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Abstract. The Dow Jones Industrial Average (DJIA) index for the 125-year-old 

(since 1896) history has experienced many crises of different nature and, re-

flecting the dynamics of the world stock market, is an ideal model object for the 

study of quantitative indicators and precursors of crisis phenomena. In this pa-

per, the classification and periodization of crisis events for the DJIA index have 

been carried out; crashes and critical events have been highlighted. Based on 

the modern paradigm of the theory of complexity, a spectrum of entropy indica-

tors and precursors of crisis phenomena have been proposed. The entropy of a 

complex system is not only a measure of uncertainty (like Shannon's entropy) 

but also a measure of complexity (like the permutation and Tsallis entropy). 

The complexity of the system in a crisis changes significantly. This fact can be 

used as an indicator, and in the case of a proactive change as a precursor of a 

crisis. Complex systems also have the property of scale invariance, which can 

be taken into account by calculating the Multiscale entropy. The calculations 

were carried out within the framework of the sliding window algorithm with the 

subsequent comparison of the entropy measures of complexity with the dynam-

ics of the DJIA index itself. It is shown that Shannon's entropy is an indicator, 

and the permutation and Tsallis entropy are the precursors of crisis phenomena 

to the same extent for both crashes and critical events.  

Keywords: stock market, Dow Jones Industrial Average index, complex sys-

tems, measures of complexity, crash, critical event, permutation entropy, Shan-

non entropy, Tsallis entropy, multiscale entropy, indicators and precursors. 

1 Introduction 

For the last few decades, the behavior of the global financial system has attracted 

considerable attention. Wild fluctuations in stock prices lead to sudden trend switches 

in a number of stocks and continue to have a huge impact on the world economy 

causing the instability in it with regard to normal and natural disturbances [1]. Stock 

market prediction is a classic topic in both financial circles and academia. Extreme 

stock market fluctuations, e.g., the global stock market turmoils in September 2008, 

February 2018 damage financial markets and the global economy [2]. Thus we need a 

more effective way of predicting market fluctuations. Among the many predictive 

quantitative methods and models, Stanley et al. [3] distinguish such as autoregressive 
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integrated moving average (ARIMA) models, artificial neural networks, support vec-

tor machine, and neuro-fuzzy based systems. Recent developments in artificial intelli-

gence and the use of artificial neural networks have increased our success in nonlinear 

approximation. Previous studies indicate that “deep learning” (DL) solves nonlinear 

problems more efficiently than traditional methods [4, 5]. Irrespective of the level of 

complication or the presence of linear and nonlinear big data financial market factors, 

DL can extract abstract features and identify hidden relationships in financial markets 

without making econometric assumptions [5]. Traditional financial economic methods 

and other quantitative techniques cannot do this. Of particular interest are the com-

bined models that include the best aspects of both classical econometric models and 

modern DL and complex systems models [6]. 

As for the models and mechanisms of stock market crashes, first of all, it should be 

noted the works of D. Sornette, which include both a historical overview of the causes 

of stock crashes [1, 7], the Log-Periodic Power Law Singularity model of financial 

bubbles [1, 8] and agent-based model [9].  

It should be specially noted that we are setting ourselves the task of predicting nei-

ther future index values, nor possible trends. Our task is to highlight among the vari-

ous manifestations of crisis phenomena such patterns that foreshadow in advance 

noticeable drops in the index value. This allows you to construct a precursor of the 

approaching crisis. 

The doctrine of the unity of the scientific method states that for the study of events 

in socio-economic systems, the same methods and criteria as those used in the study 

of natural phenomena are applicable. A similar idea has attracted considerable atten-

tion from the community of different branches of science in recent years [10, 11]. 

Complex systems are systems consisting of a plurality of interacting agents pos-

sessing the ability to generate new qualities at the level of macroscopic collective 

behavior, the manifestation of which is the spontaneous formation of noticeable tem-

poral, spatial, or functional structures [12]. As simulation processes, the application of 

quantitative methods involves measurement procedures, where importance to com-

plexity measures has been given. I. Prigogine notes that the concepts of simplicity and 

complexity are relativized in the pluralism of the descriptions of languages, which 

also determines the plurality of approaches to the quantitative description of the phe-

nomenon of complexity [13]. Therefore, we will continue to study Prigogine's mani-

festations of the system complexity, using the current methods of quantitative analysis 

to determine the appropriate measures of complexity. 

