
Ministry of Education and Science of Ukraine

Kryvyi Rih State Pedagogical University

Kyiv National Economic University

named after Vadym Hetman

CRISIS PHENOMENA MONITORING

AND PREVENTION IN COMPLEX

SOCIO-ECONOMIC SYSTEMS
V.N

. SO
LO

VIEV, A
.O

. BIELIN
SKYI,

A
.V. M

ATVIYCH
U

K
CRISIS PHENOM

ENA M
ONITORING AND PREVENTION

IN COM
PLEX SOCIO-ECONOM

IC SYSTEM
S

V.N. SOLOVIEV, A.O. BIELINSKYI,

A.V. MATVIYCHUK

Cherkasy – 2024

Monograph

Ministry of Education and Science of Ukraine

Kryvyi Rih State Pedagogical University

Kyiv National Economic University named after Vadym
Hetman

V.N. SOLOVIEV, A.O. BIELINSKYI,

A.V. MATVIYCHUK

Crisis Phenomena Monitoring and

Prevention in Complex Socio-Economic

Systems

Monograph

Cherkasy 2024

-1

Recommended for publication by the decision of the Academic Council of Kryvyi Rih State
Pedagogical University (Protocol No. 5 of November 09, 2023).

Reviewers:

O.H. Osaulenko, Academician of NAS of Ukraine in «Statistics», DSc in Public Administration,
Professor, Rector of National Academy of Statistics, Accounting and Audit
M.I. Skripnichenko, Corresponding Member of NAS of Ukraine in «Econometrics”, DSc in
Economics, Professor, Leading Researcher of Department of Modeling and Forecasting of
Economic Development of State Institution «Institute of Economics and Forecasting of NAS of
Ukraine»

Corresponding Member of NAS of Ukraine in «Computing Systems», DSc in
Engineering, Professor, Director of Institute of Artificial Intelligence Problems

Soloviev V.N., Bielinskyi A.O., Matviychuk A.V.

Crisis Phenomena Monitoring and Prevention in Complex Socio-Economic
Systems. Monograph. – Cherkasy: Publisher Tret akov O.M., 2024. – 345.
 ISBN 978-617-7827-89-3
This work is a part of the applied research “Monitoring, Forecasting, and Prevention of

Crisis Phenomena in Complex Socio-Economic Systems”, which is funded by the Ministry of
Education and Science of Ukraine (project No. 0122U001694).

This monograph presents research findings on the dynamic and structural characteristics of
financial and economic systems, grounded in the principles of complex systems theory. For this
purpose, the study employs methodologies such as recurrence analysis, entropy-based
techniques, network science, etc. Significant attention is devoted to modeling critical phenomena
within financial and economic systems. The investigation delves into the peculiarities of the
collective dynamics of complex systems during periods of crisis and recovery. Special emphasis
is placed on the identification and construction of indicators of pre-crisis states through advanced
processing of time series data.

This monograph will be valuable to a broad audience interested in the further development
and practical application of interdisciplinary fields such as synergetics and econophysics,
including specialists in economic and mathematical modeling, as well as graduate and
undergraduate students.

The authors would also like to thank the Armed Forces of Ukraine for providing security to
perform this work. This study has become possible only because of the resilience and courage of
the Ukrainian Army.

-1

ISBN 978-617-7827-89-3 © Soloviev V.N., Bielinskyi A.O.,
Matviychuk A.V., author's articles, 2024

 6

Context

Introduction
Despite the expected predictions that the 21st century will be the century of

biology (by analogy with the 20th century of physics), it can definitely be

considered the century of complexity, thanks to the genius British astrophysicist

Stephen William Hawking (1942-2018). Indeed, it turned out that complex systems

of different nature exhibit similar patterns of complexity and can be characterized

by universal interdisciplinary quantitative methods and algorithms. This is

ing contributions to our

ese-

American climatologist Shukuro Manabe and German scientist Klaus Hasselmann

s climate, quantifying variability, and reliably

Although the definition of complex systems has historically been widely

discussed, there is hardly any broad agreement on a single specific definition: a

complex system is formed by many interacting elements that give rise to emergent

phenomena [67]. However, some terms remain undefined. For example, how many

elements are enough to reflect complex emergent phenomena? Interestingly, this

number can be as large as the number of neurons and synapses in the human brain,

but it can also be relatively small: a minimal cell is also formed by only a few

hundred genes and is already alive. From these examples, it is clear that true

complexity and new phenomena require a number of elements that can be very far

from the large numbers typically considered in physics (the number of molecules

in a mole of gas is defined by the Avogadro number, i.e., approximately .

It seems to be a very commonly accepted idea that complexity arises from the

competition between randomness and order, and that the topology of a complex

system is inherently related to a certain amount of randomness in the network of

interactions between its elements (the so-called network approach) or by the sign

of their interaction (the spin glass approach).

A point of departure often cited in the context of collective effects of

(1923-2020) [129], winner of the 1977 Nobel Prize in Physics. Complex systems

science looks at the ways in which the constituent parts give rise to the collective

behavior of the whole system. However, this interpretation has proven to be of

limited utility because it covers too broad a set of circumstances.

