Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал:
http://elibrary.kdpu.edu.ua/xmlui/handle/123456789/4534
Повний запис метаданих
Поле DC | Значення | Мова |
---|---|---|
dc.contributor.author | Крамаренко, Тетяна Григорівна | - |
dc.contributor.author | Пилипенко, Ольга Сергіївна | - |
dc.contributor.author | Сердюк, Ольга Юріївна | - |
dc.date.accessioned | 2021-09-23T06:07:16Z | - |
dc.date.available | 2021-09-23T06:07:16Z | - |
dc.date.issued | 2021 | - |
dc.identifier.citation | Kramarenko T. H. Digital technologies in specialized mathematics education: application of GeoGebra in Stereometry teaching / T. H. Kramarenko, O. S. Pylypenko, O. Yu. Serdiuk // AET 2020: Symposium on Advances in Educational Technology (November 12-13, 2020, Kyiv, Ukraine). – Kyiv, 2020. – Pp. 627–647. | - |
dc.identifier.uri | http://elibrary.kdpu.edu.ua/xmlui/handle/123456789/4534 | - |
dc.identifier.uri | https://doi.org/10.31812/123456789/4534 | - |
dc.description | [1] E. Velikova, M. Petkova, Analysing students’ creativity in integrating GeoGebra applets in solving geometrical problems, Baltic Journal of Modern Computing 7 (2019) 419–429. doi:10.22364/bjmc.2019.7.3.08. [2] Z. Lavicza, T. Prodromou, K. Fenyvesi, M. Hohenwarter, I. Juhos, B. Koren, J. DiegoMantecon, Integrating STEM related technologies into mathematics education at a large scale, International Journal for Technology in Mathematics Education 27 (2020) 3–12. [3] A. Striuk, M. Rassovytska, S. Shokaliuk, Using Blippar augmented reality browser in the practical training of mechanical engineers, CEUR Workshop Proceedings 2104 (2018) 412–419. [4] O. Lavrentieva, I. Arkhypov, O. Kuchma, A. Uchitel, Use of simulators together with virtual and augmented reality in the system of welders’ vocational training: Past, present, and future, CEUR Workshop Proceedings 2547 (2020) 201–216. [5] I. Hevko, O. Potapchuk, T. Sitkar, I. Lutsyk, P. Koliasa, Formation of practical skills modeling and printing of three-dimensional objects in the process of professional training of IT specialists, E3S Web of Conferences 166 (2020) 10016. doi:10.1051/e3sconf/202016610016. [6] Y. Modlo, S. Semerikov, P. Nechypurenko, S. Bondarevskyi, O. Bondarevska, S. Tolmachev, The use of mobile Internet devices in the formation of ICT component of bachelors in electromechanics competency in modeling of technical objects, CEUR Workshop Proceedings 2433 (2019) 413–428. [7] M. Astafieva, O. Zhyltsov, V. Proshkin, O. Lytvyn, E-learning as a mean of forming students’ mathematical competence in a research-oriented educational process, CEUR Workshop Proceedings 2643 (2020) 674–689. [8] M. Moiseienko, N. Moiseienko, I. Kohut, A. Kiv, Digital competence of pedagogical university student: Definition, structure and didactical conditions of formation, CEUR Workshop Proceedings 2643 (2020) 60–70. [9] O. M. Markova, The tools of cloud technology for learning of fundamentals of mathematical informatics for students of technical universities, CEUR Workshop Proceedings 2168 (2017) 27–33. [10] O. Korotun, T. Vakaliuk, V. Soloviev, Model of using cloud-based environment in training databases of future IT specialists, CEUR Workshop Proceedings 2643 (2020) 281–292. [11] T. Kramarenko, O. Pylypenko, V. Zaselskiy, Prospects of using the augmented reality application in STEM based mathematics teaching, Educational Dimension 53 (2019) 199–218. doi:10.31812/educdim.v53i1.3843. [12] K. Panetta, 5 Trends Appear on the Gartner Hype Cycle for Emerging Technologies, 2019. URL: https://www.gartner.com/smarterwithgartner/5-trends-appear-on-the-gartner-hypecycle-for-emerging-technologies-2019/. [13] L. I. Bilousova, L. E. Gryzun, S. H. Lytvynova, V. V. Pikalova, Modelling in GeoGebra in the context of holistic approach realization in mathematical training of pre-service specialists, CEUR Workshop Proceedings (2021). [14] V. V. Babkin, V. V. Sharavara, V. V. Sharavara, V. V. Bilous, A. V. Voznyak, S. Y. Kharchenko, Using