Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал: http://elibrary.kdpu.edu.ua/xmlui/handle/123456789/4451
Назва: Cloud technologies and learning analytics: web application for PISA results analysis and visualization
Автори: Mazorchuk, Mariia S.
Vakulenko, Tetyana S.
Bychko, Anna O.
Kuzminska, Olena H.
Prokhorov, Oleksandr V.
Ключові слова: learning analytics
Cloud Technologies
Cloud Technologies
PISA
web application
Дата публікації: 10-чер-2021
Видавництво: CEUR Workshop Proceedings
Бібліографічний опис: Mazorchuk M. S. Cloud technologies and learning analytics: web application for PISA results analysis and visualization / Mariia S. Mazorchuk, Tetyana S. Vakulenko, Anna O. Bychko, Olena H. Kuzminska, Oleksandr V. Prokhorov // CEUR Workshop Proceedings. - Vol. 2879. - P. 484-494.
Короткий огляд (реферат): This article analyzes the ways to apply Learning Analytics, Cloud Technologies, and Big Data in the field of education on the international level. This paper provides examples of international analytical researches and cloud technologies used to process the results of those researches. It considers the PISA research methodology and related tools, including the IDB Analyzer application, free R intsvy environment for processing statistical data, and cloud-based web application PISA Data Explorer. The paper justifies the necessity of creating a stand-alone web application that supports Ukrainian localization and provides Ukrainian researchers with rapid access to well-structured PISA data. In particular, such an application should provide for data across the factorial features and indicators applied at the country level and demonstrate the Ukrainian indicators compared to the other countries’ results. This paper includes a description of the application core functionalities, architecture, and technologies used for development. The proposed solution leverages the shiny package available with R environment that allows implementing both the UI and server sides of the application. The technical implementation is a proven solution that allows for simplifying the access to PISA data for Ukrainian researchers and helping them utilize the calculation results on the key features without having to apply tools for processing statistical data.
Опис: [1] The Digital Enterprise: moving from experimentation to transformation, 2018. URL: http://www3.weforum.org/docs/Media/47538_Digital%20Enterprise_Moving_ Experimentation_Transformation_report_2018%20-%20final%20(2).pdf. [2] K. Andriushchenko, V. Rudyk, O. Riabchenko, M. Kachynska, N. Marynenko, L. Shergina, V. Kovtun, M. Tepliuk, A. Zhemba, O. Kuchai, Processes of managing information infrastructure of a digital enterprise in the framework of the «Industry 4.0» concept, EasternEuropean Journal of Enterprise Technologies 1 (2019) 60–72. URL: http://journals.uran.ua/ eejet/article/view/157765. doi:10.15587/1729-4061.2019.157765. [3] O. Heyer, From Learning to Data Analytics: Some Implications for IT Strategy and Transformation, EDUCAUSE Review 54 (2019). [4] A. Kiv, V. Soloviev, S. Semerikov, CTE 2018 – How cloud technologies continues to transform education, CEUR Workshop Proceedings 2433 (2019) 1–19. URL: http://ceur-ws. org/Vol-2433/paper00.pdf. [5] A. Kiv, M. Shyshkina, S. Semerikov, A. Striuk, M. Striuk, H. Shalatska, CTE 2019 - When cloud technologies ruled the education, CEUR Workshop Proceedings 2643 (2020) 1–59. URL: http://ceur-ws.org/Vol-2643/paper00.pdf, 7th Workshop on Cloud Technologies in Education, CTE 2019 ; Conference Date: 20 December 2019. [6] A. E. Kiv, V. N. Soloviev, S. O. Semerikov, XII International Conference on