The financial market is a kind of complex systems with all kind of interactions 

[14]. Apart from many properties that they interact with other natural complex sys-

tems, they have a unique property – their building elements which called investors. In 

fact, they represent examples of complexity in action because many factors on finan-

cial markets and their evolution are dictated by the decision of crowds. Therefore, the 

financial markets have exceptionally strong ability to self-organize and their charac-

teristics as nonlinearity and uncertainty remains a huge challenge.  

The key idea behind our research is that the complexity of the system must change 

before crisis periods. This should signal the corresponding degree of complexity if 

they are able to quantify certain patterns of a complex system. A significant ad-



vantage of these measures is that they can be compared with the corresponding time 

series for monitoring and detecting critical changes of it. This opportunity allows us 

to use these quantitative measures of complexity in the diagnosis process and predic-

tion of future changes. 

The paper is structured as it follows. In Section 2 we describe how many articles 

and research papers were devoted to the topic of our research. Section 3 presents how 

we classified our data. Sections 4 and 5 demonstrate methods and results for Permuta-

tion, Shannon and Tsallis entropies. The market was analyzed in more detail using 

Multiscale entropy in Section 6. And finally, on the basis of the conducted research, 

we draw conclusions in Section 7. 

2 Review of Previous Studies 

Today Dow Jones Industrial Average index (DJIA) is most quoted financial barome-

ter in the world and has become synonymous with the financial market in general. 

The Industrial portion of the name DJIA is largely historical, as many of the modern 

30 components have little or nothing to do with traditional heavy industry. Since 

April 2, 2019, the DJIA includes 30 companies of the American stock market belong-

ing to different sectors of the economy: industrial - 7 (23%), financial - 5 (17%), IT & 

Telecommunication – 6 (20%), Managed health care & Pharmaceuticals – 4 (13%), 

Retail, Food, Apparel and other – 8 (27%). In addition, the DJIA index has high pair-

correlation coefficients with the most well-known country stock indexes. Due to these 

reasons, including to itself significant variety of stocks and having a confidence form 

many people, its dynamics plays an important role in the world economy.  

There are a lot of articles and research papers that have been devoted to the DJIA 

index and its internal dynamics. For example, Charles with Darné [15] determined the 

events that caused large shocks volatility of the DJIA index over the period from 

1928-2013, using a new semi-parametric test based on conditional heteroscedasticity 

models. They found that these large shocks can be associated with particular events 

(financial crashes, elections, wars, monetary policies, etc.) They showed that some 

shocks are not identified as extraordinary movements by the investors due to their 

occurring during high volatility episodes, especially the 1929-1934, 1937-1938 and 

2007-2011 periods.  

Also, there are different articles in which authors using entropy principles to detect 

aggregate fears and major crashes. Gençay and Gradojevic [16] developed a dynamic 

framework to identify fluctuations through the skewness premium of European op-

tions. Their methodology is based on measuring the distribution of a skewness premi-

um through a q-Gaussian density and a maximum entropy principle. Their findings 

indicate that the October 19th, 1987 crash was predictable from the study of the 

skewness premium of deepest out-of-the-money options about two months prior to the 

crash. H. Danylchuk et al. [17] examined the entropy analysis of regional stock mar-

kets. Their paper proposed and empirically demonstrated the effectiveness of using 

such entropy as Sample entropy, Wavelet and Tsallis entropy as a measure of uncer-

tainty and instability which dynamics can be used such as crisis prediction indicators. 

Authors of another paper [18] investigated the relationship between the information 



entropy of the distribution of intraday returns of intraday and daily measures of mar-

ket risk. Using data on the EUR/JPY exchange rate, they found a negative relationship 

between entropy and intraday Value-at-Risk, and also between entropy and intraday 

Expected Shortfall. This relationship is then used to forecast daily Value-at-Risk, 

using the entropy of the distribution of intraday returns as a predictor. The research 

paper of Jun Lim [19] aims to study the efficiency of Permutation entropy in financial 

time series prediction and primarily focuses on the proposal, implementation and 

performance evaluation of a novel hash function to optimize the hashing of a large 

sequence of permutations based on a given financial data series.  