augmented reality in university education for future IT specialists: educational process and student research work, CEUR Workshop Proceedings 2898 (2021) 255–268. URL: http://ceur-ws.org/Vol-2898/paper14.pdf. [15] N. Rashevska, S. Semerikov, N. Zinonos, V. Tkachuk, M. Shyshkina, Using augmented reality tools in the teaching of two-dimensional plane geometry, CEUR Workshop Proceedings 2731 (2020) 79–90. [16] S. O. Semerikov, M. M. Mintii, I. S. Mintii, Review of the course “Development of Virtual and Augmented Reality Software” for STEM teachers: implementation results and improvement potentials, CEUR Workshop Proceedings 2898 (2021) 159–177. URL: http://ceur-ws.org/ Vol-2898/paper09.pdf. [17] D. S. Shepiliev, Y. O. Modlo, Y. V. Yechkalo, V. V. Tkachuk, M. M. Mintii, I. S. Mintii, O. M. Markova, T. V. Selivanova, O. M. Drashko, O. O. Kalinichenko, T. A. Vakaliuk, V. V. Osadchyi, S. O. Semerikov, WebAR development tools: An overview, CEUR Workshop Proceedings 2832 (2020) 84–93. URL: http://ceur-ws.org/Vol-2832/paper12.pdf. [18] Council Recommendation of 22 May 2018 on key competences for lifelong learning, 2018. URL: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32018H0604(01)&from=EN. [19] S. Rakov, V. Gorokh, K. Osenkov, Mathematics, computer mathematical systems, creativity, in: J. Braman, G. Vincenti, G. Trajkovski (Eds.), Handbook of Research on Computational Arts and Creative Informatics, IGI Global, Hershey, 2009, pp. 253–279. doi:10.4018/978- 1- 60566- 352- 4.ch015. [20] M. Hohenwarter, J. Hohenwarter, Y. Kreis, Z. Lavicza, Teaching and Learning Calculus with Free Dynamic Mathematics Software GeoGebra, in: ICME 11 – 11th International Congress on Mathematical Education, Nuevo Leon, Monterrey, 2008. [21] V. Y. Velychko, E. H. Fedorenko, O. Y. Serdiuk, Theoretical bases of application of Free Software in preparation of pre-service teachers of Mathematics, Physics and Computer Science, CEUR Workshop Proceedings (2021). [22] O. Syrovatskyi, S. Semerikov, Y. Modlo, Y. Yechkalo, S. Zelinska, Augmented reality software design for educational purposes, CEUR Workshop Proceedings 2292 (2018) 193–225. URL: http://ceur-ws.org/Vol-2292/paper20.pdf. [23] Y. Modlo, S. Semerikov, S. Bondarevskyi, S. Tolmachev, O. Markova, P. Nechypurenko, Methods of using mobile internet devices in the formation of the general scientific component of bachelor in electromechanics competency in modeling of technical objects, CEUR Workshop Proceedings 2547 (2020) 217–240. [24] L. Diković, Applications GeoGebra into teaching some topics of mathematics at the college level, Computer Science and Information Systems 6 (2009) 191–203. doi:10.2298/csis0902191D. [25] M. G. Drushlyak, O. V. Semenikhina, V. V. Proshkin, S. Y. Kharchenko, T. D. Lukashova, Methodology of formation of modeling skills based on a constructive approach (on the example of GeoGebra), CEUR Workshop Proceedings 2879 (2020) 458–472. [26] L. O. Flehantov, Y. I. Ovsiienko, A. V. Antonets, V. N. Soloviev, Using dynamic vector diagrams to study mechanical motion models at agrarian university with GeoGebra, CEUR Workshop Proceedings (2021). [27] N. V. Osypova, V. I. Tatochenko, Improving the learning environment for future mathematics teachers with the use application of the dynamic mathematics system GeoGebra AR, CEUR Workshop Proceedings 2898 (2021) 178–196. URL: http://ceur-ws.org/Vol-2898/paper10.pdf. [28] O. V. Semenikhina, Methodological approaches to the formation of professional readiness of mathematics teacher for the use of mathematical knowledge computer visualization tools, Pedahohichni nauky: teoriya, istoriya, innovatsiyni tekhnolohiyi 2 (2017) 129–138. doi:10.24139/2312- 5993/2017.02/129- 138. [29] O. V. Semenikhina, M. H. Drushliak, GeoGebra 5.0 tools and their use in solving solid geometry problems, Information Technologies and Learning Tools 44 (2014) 124–133. doi:10.33407/itlt.v44i6.1138. [30] Z. Zetriuslita, N. Nofriyandi, E. Istikomah, The