Historically, some time ago, another more useful step in defining complex

systems appeared in physics: a system is complex if its behavior depends

significantly on its details [176]. In this context, we mean such phenomena as

deterministic chaos, quantum entanglement, protein folding, spin glasses, etc.

Collective complex behavior can occur under the influence of frustration and

structural disorder. As a result, it is difficult to reach a state of equilibrium,

reactions to external perturbations are slow and very often random. Such different

phenomena are studied in different areas of physics: dynamical systems, quantum

mechanics, and statistical physics. What they have in common is that infinitesimal

changes in initial conditions (albeit of a very different nature) lead to radically

different scenarios of the time evolution of these systems.

There is a second component that is important for defining complex systems.

On the one hand, the interactions between the constituent parts lead to collective

behavior and determine the macro state, but on the other hand, the interactions

change during the evolution of the system and are influenced by the macro state. In

other words, the macrostate and microstates dynamically update each other. The

analysis of such effects has led to the creation of methods and the development of

concepts that have been successfully applied to describe formally similar

phenomena occurring in chemical, biological, social, and other systems formed by

agents of non-physical origin.

Despite the impressive progress of complexity science over the past 50

years, we are still far from fully understanding complexity because we have not yet

identified the necessary conditions for a system to reflect complex emergent

phenomena. For example, we are far from fully understanding how the brain

works. As a result, the field may appear fragmented compared to other more

traditional scientific fields, such as physics. To solve the problem of complexity,

we really need to investigate different aspects of complex systems, and we need to

adopt an open viewpoint that is able to describe and predict data from complex

systems, avoiding top-down predefined dogmas.

Complexity science is also key to understanding and predicting the evolution

of major pandemics and to informing policy makers and the general public about

the risks of epidemic spread. Indeed, the networked scientific community was

already aware of the dangers of global pandemics that take advantage of scale-free

global transportation systems long before COVID. Unfortunately, the pandemic

took most countries by surprise, as contingency plans were not really prepared for

an epidemic of the scale of COVID-19. To monitor the evolution of this pandemic

and any future pandemic, scientists will likely combine large amounts of social

mobility data with predictive models, which are key to monitoring the pandemic

and informing policy makers, despite many uncertainties about the biological

evolution of viruses.

In the future, progress at the intersection between complexity and biology

will be key to achieving much-needed advances in precision medicine. This large,

complex problem will require a truly interdisciplinary approach that combines

network science, machine learning, and artificial intelligence with molecular

biology and neuroscience. Indeed, while biology in recent decades has widely

adopted a single-molecule approach or relied heavily on the central dogma of

molecular biology, it is now well recognized that most diseases are complex, and

to understand these diseases it is important to embrace the complexity and

complexity will be key to laying the foundation for the quantum Internet, which

will require combining advances in quantum information with our understanding

of classical complex communication systems such as the current Internet.

Another important challenge regarding network robustness is brain research,

as the brain is undoubtedly a robust complex system, but it is very important to

understand how its function is affected by diseases. To answer this question, I

believe we need to accept the stochastic nature of brain activity and gain further

insight into the interplay between brain functions and brain network topology.

Thanks to fundamental advances in network science, we already know that the

resilience of networks to random damage is highly dependent on the statistical

properties of the network. Indeed, the scale-free degree distribution of networks

dramatically alters the phase diagram of percolation, exhibiting critical behavior

that is dramatically different from percolation on regular lattices or on random

graphs. These results were key to understanding the interaction between the

underlying network structure of complex systems and their dynamics.

Predicting complex systems is a challenging task and, of course, is limited

by the pervasive nonlinearity of their dynamics. However, important progress has

been made in forecasting complex systems over the past twenty years (e.g.,

unprecedented progress in predicting the spread of an epidemic). Improvements in

the power of predicting complex systems are largely due to the abundance of data

available to modelers and the important advances that can be made by complexity

science combined with data science and artificial intelligence (AI). This is

evidenced by revolutionary developments in materials science [11] or finance

[177].

Improving our ability to predict complex systems, which will eventually

combine network science, data science, and artificial intelligence algorithms, is

indeed key for a variety of applications, including providing possible climate

change scenarios. However, the power of simple models to understand complex

systems is crucial for interpreting results: simple models may not capture all the

details of complex systems, but they allow us to understand and tame complexity,

which can be crucial in developing better AI algorithms. Spin glass theory teaches

us that a model that is actually quite simple (just adding a random mixture of

positive and negative interactions to an Ising model in a fully connected network)

can already be very complex.

Methods of modeling complex systems are the subject of our previous

monographs and textbooks focused on the Matlab computer mathematics system

[1, 55, 169, 170]. Taking into account the dominance of Python in applied research

opinion. This monograph will be based on a Ukrainian-language guide to modeling

complex systems in the Python programming language [168].

The selection of specific stock indices for constructing indicators-precursors

of crash phenomena in stock markets is critical due to their role as benchmarks

representing the overall health and dynamics of financial markets in different

regions. The chosen indices S&P 500 for the United States, Hang Seng Index

for China (Hong Kong), DAX (Deutscher Aktienindex) for Europe, and BSE

SENSEX for India are particularly suitable for this purpose, each offering unique

advantages and relevance. Each of these indices is a leading benchmark in its

respective region, representing the core economic and financial activities:

The S&P 500 reflects the performance of 500 major companies across

diverse sectors in the United States, making it a globally recognized

indicator of economic health.

