Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал: http://elibrary.kdpu.edu.ua/xmlui/handle/123456789/4397
Назва: Permutation Based Complexity Measures and Crashes
Автори: Соловйов, Володимир Миколайович
Бєлінський, Андрій Олександрович
Matviychuk, A. V.
Serdyuk, O. A.
Ключові слова: економічні системи
пермутаційні міри складності
Дата публікації: 2021
Бібліографічний опис: Soloviev V. M. Permutation Based Complexity Measures and Crashes / V. M. Soloviev, A. O. Bielinskyi, A. V. Matviychuk, O. A. Serdyuk // Systems Analysis Models in the Economic Processes Management : monograph / Volodymyr Ponomarenko, Tamara Klebanova, Lidiya Guryanova. - Bratislava ; Kharkiv, 2021. - Pp. 204-217.
Короткий огляд (реферат): A comprehensive analysis of permutation measures of the complexity of economic systems is performed by calculating the permutation entropy and the Kullback-Leibler divergence within the algorithm of a sliding window. A comparative analysis of these measures with the daily values of the Dow Jones index, WTI oil prices and Bitcoin prices indicate the possibility of their use as indicators-precursors of the known crashes in selected markets. Проведено комплексний аналіз пермутаційних мір складності економічних систем шляхом розрахунку у рамках алгоритму ковзного вікна ентропії перестановок та дивергенції Кульбака-Лейблера. Порівняльний аналіз вказаних мір з щоденними значеннями індексу Доу Джонса, ціни нафти марки WTI та ціни Біткоїна свідчать про можливість їх використання у якості індикаторів передвісників відомих крахів на обраних ринках. Проведен комплексный анализ пермутационных мер сложности экономических систем путем расчета в рамках алгоритма скользящего окна энтропии перестановок и дивергенции Кульбака-Лейблера. Сравнительный анализ указанных мер с ежедневным значениям индекса Доу Джонса, цены нефти марки WTI и цены Биткоина свидетельствуют о возможности их использования в качестве индикаторов-предвестников известных крахов на избранных рынках.
Опис: 1. Arthur, W.B. Foundations of complexity economics. Nature Review (2021) 3 136- 145 2. Kuther, R., Ausloos, M., Grech, D., Di Matteo, T., Schinckus and Stanley H E Econophysics and sociophysics: Their milestones&challenges. Physica A (2019) 516 240-253 3. Bandt, C., Pompe, B. Permutation entropy: a natural complexity measure for time series. Physical review letters (2002), 88 174102 4. Bandt, C. Order patterns, their variation and change points in financial time series and Brownian motion. Statistical Papers (2020) 61 1565–1588 https://doi.org/10.1007/s00362- 020-01171 5. Zanin, M., Rodriguez-Gonzalez, A., Ruiz, E.M. and Papo, D. Assessing Time Series Reversibility through Permutation Patterns. Entropy (2018) 20 665. doi:10.3390/e20090665 6. Gao, J., Hou, Y., Fan, F., and Liu, F. Complexity Changes in the US and China’s Stock Markets: Differences, Causes, and Wider Social Implications. Entropy (2020) 22, 75; doi:10.3390/e22010075 7. Soloviev, V., Bielinskyi, A. and Solovieva, V. Entropy Analysis of Crisis Phenomena for DJIA Index. CEUR Workshop Proceedings (2019) 2393 434-449 8. Henry, M. and Judge, G. Permutation Entropy and Information Recovery in Nonlinear Dynamic Economic Time Series. Econometrics (2019) 7 10. doi:10.3390/econometrics7010010 9. Derbentsev, V. et al Recurrence based entropies for sustainability indices. E3S Web of Conferences (2020) 166 13031 https://doi.org/10.1051/e3sconf/202016613031 10. Bariviera, A.F., Zunino, L., Rosso, O.A. An analysis of high-frequency cryptocurrencies prices dynamics using permutation-information-theory quantifiers. Chaos (2018) 28, 075511. doi: 10.1063/1.5027153 11. Sensoy, A. The inefficiency of Bitcoin revisited: A high-frequency analysis with alternative currencies. Finance Research Letters (2019) 28 68–73 12. Pele, D.T., Mazurencu-Marinescu-Pele, M. Using High-Frequency Entropy to Forecast Bitcoin’sDaily Value at Risk. Entropy (2019) 21, 102. doi:10.3390/e21020102 13. Sigaki, H.Y.D., Perc, M., Ribeiro, H.V. Clustering patterns in efficiency and the comingof-age of the cryptocurrency market. Scientific Reports (2019) 9 1440. doi.org/10.1038/s41598-018-37773 14. Soloviev, V.N., Belinskiy, A. Complex Systems Theory and Crashes of Cryptocurrency Market. CCIS (2019) 1007 276–297 15. Soloviev, V., Belinskiy, A. Methods of nonlinear dynamics and the construction of cryptocurrency crisis phenomena precursors CEUR Workshop Proceedings (2018) 2104 116-127 16. Bariviera, A.F., Zunino, L., Rosso, O.A. Crude oil market and geopolitical events: An analysis based on information-theory-based quantifiers. Fuzzy Economic Review (2016) 21 41-51. doi: 10.25102/fer.2016.01.03 17. Bielinskyi, A.O. et al Predictors of oil shocks. Econophysical approach in environmental science. IOP Conf. Ser.: Earth Environ. Sci. (2021) 628 012019 18. Cover, T.M. and Thomas, J.A. Elements of Information Theory (Wiley, New Jersey, 2006).
URI (Уніфікований ідентифікатор ресурсу): http://elibrary.kdpu.edu.ua/xmlui/handle/123456789/4397
https://doi.org/10.31812/123456789/4397
Розташовується у зібраннях:Кафедра інформатики та прикладної математики (монографії)

Файли цього матеріалу:
Файл Опис РозмірФормат 
Soloviev Monografia.pdf6.99 MBAdobe PDFПереглянути/Відкрити


Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.