Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал: http://elibrary.kdpu.edu.ua/xmlui/handle/123456789/4476
Назва: Predicting the economic efficiency of the business model of an industrial enterprise using machine learning methods
Автори: Horal, Liliana
Khvostina, Inesa
Reznik, Nadiia
Shyiko, Vira
Yashcheritsyna, Natalia
Korol, Svitlana
Zaselskiy, Vladimir
Ключові слова: neural networks
forecasting
business model
economic efficiency
digitalization
oil transportation company
Дата публікації: 26-жов-2020
Видавництво: CEUR Workshop Proceedings
Бібліографічний опис: Horal L. Predicting the economic efficiency of the business model of an industrial enterprise using machine learning methods / Liliana Horal, Inesa Khvostina, Nadiia Reznik, Vira Shyiko, Natalia Yashcheritsyna, Svitlana Korol, Vladimir Zaselskiy // CEUR Workshop Proceedings. - Vol. 2713. - P. 334-351.
Короткий огляд (реферат): The paper considers the problem of studying the impact of key determinants on the industrial enterprise business model economic efficiency and aims to build an optimal model for predicting the industrial enterprise business model effectiveness using neural boundaries. A system of key determinants key factors has been developed. Significant factors were later used to build neural networks that characterize the studied resultant trait development vector. The procedure for constructing neural networks was performed in the STATISTICA Neural Networks environment. As input parameters, according to the previous analysis, 6 key factor indicators were selected. The initial parameter is determined by economic efficiency. According to the results of the neural network analysis, 100 neural networks were tested and the top 5 were saved. The following types of neural network architectures, multilayer perceptron, generalized regression network and linear network were used. Based on the results of the neural network modeling, 5 multilayer perceptrons of neural network architectures were proposed. According to descriptive statistics, the best model was a multilayer perceptron, with the MLP 6-10-1 architecture, which identifies a model with 6 input variables, one output variable and one hidden layer containing 10 hidden neurons. According to the analysis of the sensitivity of the network to input variables, it was determined that the network is the most sensitive to the variable the share of electricity costs in total costs. According to the results of selected neural networks standard prediction, the hypothesis of the best neural network was confirmed as Absolute res., Squared res, Std. Res for the neural network MLP 6-10-1 reached the optimal value and indicate that the selected model really has small residues, which indicates a fairly high accuracy of the forecast when using it.
URI (Уніфікований ідентифікатор ресурсу): http://ceur-ws.org/Vol-2713/paper37.pdf
http://elibrary.kdpu.edu.ua/xmlui/handle/123456789/4476
https://doi.org/10.31812/123456789/4476
ISSN: 1613-0073
Розташовується у зібраннях:Збірники наукових праць та матеріали конференцій

Файли цього матеріалу:
Файл Опис РозмірФормат 
paper37.pdfarticle744 kBAdobe PDFПереглянути/Відкрити


Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.