The Hang Seng Index (HSI) represents the largest and most influential

companies traded in Hong Kong, serving as a bridge between the Chinese

economy and global markets.

The DAX (Deutscher Aktienindex) tracks the performance of 40 major

German companies, acting as a barometer for the largest economy in the

Eurozone.

The BSE SENSEX captures the performance of 30 large and established

-growing economies.

Fig. 1 illustrates the historical trends of the aforementioned major global

stock market indices.

(a) (b)

 (c) (d)

Fig. 1: Historical trends of major global stock market indices: S&P 500 (^GSPC) (a), Hang Seng
Index (^HSI) (b), DAX (^GDAXI) (c), and BSE SENSEX (^BSESN) (d)

These indices are supported by extensive historical and real-time data, which

are essential for constructing and validating indicators of crash phenomena. The

availability of robust datasets enables detailed analysis of patterns, anomalies, and

early warning signs that often precede market crashes.

Each index reflects distinct economic, political, and regulatory

environments: (1) the S&P 500 is influenced by U.S. monetary policy, global trade

dynamics, and technological innovation, making it a key driver of global markets;

(2) the Hang Seng Index

domestic and international factors; (3) the DAX is shaped by -

driven economy, European Union policies, and its role as a leader in industrial

innovation; (4) the BSE SENSEX

industrialization, and market reforms, while being sensitive to global commodity

prices and domestic policy changes.

These indices are highly responsive to economic shocks, systemic risks, and

speculative bubbles. Their historical performance includes well-documented

instances of market downturns, making them ideal for analyzing crash precursors

such as: rising market volatility; abnormal trading volumes; divergences between

market prices and fundamental indicators; changes in cross-market correlations and

capital flows.

By focusing on these indices, researchers can uncover early warning signals

that indicate heightened risk of market instability across different regions.

Therefore, the entire monograph will be devoted to the analysis of

complexity indicators derived from the above indices.

It should be noted that the selection of stock indices from developed

countries with disparate stock market models is a consequence of the devastation

inflicted on the national economy by Russia's military aggression against Ukraine.

In light of the above, it is evident that the stock market is not a reliable indicator of

the state of the national economy. However, it is possible to anticipate the recovery

of economic development by constructing and subsequently adapting effective

stock market indicators, utilising sophisticated economic signals such as the stock

indices of the United States, Germany, China and India.

1 Complexity. Quantitative measures of complexity.

Information methods of complexity assessment

studied by physicists, biologists, mathematicians, and computer

scientists, although with current advances in understanding the world around us,

there is no unambiguous answer to this question.

For this reason, in accordance with the idea of I. Prigogine, we will study the

manifestations of system complexity, using modern methods of quantitative

complexity analysis [112].

Among these methods, the following deserve attention:

information and entropy;

based on chaos theory;

multifractal.

Of course, based on the different nature of the methods underlying the

formation of the complexity measure, they place certain requirements on the time

series that serve as input data. For example, the first two groups of methods require

stationarity of the input data. At the same time, they have different sensitivities to

such characteristics as determinism, stochasticity, causality, and correlation.

Therefore, in the future, when comparing the effectiveness of various complexity

indicators, we will pay attention to these circumstances, emphasizing the specific

applicability of a particular indicator for characterizing different aspects of the

complexity of the systems under study.

We will begin our consideration of the first group of methods with the well-

known measure of complexity proposed by A. Kolmogorov [12].

1.1 Kolmogorov complexity

The notion of Kolmogorov complexity (or, as it is also called, algorithmic

entropy) appeared in the 1960s at the intersection of algorithm theory, information

theory, and probability theory.

individual finite objects (and not in random variables, as in Shannon information

theory). It turned out that this was possible (although only up to a limited limit).

Kolmogorov proposed to measure the amount of information in finite objects using

the theory of algorithms, defining the complexity of an object as the minimum

length of the program that generates that object. This definition became the basis

of algorithmic information theory and algorithmic probability theory: an object is

considered random if its complexity is close to the maximum.

So what is Kolmogorov complexity and how can it be measured? In practice,

we often come across programs that compress files (to save space in the archive).

The most common are zip, gzip, compress, rar, arj, and others. By applying such a

program to a file (with text, data, or a program), we get its compressed version

(which is usually shorter than the original file). This version can be used to restore

the original file using a paired program first

approximation, the Kolmogorov complexity of a file can be described as the length

of its compressed version. Thus, a file that has a regular structure and is well

compressed has a small Kolmogorov complexity (compared to its length). On the

contrary, a poorly compressible file has a complexity close to its length.

Suppose we have a fixed way of describing (decompressor) . For a given

word x, let us consider all its descriptions, i.e., all words for which is

defined and equal to . The length of the shortest of them, , is called the

Kolmogorov complexity of word for a given description method :

min

where denotes the length of the word . The subscript emphasizes

that the definition depends on the choice of the way is represented.

It can be shown that there are optimal ways to describe. A way of describing

is better the shorter it is. Therefore, it is natural to give the following definition:

method is not worse than method if for some and

all .

