Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал:
http://elibrary.kdpu.edu.ua/xmlui/handle/123456789/3778
Назва: | Machine learning: technologies and potential application at mining companies |
Автори: | Зелінська, Сніжана Олександрівна |
Ключові слова: | machine learning ML mining industry |
Дата публікації: | 22-кві-2020 |
Видавництво: | EDP Sciences |
Бібліографічний опис: | Zelinska S. Machine learning: technologies and potential application at mining companies [Electronic resource] / Snizhana Zelinska // The International Conference on Sustainable Futures: Environmental, Technological, Social and Economic Matters (ICSF 2020). Kryvyi Rih, Ukraine, May 20-22, 2020 / Eds. : S. Semerikov, S. Chukharev, S. Sakhno, A. Striuk, V. Osadchyi, V. Solovieva, T. Vakaliuk, P. Nechypurenko, O. Bondarenko, H. Danylchuk // E3S Web of Conferences. – 2020. – Volume 166. – Article 03007. – Access mode : https://www.e3s-conferences.org/articles/e3sconf/abs/2020/26/e3sconf_icsf2020_03007/e3sconf_icsf2020_03007.html. – DOI : 10.1051/e3sconf/202016603007 |
Серія/номер: | E3S Web of Conferences;166 |
Короткий огляд (реферат): | Implementation of machine learning systems is currently one of the most sought-after spheres of human activities at the interface of information technologies, mathematical analysis and statistics. Machine learning technologies are penetrating into our life through applied software created with the help of artificial intelligence algorithms. It is obvious that machine learning technologies will be developing fast and becoming part of the human information space both in our everyday life and in professional activities. However, building of machine learning systems requires great labour contribution of specialists in the sphere of artificial intelligence and the subject area where this technology is to be applied. The article considers technologies and potential application of machine learning at mining companies. The article describes basic methods of machine learning: unsupervised learning, action learning, semi-supervised machine learning. The criteria are singled out to assess machine learning: operation speed; assessment time; implemented model accuracy; ease of integration; flexible deployment within the subject area; ease of practical application; result visualization. The article describes practical application of machine learning technologies and considers the dispatch system at a mining enterprise (as exemplified by the dispatch system of the mining and transportation complex “Quarry” used to increase efficiency of operating management of enterprise performance; to increase reliability and agility of mining and transportation complex performance records and monitoring. There is also a list of equipment performance data that can be stored in the database and used as a basis for processing by machine learning algorithms and obtaining new knowledge. Application of machine learning technologies in the mining industry is a promising and necessary condition for increasing mining efficiency and ensuring environmental security. Selection of the optimal process flow sheet of mining operations, selection of the optimal complex of stripping and mining equipment, optimal planning of mining operations and mining equipment performance control are some of the tasks where machine learning technologies can be used. However, despite prospectivity of machine learning technologies, this trend still remains understudied and requires further research. |
Опис: | 1. F. N. Abu-Afed, Dissertation, Tver State Technical University, 2011 2. F. N. Abu-Afed, Territoriia neftegaz. Burenie 6, 16– 19 (2012) 3. O. Markova, S. Semerikov, M. Popel, CEUR Workshop Proceedings 2104, 388–403 (2018), http://ceur-ws.org/Vol-2104/paper_204.pdf. Accessed 30 Mar 2020 4. A.O. Zibert, V.V. Miroshnichenko, Universum: Tekhnicheskie nauki 2(24) (2016), http://7universum.com/ru/tech/archive/item/2968. Accessed 15 Dec 2019 5. S.O. Semerikov, I.O. Teplytskyi, Yu.V. Yechkalo, A.E. Kiv, CEUR Workshop Proceedings 2257, 122– 147 (2018), http://ceur-ws.org/Vol2257/paper14.pdf. Accessed 21 Mar 2020 6. M.B. Nosyrev, A.V. Druzhinin, N.V. Glushenko, Izvestiia Uralskogo gosudarstvennogo gornogo universiteta 7, 165–168 (1998) 7. Zifra Mining, Open-pit mining (2020), https://vistgroup.ru/solutions/open-pit-mining/asuscc-quarry/. Accessed 21 Mar 2020 8. A.O. Tarasenko, Y.V. Yakimov, V.N. Soloviev, CEUR Workshop Proceedings 2546, 101–114 (2019) 9. I. O. Temkin, A. N. Gonchrenko, Nauchnotekhnicheskie vedomosti Sankt-Peterburgskogo gosudarstvennogo politekhnicheskogo universiteta 4- 2 (183), 252–258 (2013) 10. P. Flach, Machine Learning: The Art and Science of Algorithms that Make Sense of Data (Cambridge University Press, Cambridge, 2012). doi:10.1017/CBO9780511973000 11. S.O. Semerikov, I.O. Teplytskyi, Metodyka uvedennia osnov Machine learning u shkilnomu kursi informatyky (Methods of introducing the basics of Machine learning in the school course of informatics), in Problems of informatization of the educational process in institutions of general secondary and higher education, Ukrainian scientific and practical conference, Kyiv, October 09, 2018 (Vyd-vo NPU imeni M. P. Drahomanova, Kyiv, 2018), pp. 18–20 12. S.A. Shumskii, Mashinnyi intellekt. Ocherki po teorii mashinnogo obucheniia i iskusstvennogo intellekta (Machine intelligence. Essays on Theory of Machine Learning and Artificial Intelligence). (RIOR, Moscow, 2019) |
URI (Уніфікований ідентифікатор ресурсу): | https://www.e3s-conferences.org/articles/e3sconf/abs/2020/26/e3sconf_icsf2020_03007/e3sconf_icsf2020_03007.html http://elibrary.kdpu.edu.ua/xmlui/handle/123456789/3778 https://doi.org/10.1051/e3sconf/202016603007 |
ISSN: | 2267-1242 |
Розташовується у зібраннях: | Кафедра інформатики та прикладної математики |
Файли цього матеріалу:
Файл | Опис | Розмір | Формат | |
---|---|---|---|---|
e3sconf_icsf2020_03007.pdf | article | 1.65 MB | Adobe PDF | Переглянути/Відкрити |
Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.