Increasing Self-Efficacy and Self-Regulated through GeoGebra Based Teaching reviewed from Initial Mathematical Ability (IMA) Level, International Journal of Instruction 14 (2021) 587–598. doi:10.29333/iji.2021.14135a. [31] P. Richard, M. Blossier, Instrumented modelling and preliminary conceptions in threedimensional dynamic geometry with GeoGebra-3D, in: T. Bastiaens, G. Marks (Eds.), Proceedings of E-Learn: World Conference on E-Learning in Corporate, Government, Healthcare, and Higher Education 2012, Association for the Advancement of Computing in Education (AACE), Montréal, Quebec, Canada, 2012, pp. 322–330. URL: https: //www.learntechlib.org/p/41611. [32] S. M. Amelina, R. O. Tarasenko, S. O. Semerikov, Y. M. Kazhan, Teaching foreign language professional communication using augmented reality elements, CEUR Workshop Proceedings (2021). [33] T. Brzezinski, GeoGebra 3D with AR (iOS): Explorations & Lesson Ideas, 2019. URL: https://www.geogebra.org/m/rmfptnzu. [34] O. Burov, A. Kiv, S. Semerikov, A. Striuk, M. Striuk, L. Kolgatina, I. Oliinyk, AREdu 2020 - How augmented reality helps during the coronavirus pandemic, CEUR Workshop Proceedings 2731 (2020) 1–46. [35] A. Kiv, M. Shyshkina, S. Semerikov, A. Striuk, Y. Yechkalo, AREdu 2019 – How augmented reality transforms to augmented learning, CEUR Workshop Proceedings 2547 (2020) 1–12. [36] T. Kolomoiets, D. Kassim, Using the augmented reality to teach of global reading of preschoolers with autism spectrum disorders, CEUR Workshop Proceedings 2257 (2018) 237–246. [37] O. Lavrentieva, I. Arkhypov, O. Krupskyi, D. Velykodnyi, S. Filatov, Methodology of using mobile apps with augmented reality in students’ vocational preparation process for transport industry, CEUR Workshop Proceedings 2731 (2020) 143–162. [38] I. Mintii, V. Soloviev, Augmented reality: Ukrainian present business and future education, CEUR Workshop Proceedings 2257 (2018) 227–231. [39] P. Nechypurenko, T. Starova, T. Selivanova, A. Tomilina, A. Uchitel, Use of augmented reality in chemistry education, CEUR Workshop Proceedings 2257 (2018) 15–23. [40] P. Nechypurenko, V. Stoliarenko, T. Starova, T. Selivanova, O. Markova, Y. Modlo, E. Shmeltser, Development and implementation of educational resources in chemistry with elements of augmented reality, CEUR Workshop Proceedings 2547 (2020) 156–167. [41] L. L. Nezhyva, S. P. Palamar, H. O. Vaskivska, O. V. Kotenko, L. A. Nazarenko, M. S. Naumenko, A. V. Voznyak, Augmented reality in the literary education of primary school children: specifics, creation, application, CEUR Workshop Proceedings (2021). [42] S. P. Palamar, G. V. Bielienka, T. O. Ponomarenko, L. V. Kozak, L. L. Nezhyva, A. V. Voznyak, Formation of readiness of future teachers to use augmented reality in the educational process of preschool and primary education, CEUR Workshop Proceedings 2898 (2021) 334–350. URL: http://ceur-ws.org/Vol-2898/paper18.pdf. [43] O. B. Petrovych, A. P. Vinnichuk, V. P. Krupka, I. A. Zelenenka, A. V. Voznyak, The usage of augmented reality technologies in professional training of future teachers of Ukrainian language and literature, CEUR Workshop Proceedings 2898 (2021) 315–333. URL: http://ceur-ws.org/Vol-2898/paper17.pdf. [44] N. Rashevska, V. Soloviev, Augmented reality and the prospects for applying its in the training of future engineers, CEUR Workshop Proceedings 2257 (2018) 192–197. [45] R. O. Tarasenko, S. M. Amelina, S. O. Semerikov, V. D. Shynkaruk, Using interactive semantic networks as an augmented reality element in autonomous learning, Journal of Physics: Conference Series 1946 (2021) 012023. doi:10.1088/1742- 6596/1946/1/012023. [46] S. Zelinska, A. Azaryan, V. Azaryan, Investigation of opportunities of the practical application of the augmented reality technologies in the information and educative environment for mining engineers training in the higher education establishment, CEUR Workshop Proceedings 2257 (2018) 