Therefore, according to Kolmogorov, the complexity of an object (for

example, a text a sequence of characters) is the length of the minimal program

that outputs this text, and the entropy is the complexity divided by the length of the

text. You can also think of algorithmic complexity as the minimum time (or other

computational resources) required to perform this task on a computer. And we can

also talk about the communication complexity of tasks that involve more than one

processor: this is the number of bits that need to be transmitted when solving this

task [50, 100]. Unfortunately, this definition is purely speculative. There is no

reliable way to unambiguously define this program. However, there are algorithms

that actually try to calculate the Kolmogorov complexity of a text [110] and

entropy [35].

1.2 Lempel-Ziv complexity

A universal (in the sense of applicability to different language systems)

measure of the complexity of a finite symbolic sequence was proposed by Lempel

and Ziv (LZ) [10]. The Lempel-Ziv complexity (LZC) is a classical measure that

links the concepts of complexity (in the Kolmogorov-Chaitin sense) and entropy

rate for ergodic sources [91, 153]. For an ergodic dynamic process, the amount of

new information received per unit time (entropy rate) can be estimated by

measuring the ability of this source to generate new patterns. Due to the simplicity

of the LZC method, the entropy rate can be estimated from a single discrete

measurement sequence with low computational cost [58]. In their approach, the

complexity of the sequence is estimated by the number of steps of the process that

generates it. Acceptable (editorial) operations in this case are:

1. Character generation (required at least for the synthesis of alphabet

elements).

2. - gment from the background (i.e., from an

already synthesized part of the text).

Let be a finite alphabet, be a text (a sequence of characters) composed of

elements of ; be the -th character of the text; be a fragment of the text

from the -th to the -th character inclusive (); be the length of the

text . Then the sequence synthesis scheme can be represented as a concatenation

where is the fragment of generated at the -th step, and

 is the number of steps of the process. Of all the possible schemes for

generating , the one with the minimum number of steps is chosen. Thus, the

complexity of the sequence in terms of LZ

The minimum number of steps is ensured by choosing the longest prototype

from the prehistory to copy at each step. If we denote by the number of the

position from which copying begins at the -th step, then the length of the copy

fragment

and the -th component of the complex decomposition (1.1) can be written

in the form

The case corresponds to the situation when the position

contains a character that has not been encountered before. In this case, we use the

symbol generation operation.

We will find the LZ complexity for a time series that represents, for

example, daily values of a financial index. To study the dynamics of LZ and

compare it with other complex systems, we will find this complexity measure for a

fixed-length subset (window). To do this, we will calculate the logarithmic returns

and convert them into a sequence of bits. In doing so, you can specify the number

of states to be differentiated (the number system). For example, for two different

states, we have 0, 1, for three states, 0, 1, 2, etc. For a binary encoding system, the

threshold will be set by the average value and the states, for example, of returns

(ret) will be encoded as follows [41, 137, 138]:

It is also possible to define the so-called permutation LZC 103,

175]. In this case, we will rely on the phase space reconstruction procedure that

will be mention in the next section. According to the permutation procedure, we

will take a fragment of the series of length , which serves as the dimension of the

reconstructed attractor, and replace each value of the series with its ordinal index.

Fig. 1.1 shows the time series and its possible ordinal patterns:

Fig. 1.1: A fragment of the time series (a) and 6 possible ordinal patterns that can occur in this
signal (b) [29]

The LZ algorithm performs two operations: (1) adds a new bit to an existing

sequence; (2) copies an already formed sequence. The algorithmic complexity is

the number of such operations required to generate a given sequence.

For a random sequence of length , the algorithmic complexity is calculated

by the expression . Then the relative algorithmic complexity is

the ratio of the resulting complexity to the complexity of the random sequence:

.

Let us consider the possibility of using the LZC index as an indicator of

catastrophic events.

For further work on modeling complex systems, we will use the yfinance

library as a basis, which allows working with financial market data using the

Python programming language.

 Note

Yahoo!, Y!Finance, and Yahoo! finance are registered trademarks of

Yahoo, Inc.

yfinance is not affiliated with, endorsed by, or verified by Yahoo, Inc. It is

an open source tool that uses publicly available Yahoo APIs and is intended for

research and educational purposes.

You should refer to Yahoo!'s terms of use for detailed information about

your rights to use the actual data you download. Remember the Yahoo! Financial

API is for your personal use only.

To install the yfinance library, you can use the following command:
!pip install yfinance --upgrade --no-cache-dir

The GitHub repository (https://github.com/ranaroussi/yfinance) contains

more information about the library itself, errors that may occur, and potential

solutions.