In addition to scientific papers on such types of entropy, there are many works on 

Multiscale types of entropies. R. Gu in his research [20] introduced a new concept of 

singular value decomposition Multiscale entropy and studied its predictive power on 

the DJIA index. It was found that from the perspective of linearity, useful information 

and noise do not have the predictive power on the DJIA index. However, from the 

perspective of nonlinearity, the useful information has the predictive power on the 

index in the long-term (at least one year) period, and noise only has the predictive 

power on the index in the short-term (about one month) period. This means that both 

useful information and noise have predictive power on stock index, but their capacity 

of predicting (predictive term) is different, and these predictive powers are presented 

through nonlinear mechanism rather than the simple linear mechanism. Wang et al. 

[21] characterize market efficiency in foreign exchange markets by using the Multi-

scale approximate entropy to assess their randomness. They split 17 daily foreign 

markets rates from 1984 to 2011 into their periods by two global events: Southeast 

Asia currency crisis and American sub-prime crisis. The empirical results indicate 

that the developed markets are more efficient than emerging and that the financial 

crisis promotes the market efficiency in foreign exchange markets significantly, espe-

cially in emerging markets, like China, Hong Kong, Korea, and African market. 

Paweł Fiedor in cooperation with other researchers [22] extended some of their previ-

ous ideas and articles by using the Multiscale entropy analysis framework to enhance 

their understanding of the predictability of price formation process at various time 

scales. For their purpose, they estimated Shannon’s entropy rate and also used the 

Maximum Entropy Production Principle as a more constructive framework. Their 

results indicate that price formation processes for stocks on Warsaw’s market are 

significantly inefficient at very small scales, but these inefficiencies dissipate quickly 

and are relatively small at time scales over 5 price changes. Further, they showed that 

the predictability of stock price changes follows a fat-tailed distribution, and thus 

there exist some predictable price formation processes for some stocks. Strikingly, the 

Multiscale entropy analysis presented in their study shows that price formation pro-

cesses exhibit a completely opposite information-theoretic characteristic to white 

noise, calling into question methods in finance based on Brownian motion or Lévy 

processes. 

This briefly described list of studies shows that the researching of the dynamics of 

stock markets, the prevention of crisis phenomena on them and the creation of new 

methods and instruments for these purposes are relevant.  

In our previous research papers, we used measures of complexity to prevent crisis 

states on the cryptocurrency market [23, 24]. The spectrum of entropy measures for 

the stock market, on the example of the DJIA index, is used in this paper. 



3 Classification of Data 

Financial indices are the main indicators of the work of the stock markets. The DJIA 

index is the most well-known “blue-chips” stock index. For understanding of the falls 

that occurred on it, our classification and constructing our indicators, we divided its 

time series into two parts during the periods from 2 January 1920 to 3 January 1983 

and from 4 January 1983 to 18 March 2019 of flexible daily values of the DJIA index. 

During the research, crises were separated into crashes and critical events, and it 

was established that:  

 Crashes are short, time-localized drops, with the strong losing of price each day.  

 Critical events are those falls that, during their existence, have not had such serious 

changes in price as crashes. 

Obviously, during DJIA index existence, many crashes and critical events shook it. 

Relying on historical data and normalized returns, where returns are calculated as 

( ) ln ( ) ln ( ) [ ( ) ( )] / ( )g t X t t X t X t t X t X t      , we emphasize that almost 20 

crashes and critical events took place, whose falling we identify and predict by our 

indicators. More detail information is presented on the Sheet below. 

Table 1. List of DJIA Major Historical Corrections since 1929. 

