Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал: http://elibrary.kdpu.edu.ua/xmlui/handle/123456789/4470
Повний запис метаданих
Поле DCЗначенняМова
dc.contributor.authorKryzhanivs'kyi, Evstakhii-
dc.contributor.authorHoral, Liliana-
dc.contributor.authorPerevozova, Iryna-
dc.contributor.authorShyiko, Vira-
dc.contributor.authorMykytiuk, Nataliia-
dc.contributor.authorBerlous, Maria-
dc.date.accessioned2021-09-07T15:36:21Z-
dc.date.available2021-09-07T15:36:21Z-
dc.date.issued2020-10-26-
dc.identifier.citationKryzhanivs'kyi E. Fuzzy cluster analysis of indicators for assessing the potential of recreational forest use / Evstakhii Kryzhanivs'kyi, Liliana Horal, Iryna Perevozova, Vira Shyiko, Nataliia Mykytiuk, Maria Berlous // CEUR Workshop Proceedings. - Vol. 2713. - P. 125-144.uk
dc.identifier.issn1613-0073-
dc.identifier.urihttp://ceur-ws.org/Vol-2713/paper07.pdf-
dc.identifier.urihttp://elibrary.kdpu.edu.ua/xmlui/handle/123456789/4470-
dc.identifier.urihttps://doi.org/10.31812/123456789/4470-
dc.description.abstractCluster analysis of the efficiency of the recreational forest use of the region by separate components of the recreational forest use potential is provided in the article. The main stages of the cluster analysis of the recreational forest use level based on the predetermined components were determined. Among the agglomerative methods of cluster analysis, intended for grouping and combining the objects of study, it is common to distinguish the three most common types: the hierarchical method or the method of tree clustering; the K-means Clustering Method and the two-step aggregation method. For the correct selection of clusters, a comparative analysis of several methods was performed: arithmetic mean ranks, hierarchical methods followed by dendrogram construction, K- means method, which refers to reference methods, in which the number of groups is specified by the user. The cluster analysis of forestries by twenty analytical grounds was not proved by analysis of variance, so the re-clustering of certain objects was carried out according to the nine most significant analytical features. As a result, the forestry was clustered into four clusters. The conducted cluster analysis with the use of different methods allows us to state that their combination helps to select reasonable groupings, clearly illustrate the clustering procedure and rank the obtained forestry clusters.uk
dc.language.isoenuk
dc.publisherCEUR Workshop Proceedingsuk
dc.subjectcluster analysisuk
dc.subjectk-means clustering methoduk
dc.subjectforestryuk
dc.subjectrecreationuk
dc.titleFuzzy cluster analysis of indicators for assessing the potential of recreational forest useuk
dc.typeArticleuk
Розташовується у зібраннях:Збірники наукових праць та матеріали конференцій

Файли цього матеріалу:
Файл Опис РозмірФормат 
paper07.pdfarticle761.03 kBAdobe PDFПереглянути/Відкрити


Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.