First, we import the necessary modules for further work:
import matplotlib.pyplot as plt
import numpy as np
import neurokit2 as nk
import yfinance as yf
import pandas as pd
import scienceplots
from tqdm import tqdm

%matplotlib inline

plt.style.use(['science', 'notebook', 'grid'])

size = 22
params = {
'figure.figsize': (8, 6), # set the default width and height of th
e figures
'font.size': size, # the size of fonts
'lines.linewidth': 2, # line width
'axes.titlesize': 'small', # size of titles above figures
'axes.labelsize': size, # size of labels on the axes
'legend.fontsize': size, # font size of legend
'xtick.labelsize': size, # the size of the labeling on the axi
s
'ytick.labelsize': size, # the size of the labeling on the y axi
s
"font.family": "Serif", # font family
"font.serif": ["Times New Roman"], # font style
'savefig.dpi': 300, # dots per inch
'axes.grid': False # creating a grid on the figure itself
}

plt.rcParams.update(params) # update the style according to the sett
ings

indices S&P 500 for the USA, Hang Seng Index for China (Hong Kong), DAX

(Deutscher Aktienindex) for Europe, and BSE SENSEX for India are

particularly suitable for the purpose of the indicators-precursors construction.

Using the functionality of the yfinance

historical values of these indices for the period from January 1, 1980 to November

20, 2024. Obviously, not all indices will have the values of the specified starting

period. Some of them will start to exist a little later. Nevertheless, the yfinance

library will take this into account and automatically pull up the values for the

available period:
symbol = '^GSPC' # index symbol
start = " 1980-01-01" # data reading start date
end = " 2024-11-20" # end date of data reading

data = yf.download(symbol, start, end) # download data
time_ser = data['Adj Close'].copy() # saving only adjusted closing prices

xlabel ='time, days' # caption on the x-axis
ylabel = symbol # caption along the y-axis

To bring the series to a standardized initial series or standardized returns, we

define the transformation() function:
def transformation(signal, ret_type):

 for_rec = signal.copy()

 if ret_type == 1: # given the type of series, we perform
necessary transformations
 pass
 elif ret_type == 2:
 for_rec = for_rec.diff()
 elif ret_type == 3:
 for_rec = for_rec.pct_change()
 elif ret_type == 4:
 for_rec = for_rec.pct_change()
 for_rec -= for_rec.mean()
 for_rec /= for_rec.std()
 elif ret_type == 5:
 for_rec = for_rec.pct_change()
 for_rec -= for_rec.mean()
 for_rec /= for_rec.std()
 for_rec = for_rec.abs()
 elif ret_type == 6:
 for_rec -= for_rec.mean()
 for_rec /= for_rec.std()

 for_rec = for_rec.dropna().values

 return for_rec

To plot a pair of time series, we define the plot_pair() function:
def plot_pair(x_values,
 y1_values,
 y2_values,
 y1_label,
 y2_label,
 x_label,
 file_name, clr="magenta"):

 fig, ax = plt.subplots()

 ax2 = ax.twinx()
 ax2.spines.right.set_position(("axes", 1.03))

 p1, = ax.plot(x_values,
 y1_values,
"b-", label=fr"{y1_label}")
 p2, = ax2.plot(x_values,
 y2_values,
 color=clr,

 label=y2_label)

 ax.set_xlabel(x_label)
 ax.set_ylabel(f"{y1_label}")
 ax.yaxis.label.set_color(p1.get_color())
 ax2.yaxis.label.set_color(p2.get_color())

 tkw = dict(size=2, width=1.5)

 ax.tick_params(axis='x', rotation=35, **tkw)
 ax.tick_params(axis='y', colors=p1.get_color(), **tkw)
 ax2.tick_params(axis='y', colors=p2.get_color(), **tkw)
 ax2.legend(handles=[p1, p2])

 plt.savefig(file_name +".jpg")

 plt.show();

calculations:
ret_type = 1 # type of a series:
1 – initial
2 - detrending (difference between present and previous values)
3 – initial returns
4 – standardized returns
5 – absolute values (volatility)
6 – standardized series

window = 500 # sliding window length
tstep = 1 # time step
length = len(time_ser_1.values) # lenth of a series
m = 4 # embedding dimension
tau = 1 # time delay

LZC = [] # classical Lempel-Ziv complexity
PLZC = [] # permutation Lempel-Ziv complexity

for i in tqdm(range(0, length-window, tstep)): # fragments of window length w
ith a step “tstep”

choose a fragment
 fragm = time_ser_1.iloc[i:i+window].copy()

perform a series transformation procedure
 fragm = transformation(fragm, ret_type)

calculate the classical Lempel-Ziv complexity
 lzc, _ = nk.complexity_lempelziv(fragm)

and the permutation Lempel-Ziv complexity
 plzc, _ = nk.complexity_lempelziv(fragm,
 delay=tau,
 dimension=m,
 permutation=True)

and add the results to the array of values
 LZC.append(lzc)
 PLZC.append(plzc)

Saving the results to the text files:
np.savetxt(f"lzc_name={symbol_1}_window={window}_step={tstep}_rettype={ret_ty
pe}.txt" , LZC)
np.savetxt(f"plzc_name={symbol_1}_window={window}_step={tstep}_ \
 rettype={ret_type}_m={m}_tau={tau}.txt" , PLZC)