204–214. [47] N. Zinonos, E. Vihrova, A. Pikilnyak, Prospects of using the augmented reality for training foreign students at the preparatory departments of universities in Ukraine, CEUR Workshop Proceedings 2257 (2018) 87–92. [48] V. Sidoruk, Construction of polyhedra sections, 2018. URL: https://www.geogebra.org/m/Jd4va4rs. [49] N. F. Fariha, H. P. Lestari, Construction of dandelin sphere on definition of conics using geogebra classic 5, Journal of Physics: Conference Series 1320 (2019) 012085. doi:10.1088/1742- 6596/1320/1/012085. [50] M. Rykovskyi, Mykhailo Yosypovych Rykovskyi, 2018. URL: https://www.geogebra.org/u/mirinf. [51] T. H. Kramarenko, V. V. Korolskyi, S. O. Semerikov, S. V. Shokaliuk, Innovative information and communication technologies of Mathematics teaching, 2 ed., Kryvyi Rih Pedagogical University, Kryvyi Rih, 2019. [52] T. Kramarenko, Selected questions of Elementary Mathematics from GeoGebra, 2019. URL: https://www.geogebra.org/m/gqpk8yfu. [53] T. Kramarenko, O. Pylypenko, I. Muzyka, Application of GeoGebra in Stereometry teaching, CEUR Workshop Proceedings 2643 (2020) 705–718. [54] GeoGebra Team German, Learn geogebra 3d calculator, 2018. URL: https://www.geogebra.org/m/aWhYSpvy. [55] H. Bevz, V. Bevz, N. Vladimirova, V. Vladimirov, Geometry 11 grade, Geneza, Kyiv, 2011. [56] W. Stevens, Tables of the angular transformation, Biometrika 40 (1953) 70–73. doi:10.2307/2333098. [57] T. Kramarenko, O. Pylypenko, GeoGebra AR Demo: The sphere is inscribed in a pyramid, Video, 2021. URL: https://youtu.be/oohbLc19Llo. [58] T. Kramarenko, O. Pylypenko, GeoGebra AR Demo: A sphere described around a right quadrangular pyramid, Video, 2021. URL: https://youtu.be/JSkdu1lgWlg. [59] M. I. Skanavi (Ed.), Collection of problems in mathematics for applicants to universities, Minsk, 1990. [60] M. Tomaschko, S. Kocadere, M. Hohenwarter, Opportunities for participation, productivity, and personalization through GeoGebra mathematics apps, in: A. Khan, S. Umair (Eds.), Handbook of Research on Mobile Devices and Smart Gadgets in K-12 Education, IGI Global, Hershey, 2018, pp. 45–56. doi:10.4018/978-1- 5225- 2706- 0.ch004. | - |
dc.description.abstract | The purpose of the paper is to improve methodology of teaching Mathematics via the use of digital technologies. The task of the paper is to identify the issues that require a theoretical and experimental solution. The objective of the paper is the educational process in the higher education institution, the subject of the paper is modern ICT. The result of the study is the learning tools of pedagogically considered and adequate bending of conventional and modern learning environment implemented into the educational process. The possibilities of using cloud technologies and Dynamic Mathematics system GeoGebra in the educational process through Stereometry specialized training have been revealed. The use of GeoGebra Dynamic Mathematics in Stereometry teaching will favourably influence the formation of students’ STEM competencies. In order to encourage Mathematics and Computer Science teachers to implement effectively the elements of STEM education, it is suggested that cloud-based learning tools such as GeoGebra be used in the teaching process. | uk |
dc.language.iso | en | uk |
dc.subject | GeoGebra 3D Graphing Calculator | uk |
dc.subject | geometry | uk |
dc.subject | STEM competencies | uk |
dc.subject | stereometry teaching | uk |
dc.subject | methodology of teaching mathematics | uk |
dc.subject | cloud technologies in education | uk |
dc.title | Digital technologies in specialized mathematics education: application of GeoGebra in Stereometry teaching | uk |
dc.type | Article | uk |
Розташовується у зібраннях: | Кафедра інформатики та прикладної математики |
Файли цього матеріалу:
Файл | Опис | Розмір | Формат | |
---|---|---|---|---|
2021 Пилипенко (прийнято в AET_2020).pdf | 541.31 kB | Adobe PDF | Переглянути/Відкрити |
Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.