№ Interval 

Days in 

correc-

tion 

DJIA 

High 

Price 

DJIA 

Low 

Price 

Decline, 

% 

1 03.09.1929-29.10.1929 41 381,17 230,07 39,64 

2 01.03.1938-31.03.1938 23 130,47 98,95 24,15 

3 08.04.1940-05.06.1940 42 151,29 113,25 25,10 

4 21.08.1946-10.09.1946 14 200,00 167,30 16,35 

5 30.07.1957-22.10.1957 60 508,93 419,79 17,51 

6 19.03.1962-28.05.1962 50 720,38 576,93 19,91 

7 18.07.1966-07.10.1966 59 888,41 774,32 12,84 

8 09.04.1970-26.05.1970 34 792,50 631,16 20,35 

9 24.10.1974-04.10.1974 52 805,77 584,56 27,45 

10 02.10.1987-19.10.1987 12 2640,99 1738,74 34,16 

11 17.07.1990-23.08.1990 28 2999,75 2483,42 17,21 

12 01.10.1997-21.10.1997 15 8178,31 7161,14 12,43 

13 17.08.1998-31.08.1998 11 8533,65 7640,27 18,44 

14 14.08.2002-01.10.2002 34 9053,64 7286,27 19,52 

15 16.10.2008-15.12.2008 42 11715,18 8175,77 30,21 

16 09.08.2011-22.09.2011 32 12190,01 10733,83 11,94 

17 18.08.2015-25.08.2015 6 17511,34 15666,44 10,53 

18 29.12.2015-20.01.2016 16 17720,98 15766,74 11,02 

19 03.12.2018-24.12.2018 15 25826,42 21792,19 15,62 



According to our classification events with the number (1, 10, 13, 15, 19) are crashes, 

all the rest are critical events. Further on, we will consider those entropy indicators 

that, from the point of view of identification and prevention of crisis phenomena are 

the most informative. Analysis of the whole set of such indicators allowed us to iden-

tify 3 of them: Permutation, Shannon and Tsallis entropies.  

Results were obtained within the framework of the algorithm of a moving window. 

For this purpose, the part of the time series (window), for which there were calculated 

measures of complexity, was selected, then, the window was displaced along the time 

series in a five-day increment and the procedure repeated until all the studied series 

had exhausted. Worth to note that if the length of the time window is too wide, sever-

al crises may entire it and our indicators will not reflect future entire changes correct-

ly. Also, the window cannot be too narrow because the measure of complexity fluctu-

ates noticeably and requires smoothing. During the experiments, we found that the 

window 500 represents the optimal results.  

Further, comparing the dynamics of the actual time series and the corresponding 

measures of complexity, we can judge the characteristic changes in the dynamics of 

the behavior of complexity with changes in the stock index. If the constructed meas-

ure of complexity behaves in a definite way for all periods of crashes, for example, 

decreases or increases during the pre-critical period, then it can serve as an indicator 

or precursor of such a crashes phenomenon.  

In the Figure 1 two output DJIA time series, normalized returns ( )g t  with empha-

sized crisis states are presented. 

 

a) 



 

b) 

Fig. 1. The standardized dynamics and returns ( )g t  of DJIA daily values for the first (a) and 

the second (b) periods. The arrows indicate the corresponding crash or critical event.  

As we can see from Figure 1, for most crashes and critical events, normalized profita-

bility ( )g t  increases considerably in some cases. This behavior signals about abnor-

mal phenomena in the market, and deviation from the normal law of distribution. 

Such characteristic can serve as indicator of critical and crash phenomena. 

4 Permutation Entropy 

Permutation entropy (PEn) is a measure from the chaos theory, proposed by Bandt 

and Pompe [25], which is characterized by its conceptual simplicity and computation-

al speed. The idea of PEn is based on usual Shannon entropy [26], but it uses permu-

tation patterns-ordinal relations between values of the system. These patterns consider 

the order among times series and relative amplitude of values in each vector instead 

of individual values. In this way, if compared with other measures of complexity, this 

approach has many advantages over the others as robustness to noise and invariance 

to nonlinear monotonous transformations [27]. The PEn can be described as follows.  

Let’s consider time series ( ) { | 1, . . . , }.kS t x k N   For a given time series can be 

constructed embedding vector:  

 ( 1) ( 2)( , ,. . , , ),m m D L m D L m L mS x x x x       

where D  is the length of embedding dimension, and L  is the time delay. For con-

structing ordinal patterns each element of the vector can be defined by order  

 
0 1 2 1

. . . .
D Dm j L m j L m j L m j Lx x x x
         



Therefore, for the vector 
mS  there will be !D  possible permutations 

0 1 1( , , . . . , )Dj j j  . Then, we obtain the probability for each   and construct the 

ordinal pattern probability distribution { ( ), 1, . . . , !}i iP p i D   required for the 

entropy estimation. The Permutation entropy (denoted by [ ]S P ) of the time series 

( )S t  is defined as:  

 
!