And visualizing them:
fig, ax = plt.subplots(1, 1)

ax2 = ax.twinx()
ax3 = ax.twinx()
ax2.spines.right.set_position(("axes", 1.03))
ax3.spines.right.set_position(("axes", 1.12))

p1, = ax.plot(time_ser_1.index[window:length:tstep],
 time_ser_1.values[window:length:tstep],
"b-",
 label=fr"{symbol_1}")
p2, = ax2.plot(time_ser_1.index[window:length:tstep],
 LZC,
'gold',
 label=fr"LZC")
p3, = ax3.plot(time_ser_1.index[window:length:tstep],
 PLZC,
'red',
 label=fr"$PLZC$")

ax.set_xlabel(xlabel)
ax.set_ylabel(f"{symbol_1}")
ax.yaxis.label.set_color(p1.get_color())
ax2.yaxis.label.set_color(p2.get_color())
ax3.yaxis.label.set_color(p3.get_color())

tkw = dict(size=3, width=1.5)

ax.tick_params(axis='x', rotation=45, **tkw)
ax.tick_params(axis='y', colors=p1.get_color(), **tkw)
ax2.tick_params(axis='y', colors=p2.get_color(), **tkw)
ax3.tick_params(axis='y', colors=p3.get_color(), **tkw)
ax3.legend(handles=[p1, p2, p3])

plt.savefig(f"plzc_lzc_name={symbol_1}_ \
 window={window}_step={tstep}_ \
 rettype={ret_type}_m={m}_tau={tau}.jpg")

plt.show();

Fig. 1.2 shows the comparative dynamics of the S&P 500 (a), the Hang Seng

Index (b), the DAX (c), the BSE Sensex (d) and their classical monoscale LZ

complexity and its permutation version.

 (a) (b)

 (c) (d)

Fig. 1.2: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), their
classical monoscale LZ complexity, and its permutation version

This figure shows that the 2 measures behave chaotically. In general, both of

them decline before crisis events in stock market indices. It is worth investigating

the multiscale dynamics of LZ measure for more meaningful conclusions.

However, even this approach may not be enough. The fact is that complex

signals exhibit their inherent complexity on different spatial and temporal scales,

i.e., they have scale invariant properties. In particular, they are manifested through

power laws of distribution. Therefore, mono-scale calculations of algorithmic

complexity may be unacceptable and lead to erroneous conclusions.

To overcome such difficulties, multiscale methods are used, and we will

now consider them.

1.3 A granularity procedure for multiscale time series analysis.

Multiscale measures of complexity

The idea of this group of methods includes two sequential procedures:

 averaging

data on non-overlapping segments, the size of which (the averaging

window) will increase by one when moving to the next largest scale;

calculation of a certain (still mono-scale) complexity indicator at each of

the scales.

-

successive counts of a series within non-overlapping windows, the size of which

increases when moving from scale to scale. Each element of the

series is determined according to the expression [104]:

where characterizes the scaling factor.

depends on the window size and is equal to . For a scale equal to 1, the

Fig. 1.3: Schematic illustration of the process of coarse-graining of the original
time series for scales 2 and 3

Let us calculate the window dynamics of the multiscale LZ indicators. We

return the total complexity of the LZ over all scales:
ret_type = 4 # type of a series:
1 – initial
2 - detrending (difference between present and previous values)
3 – initial returns
4 – standardized returns
5 – absolute values (volatility)
6 – standardized series

window = 500 # window length
tstep = 1 # time step of the sliding window
length = len(time_ser_1.values) # length of a series
m = 3 # embedding dimension
tau = 1 # time delay

MSLZC = [] # multiscale Lempel-Ziv complexity
MSPLZC = [] # multiscale permutation Lempel-Ziv complex
ity

for i in tqdm(range(0, length-window, tstep)): # fragments of window length w
ith a step “tstep”

select a fragment
 fragm = time_ser_1.iloc[i:i+window].copy()

perform the series transformation procedure
 fragm = transformation(fragm, ret_type)

calculate the multiscale Lempel-Ziv complexity
 mslzc, _ = nk.entropy_multiscale(fragm)

and the multiscale permutation Lempel-Ziv complexity
 msplzc, _ = nk.entropy_multiscale(fragm,
 delay=tau,
 dimension=m,
 permutation=True)

and add the results to the array of values
 MSLZC.append(mslzc)
 MSPLZC.append(msplzc)

np.savetxt(f"mslzc_name={symbol_1}_window={window}_step={tstep}_ \
 rettype={ret_type}.txt" , MSLZC)
np.savetxt(f"msplzc_name={symbol_1}_window={window}_step={tstep}_ \
 rettype={ret_type}_m={m}_tau={tau}.txt" , MSPLZC)

fig, ax = plt.subplots(1, 1)

ax2 = ax.twinx()
ax3 = ax.twinx()
ax2.spines.right.set_position(("axes", 1.03))
ax3.spines.right.set_position(("axes", 1.12))

p1, = ax.plot(time_ser_1.index[window:length:tstep],
 time_ser_1.values[window:length:tstep],
"b-",
 label=fr"{symbol_1}")
p2, = ax2.plot(time_ser_1.index[window:length:tstep],
 MSLZC,
'gold',
 label=fr"$MSLZC$")
p3, = ax3.plot(time_ser_1.index[window:length:tstep],
 MSPLZC,
'red',
 label=fr"$MSPLZC$")

ax.set_xlabel(xlabel)
ax.set_ylabel(f"{symbol_1}")
ax.yaxis.label.set_color(p1.get_color())
ax2.yaxis.label.set_color(p2.get_color())
ax3.yaxis.label.set_color(p3.get_color())

tkw = dict(size=3, width=1.5)

ax.tick_params(axis='x', rotation=45, **tkw)
ax.tick_params(axis='y', colors=p1.get_color(), **tkw)
ax2.tick_params(axis='y', colors=p2.get_color(), **tkw)
ax3.tick_params(axis='y', colors=p3.get_color(), **tkw)
ax3.legend(handles=[p1, p2, p3])

plt.savefig(f"msplzc_mslzc_name={symbol_1}_ \
 window={window}_step={tstep}_ \
 rettype={ret_type}_m={m}_tau={tau}.jpg")

plt.show();

