M K 2013 PLoS One. e55387 URL https://doi: 10.1371/journal.pone.0055387. [43] Neff A M, Laws M J, Warner G R and Flaws J A 2022 Curr Environ Health Rep. 1 URL https://experts.illinois.edu/en/publications/ the-effects-of-environmental-contaminant-exposure-on-reproductive [44] Tang-Peronard J L, Heitmann B L, Andersen H R, Steuerwald U, Grandjean P, Weihe P and Jensen T K 2014 Am J Clin Nutr. 5–13 URL https://doi.org/10.3945/ajcn.113.066720. [45] Vandenberg L N, Colborn T, Hayes T B, Heindel J J, Jacobs D R J, Lee D, Shioda T, Soto A, vom Saal F, Welshons W V, Zoeller R and Myers J P 2012 Endocr Rev. 378–455 URL https://doi.org/10.1210/er. 2011-1050. [46] Turk V, Stoka V, Vasiljeva O, Renko M, Sun T, Turk B and Turk D 2012 Biochim. Biophys. Acta. 1824 68–88 URL https://doi.org/10.1016/j.bbapap.2011.10.002. [47] Kharyakina I Y, Zarembskyy Z A and Balyabina M D 1990 Lab Delo 10–13 URL https://pubmed.ncbi. nlm.nih.gov/1692355/ [48] Berezin V A, Chernaya V I, Reva A D and Smagina O V 1982 Ukr Biochem J. 249–253 URL https: //pubmed.ncbi.nlm.nih.gov/7390982/ [49] Malakhova M Y 1995 Effer. Therapy 60–65 URL https://doi.org/ [50] Devetzi M, Scorilas A, Tsiambas E, Sameni M, Fotiou S, Sloane B F and Talieri M 2009 Gynecol. Oncol. 112 531–536 URL https://doi.org/10.1016/j.ygyno.2008.10.030. [51] Chen N, Zou J, Wang S, Ye Y, Huang Y, Gadda G and Yang J J 2009 Biochemistry. 21 3519–3526 URL https://doi.org/10.1021/bi802289v. [52] Eykelbosh A J and Kraak G 2010 Comp Biochem Physiol A Mol Integr Physiol. 156 218–223 URL https://doi.org/10.1016/j.cbpa.2010.02.005. [53] Lauber S N and Gooderham N J 2011 Toxicology. 11 139–145 URL https://doi.org/10.1016/j.tox.2010. 10.004. [54] Barnes P J 2000 Managing Chronic Obstructive Pulmonary Disease (London: Science press.) [55] Lauer D, Reichenbach A and Birkenmeier G 2001 Exp. Neurol. 167 385–392 URL https://doi.org/10. 1006/exnr.2000.7569. [56] Buhling F, Waldburg N, Kruger S, Rocken C, Wiesner O, Weber E and Welte T 2002 Dev. Dyn. 225 14–21 URL https://doi.org/10.1002/dvdy.10134. [57] Liu M C, Kobeissy F, Zheng W, Zhang Z, Hayes R L and Wang K K W 2011 ASN Neuro. 16 50–58 URL https://doi.org/10.1042/AN20100012.
URI (Уніфікований ідентифікатор ресурсу): http://elibrary.kdpu.edu.ua/xmlui/handle/123456789/6520
https://doi.org/10.1088/1742-6596/2288/1/012013
Розташовується у зібраннях:Кафедра біології та екології

Файли цього матеріалу:
Файл Опис РозмірФормат 
2022 Lykholat Kvitko Savosko et al Concentration Level and Health Risk Assessment.pdf552.28 kBAdobe PDFПереглянути/Відкрити


Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.