1

[ ] ( ) ln ( )
D

i i

i

S P p p 


  . 

To take more convenient values, we normalize permutation entropy S  associated 

with probability distribution P : 

 
max

[ ]
[ ] ,s

S P
E P

S
   

where 
max ln !S D , and normalized permutation has a range 0 [ ] 1sE P  .  

The PEn is not restricted to the time series that is representative of low dimensional 

dynamical systems. The embedding length D  is paramount of importance because it 

determines !D  possible states for the appropriate probability distribution. With small 

values such as 1 or 2, parameter D  will not work because there are only few distinct 

states. Furthermore, for obtaining reliable statistics and better detecting the dynamic 

structure of data, !D  should be relevant to the length of the time series or less [20]. 

We discovered that 5, 6,D  or 7 indicate better results. Therefore, the value of 

[ ]sH P  gives us to understand rather we have predictable and regular time series or 

absolutely randomize process.  

Figure 2 shows the PEn calculation results both for first (a) and second (b) periods 

of the DJIA index time series (the window length is 500 days, the offset is 5 days). 

Arrows indicate crashes and critical events according to their number in the table. 

 

a) 



 

b) 

Fig. 2. The dynamics of Permutation entropy for first (a) and second (b) periods of the DJIA 

index time series. 

As we can see from the figures above, Permutation entropy decreases for both crashes 

and critical events, signaling the approaching of a special state.  

5 Indicators of crisis states based on Shannon and Tsallis 

entropies 

For a given discrete probability distribution { , 1, . . . , }iP p i M  , Shannon entropy 

(ShEn) is defined as:  

 
1

[ ] ln .
M

i i

i

S P p p


   

For any scale 0c  , ShEn is defined as:  

 

1/

1

1

(ln ) .

c
M

c

c i i

i

S p p



 
  
 
  

where 
ip  stands for the occurrence probability of one event. For scale 0c  , the 

c th  order of ShEn is defined as:  

 
1

1

(ln ).i

M
p

c i

i

S e p



   

These equations are jointly called as the generalized ShEn. When 1c  , generalized 

entropy transforms into the standard Shannon entropy.  

Figure 3 demonstrates the dynamics of DJIA index and calculated ShEn for them 

with parameters: the length of window is 500 days and window offset is 5 days.  



 

a) 

 

b) 

Fig. 3. Dynamics of Shannon entropy and the DJIA index for first (a) and second (b) periods. 

It can be noticed that in crashes or critical periods ShEn decreases, indicating abnor-

mal phenomena that took place in the stock market. With the lower value of entropy, 

we have less complexity in the system (crisis period), and when the value of entropy 

becomes higher, the system becomes more chaotic and randomized. It’s worth con-

sidering that this indicator responds significantly to those events that have had rapidly 

price loss in a short period of time.  

Tsallis [28] introduced a new concept that allows describe non-extensive (non-

additive) systems with the entropic index q  which is the measure of non-additivity 

such as:  

 ( ) ( ) ( ) (1 ) ( ) ( ).S A B S A S B q S A S B        



He took the standard Shannon’s entropy expression and instead of the logarithmic 

one, he introduced power function 1ln( ) ln ( ) ( 1) / (1 )q

qx x x q    . In the limit as 

1q  , ln ( )q x  turns into real logarithm. For the entropic index q  new entropy is 

defined as:  

 ( ln ( )) (1 ) / ( 1),q q

q i q i i

i

S p p p q        

where new q -entropy can give description of systems with “long memory” in which 

interacts not only with nearest neighbors, but with entire systems or with some of its 

parts. With the entropic indicator q  it is possible to determine different characteristics 

of complex systems. When the entropic index 1q  , it means that in system domi-

nates unusual anomalous phenomena. With the entropic index 1q  determined recur-

ring phenomena in the system. In the case, when the entropic index 1q  , Tsallis 

entropy converges to the standard ShEn. The main consequence of such substitution is 

that entropy with the entropic index q  is an already non-extensive function.  