In Fig. 1.4, the comparative dynamics of the S&P 500 (a), the Hang Seng

Index (b), the DAX (c), the BSE Sensex (d) and their classical multiscale Lempel-

Ziv complexity and its permutation analog can be observed.

 (a) (b)

 (c) (d)

Fig. 1.4: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), their
classical multiscale LZ complexity and its permutation analog

Now the picture is more clear: both measures behave synchronously and

decline in crisis and pre-crisis periods, indicating an increase in the degree of

determinism and self-organization of the market.

1.4 Informational measures of complexity

Fisher information (FI) was introduced by R. A. Fisher in 1922 as a measure

 of statistical estimation [132]. It is central to

many statistical applications that go far beyond complexity theory. It measures the

amount of information that an observed random variable carries about an unknown

parameter. Complexity analysis measures the amount of information a system has

phase space. The FI value is usually uncorrelated with other indicators of

complexity (the more information a system hides about itself, the more predictable

and, accordingly, the less complex it is).

First of all, we set the parameters for calculations:
ret_type = 6 # type of a series:
1 – initial
2 - detrending (difference between present and previous values)
3 – initial returns
4 – standardized returns
5 – absolute values (volatility)

6 – standardized series

window = 500 # window length
tstep = 1 # time step of the sliding window
length = len(time_ser_1.values) # length of a series
m = 3 # embedding dimension
tau = 1 # time delay

fisher = [] # Fisher information

for i in tqdm(range(0, length-window, tstep)):

select a fragment
 fragm = time_ser_1.iloc[i:i+window].copy()

perform the series transformation procedure
 fragm = transformation(fragm, ret_type)

 fish_inf, _ = nk.fisher_information(signal=fragm, dimension=m, delay=tau)

and add the result to the array of values
 fisher.append(fish_inf)

np.savetxt(f"fisher_inf_name={symbol_1}_window={window}_step={tstep}_rettype=
{ret_type}_dimension={m}_delay={tau}.txt", fisher)

values_plot = time_ser_1.values[window:length:tstep], fisher
ylabels = ylabel_1, "FI"
file_name = f"fisher_name={symbol_1}_window={window}_step={tstep}_rettype={re
t_type}_dimension={m}_delay={tau}"

plot_pair(time_ser_1.index[window:length:tstep], values_plot, xlabel, ylabels
, file_name)

In Fig. 1.5, the comparative dynamics of the S&P 500 (a), the Hang Seng

Index (b), the DAX (c), the s information

indicator can be observed.

 (a) (b)

 (c) (d)

Fig. 1.5: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their

Fig. 1.5 shows that the Fisher index decreases in crisis and pre-crisis periods,

which indicates a decline in the amount of information needed to describe the self-

organized dynamics of financial crises and an increase in correlation between

Hjor parameters are statistical property measures that were originally

introduced by Hjorth [28] to describe the general characteristics of

electroencephalogram signals. The parameters are activity, mobility, and

complexity:

1. The parameter is simply the variance of the signal, which

corresponds to the average power of the signal (if its average value is 0):

2. The parameter is the average frequency or proportion of the

standard deviation of the power spectrum. It is defined as the square root of

the variance of the first derivative of the signal divided by the variance of

the signal:

3. The parameter gives an estimate of the signal bandwidth,

indicating the similarity of the waveform to a pure sine wave (for which the

essive

parameter is defined as the ratio of the mobility of the first derivative of the

signal to the mobility of the signal itself:

where and represent the first and second derivatives of the signal,

respectively.
ret_type = 1 # type of a series:
1 – initial
2 - detrending (difference between present and previous values)
3 – initial returns
4 – standardized returns
5 – absolute values (volatility)
6 – standardized series

window = 500 # window length
tstep = 1 # time step of the sliding window
length = len(time_ser_1.values) # length of a series
activity = []
mobility = []
complexity = []

for i in tqdm(range(0, length-window, tstep)): # fragment with the length win
dow and delay tstep

select a fragment
 fragm = time_ser_1.iloc[i:i+window].copy()
perform the series transformation procedure
 fragm = transformation(fragm, ret_type)
calculate the Hjorth's complexity indicators
 cmpl, info = nk.complexity_hjorth(fragm)

and add the result to the array of values
 activity.append(info['Activity'])
 mobility.append(info['Mobility'])
 complexity.append(cmpl)

