Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал: http://elibrary.kdpu.edu.ua/xmlui/handle/123456789/3487
Повний запис метаданих
Поле DCЗначенняМова
dc.contributor.authorНаготнюк, Юрій Олександрович-
dc.date.accessioned2019-12-09T23:25:23Z-
dc.date.available2019-12-09T23:25:23Z-
dc.date.issued2019-12-09-
dc.identifier.citationНаготнюк Ю. О. Методи нейромережної ідентифікації об’єктів : кваліфікаційна робота студента групи Ім-14, ступінь вищої освіти «магістр» спеціальності 014.09 Середня освіта (інформатика) / Наготнюк Юрій Олександрович ; Міністерство освіти і науки України, Криворізький державний педагогічний університет, фізико-математичний факультет, кафедра інформатики та прикладної математики. - Кривий Ріг, 2019. - 51 с.uk_UA
dc.identifier.urihttp://elibrary.kdpu.edu.ua/xmlui/handle/123456789/3487-
dc.description.abstractУ роботі Визначено основні проблеми, що виникають при використанні методу зворотного поширення помилки (не ефективний у разі, коли значення похідних по різним вагам нейромережі суттєво відрізняються; не дозволяє отримати швидку збіжність процесу навчання; виникає висока ймовірність виникнення ефекту перенавчання тощо). На прикладі штучних нейронних мереж з різними функціями активації показано доцільність матричного подання мережі для визначення вагових коефіцієнтів її міжшарових з’єднань. Розглянуто підхід до прискорення алгоритмів навчання з використанням нової технологічної бази – нейрочіпів. Визначено основну відмінність нейрочіпів від інших процесорів – забезпечення високого паралелізму обчислень за рахунок застосування спеціалізованого нейромережевого логічного базису або конкретних архітектурних рішень. Показано, що використання можливості представлення нейромережевих алгоритмів для реалізації на нейромережевому логічному базисі є основною передумовою різкого збільшення швидкості реалізації алгоритмів навчання штучних нейронних мереж. Обґрунтовано доцільність використання апаратно-програмного комплексу CUDA в якості нейрочіпу. Розглянуто подання задачі ідентифікації об’єктів як постановку задачі нейромережевої апроксимації, показано доцільність вибору в якості архітектури штучної нейронної мережі для апроксимації будь-якої неперервної функції багатошарового перцептрону. Розроблено метод визначення коефіцієнтів зв’язку шарів мережі для штучних нейронних мереж глибинного навчання з кількістю прихованих шарів більше одного. На основі обраного векторно-матричного подання спроектовано програмне забезпечення для реалізації методу. Показано високий рівень точності ідентифікації об’єктів порівняно з алгоритмом зворотного поширення помилки. Визначено доцільність використання GPU для реалізації розробленого програмного забезпечення.uk_UA
dc.subjectбагатошарові нейронні мережіuk_UA
dc.subjectглибинне навчанняuk_UA
dc.subjectнейромережна ідентифікаціяuk_UA
dc.titleМетоди нейромережної ідентифікації об’єктівuk_UA
dc.typeTechnical Reportuk_UA
Розташовується у зібраннях:Кафедра інформатики та прикладної математики (магістерські)

Файли цього матеріалу:
Файл Опис РозмірФормат 
Nahotniuk_master_thesis.pdfМагістерська робота2.2 MBAdobe PDFПереглянути/Відкрити


Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.