Mathematics, Science and Technology Education, Journal of Physics: Conference Series 1840 (2021) 011001. URL: https://doi.org/10.1088/1742-6596/1840/1/011001. doi:10.1088/1742-6596/1840/ 1/011001. [7] A. E. Kiv, V. N. Soloviev, S. O. Semerikov, A. M. Striuk, V. V. Osadchyi, T. A. Vakaliuk, P. P. Nechypurenko, O. V. Bondarenko, I. S. Mintii, S. L. Malchenko, XIII International Conference on Mathematics, Science and Technology Education, Journal of Physics: Conference Series (2021). [8] M. Brown, M. McCormack, J. Reeves, D. C. Brooks, S. Grajek, B. Alexander, M. Bali, S. Bulger, S. Dark, N. Engelbert, K. Gannon, A. Gauthier, D. Gibson, R. Gibson, B. Lundin, G. Veletsianos, N. Weber, 2020 EDUCAUSE Horizon Report: Teaching and Learning Edition Available, EDUCAUSE, Louisville, CO, 2020. URL: https://library.educause.edu/-/media/ files/library/2020/3/2020_horizon_report_pdf. [9] M. S. A. El-Seoud, H. F. El-Ssofany, I. A. T. F. Taj-Eddin, A. Nosseir, M. M. El-Khouly, Implementation of Web-Based Education in Egypt through Cloud Computing Technologies and Its Effect on Higher Education, Higher Education Studies 3 (2013) 62–76. URL: http://www. ccsenet.org/journal/index.php/hes/article/view/27423. doi:10.5539/hes.v3n3p62. [10] V. Pavlenko, A. Prokhorov, O. Kuzminska, M. Mazorchuk, Competence approach to modeling and control of students’ learning pathways in the cloud service, CEUR Workshop Proceedings 1844 (2017) 257–264. [11] S. Walker, T. Olney, C. Wood, A. Clarke, M. Dunworth, How do tutors use data to support their students?, Open Learning: The Journal of Open, Distance and e-Learning 34 (2019) 118–133. URL: https://doi.org/10.1080/02680513.2018.1554476. doi:10.1080/02680513. 2018.1554476. [12] J.-H. Zhang, Y.-X. Zhang, Q. Zou, S. Huang, What learning analytics tells us: Group behavior analysis and individual learning diagnosis based on long-term and large-scale data, Journal of Educational Technology & Society 21 (2018) 245–258. URL: http://www. jstor.org/stable/26388404. [13] EIT 2008-2020: zvity, 2020. URL: https://testportal.gov.ua/ofzvit/. [14] G. Yang, M. Badri, A. Al Rashedi, K. Almazroui, The role of reading motivation, selfefficacy, and home influence in students’ literacy achievement: a preliminary examination of fourth graders in Abu Dhabi, Large-scale Assessments in Education 6 (2018) 10. URL: https://doi.org/10.1186/s40536-018-0063-0. doi:10.1186/s40536-018-0063-0. [15] H. W. Ko, Y. L. Chan, Family factors and primary students’ reading attainment, Chinese Education & Society 42 (2009) 33–48. URL: https://doi.org/10.2753/CED1061-1932420302. doi:10.2753/CED1061-1932420302. [16] S. Arikan, A regression model with a new tool: IDB analyzer for identifying factors predicting mathematics performance using PISA 2012 indices, US-China Education Review 4 (2014) 716–727. [17] PISA-2018: zvity, 2020. URL: http://pisa.testportal.gov.ua/pisa-2018-zvity/. [18] D. V. Vasyl’ieva, M. V. Holovko, Y. O. Zhuk, O. H. Kozlenko, O. I. Liashenko, S. O. Naumenko, V. I. Novos’olova, UROKY PISA-2018: metodychni rekomendatsii, Instytut pedahohiky NAPN Ukrainy, Pedahohichna dumka, Kyiv, 2020, p. 96. [19] H. Wickham, Mastering Shiny, 2020. URL: https://mastering-shiny.org/index.html.
URI (Уніфікований ідентифікатор ресурсу): http://ceur-ws.org/Vol-2879/paper28.pdf
http://elibrary.kdpu.edu.ua/xmlui/handle/123456789/4451
https://doi.org/10.31812/123456789/4451
ISSN: 1613-0073
Розташовується у зібраннях:Збірники наукових праць та матеріали конференцій

Файли цього матеріалу:
Файл Опис РозмірФормат 
paper28.pdfarticle1.22 MBAdobe PDFПереглянути/Відкрити


Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.