In Figure 4 we present comparative dynamics of the DJIA index with correspond-

ing value of q  which is considered to be an indicator of crisis states. The results were 

obtained for window of length 1000 days and window offset 5 days. 

 

a) 



 

b) 

Fig. 4. Comparative dynamics of DJIA index time series with corresponding value of q  coeffi-

cient for first (a) and second (b) periods. 

For Figure 4 in most crashes and critical events, the entropic index q  rapidly and 

asymmetrically growths and indicates the increasing in complexity of the system at 

that time. It is worth considering that with the window of less width and step, we 

would have taken results with higher accuracy.  

As a result, Shannon's entropy is an indicator, and the parameter q  is a precursor of 

crisis phenomena. 

6 Multiscale entropy 

One of the properties of complex systems is manifested in their scale invariance: a 

complex system behaves universally, regardless of the scale. This feature is found in 

the quantitative description of entropy, which is known as Multiscale entropy (MSE). 

The algorithm of MSE was developed by Costa [29] to quantify the complexity of 

time series for a range of scales (see Figure 5). 



 

Fig. 5. Schematic illustration of the coarse-graining for scales 2 and 3.  

The MSE method includes two sequentially executed procedures:  

(1). The process of coarse-graining of the initial time series. To obtain coarse-

grained time series at a scale factor of  , time series divides by the non-overlapping 

windows of the length   as shown in Figure 5, and the size of which increases with 

the transition from scale to scale. Then, the values inside each part of the time series 

are averaged. In other words, each element ( )

jy   for the coarse-grained times series 

can be estimated according to the following equation:  

 
( 1) 1

1
,1 / .

j

j i

i j

y x j N







   

    

The length for each coarse-grained time series depends on the length of the window 

and equals to /N  . For a scale of 1, the coarse-grained time series identical to the 

original one.  

(2). The computation of the corresponding measure of entropy as a measure of 

complexity for each coarse-grained time series. This measure then plotted as the func-

tion of the scale factor   (according to our case, we estimate Shannon entropy).  

As a result, in the Figure 6 we can see MSE calculated for the entire DJIA index 

time series  

 

 



 a) b) 

Fig. 6. The map of multiscaling components for estimated Shannon entropy for the entire DJIA 

index time series.  

Figure 6 (a) shows the Multiscale Shannon entropy calculated for the entire output 

and shuffled DJIA time series. The fact that the shuffled time series is more complex 

suggests that the Shannon entropy is a measure of chaotic rather than complexity. 

Figure 6 (b) is a three-dimensional representation of Shannon entropy calculated with 

a window length of 1000 days, a window offset of 5 days and scale factor of 40. It is 

seen that at small scales, the dynamics of MSE coincide with Figure 3 and even at the 

presented scales, it does not tend to zero. 

7 Conclusions 

Anomalous fluctuations of the daily values of the Dow Jones Industrial Average in-

dex for the period from 2 January 1920 to 18 March 2019 have been analyzed; 5 

crashes (short, time-localized drops) and 14 critical events (price changes that are 

noticeable but occurring over a longer period of time) have been identified. The hy-

pothesis on the correlation of complexity measures and crisis phenomena, proposed 

on the basis of the theory of complex systems, has been tested using the example of 

entropy complexity measures. The entropy (including multiscale versions) of Shan-

non, Tsallis, and permutations are calculated within the framework of the moving 

window algorithm from a set of entropy indicators. The change in the absolute values 

of the entropy indices in the period of the crash and critical events indicates a change 

in the complexity of the system, which makes it possible to treat them as information-

al measures of complexity. Comparison of the entropy characteristics with the values 

of the DJIA index opens up the possibility of indicating or even early warning of cri-

sis phenomena. In the case of Shannon's entropy, the complexity of the system expe-

riences a race itself at the moment of crisis and is its indicator. The entropy of Tsallis 

and permutations react to crisis phenomena with some anticipation, which makes it 

possible to use them as precursors of crises. 

Thus, the developed methodology for constructing indicators and precursors of cri-

sis phenomena does not use cumbersome, costly and still debatable methods for pre-

dicting price fluctuations and their trends, carry out early diagnostics of crisis phe-

nomena and take preventive measures anticipating significant financial losses. 
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