np.savetxt(f"activity_name={symbol_1}_window={window}_ \
 step={tstep}_rettype={ret_type}.txt", activity)
np.savetxt(f"mobility_name={symbol_1}_window={window}_ \
 step={tstep}_rettype={ret_type}.txt", mobility)
np.savetxt(f"complexity_name={symbol_1}_window={window}_ \
 step={tstep}_rettype={ret_type}.txt", complexity)

fig, ax = plt.subplots(1, 1)

ax2 = ax.twinx()
ax3 = ax.twinx()
ax4 = ax.twinx()

ax2.spines.right.set_position(("axes", 1.03))
ax3.spines.right.set_position(("axes", 1.16))
ax4.spines.right.set_position(("axes", 1.24))

p1, = ax.plot(time_ser_1.index[window:length:tstep],
 time_ser_1.values[window:length:tstep],
"b-", label=fr"{ylabel_1}")
p2, = ax2.plot(time_ser_1.index[window:length:tstep],
 activity, "r--", label=r"Act")
p3, = ax3.plot(time_ser_1.index[window:length:tstep],
 mobility, "g-", label=r"Mob")
p4, = ax4.plot(time_ser_1.index[window:length:tstep],
 complexity, "m-", label=r"$Comp$")

ax.set_xlabel(xlabel)
ax.set_ylabel(f"{ylabel_1}")
ax.yaxis.label.set_color(p1.get_color())
ax2.yaxis.label.set_color(p2.get_color())
ax3.yaxis.label.set_color(p3.get_color())
ax4.yaxis.label.set_color(p4.get_color())

tkw = dict(size=4, width=1.5)

ax.tick_params(axis='y', colors=p1.get_color(), **tkw)
ax.tick_params(axis='x', rotation=45, **tkw)
ax2.tick_params(axis='y', colors=p2.get_color(), **tkw)
ax3.tick_params(axis='y', colors=p3.get_color(), **tkw)
ax4.tick_params(axis='y', colors=p4.get_color(), **tkw)
ax4.legend(handles=[p1, p2, p3, p4])

plt.savefig(f"hjorth_name={symbol_1}_ret={ret_type}_wind={window}_step={tstep
}.jpg")
plt.show();

Fig. 1.6 shows the comparative dynamics of S&P 500, Hang Seng index,

DAX, BSE Sensex, and their

complexity.

 (a) (b)

 (c) (d)

Fig. 1.6: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their

Obviously, the activity parameter () seems to be the least informative, as

it only indicates an increase in the total variance of the signal. The issue of

premature identification of the growth of a crisis phenomenon is best solved by the

Mobility indicator (). We can see that this indicator increased before the

crashes of 1997, 2001, during 2008-2009, and COVID-

complexity measure () reacts in an asymmetric way: while mobility

increases, the complexity measure decreases, indicating that the system tends to be

more periodic or correlated.

Decorrelation time

The decorrelation time (DT) is defined as the time (in samples) of the first

zero crossing of the autocorrelation function. A shorter DT corresponds to a less

correlated signal. For example, a decrease in DT in electroencephalogram signals

is observed before seizures, which is associated with a decrease in low frequency

power [64].
ret_type = 1 # type of a series:
1 – initial
2 - detrending (difference between present and previous values)
3 – initial returns
4 – standardized returns
5 – absolute values (volatility)
6 – standardized series
window = 500 # window length
tstep = 1 # time step of the sliding window
length = len(time_ser_1.values) # length of a series

decorrelation_time = [] # array for decorrelation time

for i in tqdm(range(0, length-window, tstep)):

 fragm = time_ser_1.iloc[i:i+window].copy()
 fragm = transformation(fragm, ret_type)
 dec_time, _ = nk.complexity_decorrelation(fragm)
 decorrelation_time.append(dec_time)

np.savetxt(f"dec_time_name={symbol_1}_window={window}_ \
 step={tstep}_rettype={ret_type}.txt", decorrelation_time)

values_plot = time_ser_1.values[window:length:tstep], decorrelation_time
ylabels = ylabel_1, "DT"
file_name = f"dec_time_name={symbol_1}_window={window}_ \
 step={tstep}_rettype={ret_type}"

plot_pair(time_ser_1.index[window:length:tstep], values_plot,
 xlabel, ylabels, file_name)

Fig. 1.7 demonstrates the comparative dynamics of S&P 500, Hang Seng

index, DAX, BSE Sensex, and their decorrelation time.

 (a) (b)

 (c) (d)

Fig. 1.7: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their
DT indicator

The decorrelation time increases in the pre-crash period, indicating that the

system is more correlated during this period.

Relative roughness (irregularity, sharpness)

Relative roughness (RR) is the ratio of local variance (autocovariance with

lag 1) to global variance (autocovariance with lag 0), which can be used to classify

fractal analysis [162].
ret_type = 1 # type of a series:
1 – initial
2 - detrending (difference between present and previous values)
3 – initial returns
4 – standardized returns
5 – absolute values (volatility)

6 – standardized series
window = 500 # window length
tstep = 1 # time step of the sliding window
length = len(time_ser_1.values) # length of a series

relative_roughness = [] # relative roughness

for i in tqdm(range(0, length-window, tstep)):
 fragm = time_ser_1.iloc[i:i+window].copy()
 fragm = transformation(fragm, ret_type)
 rr, _ = nk.complexity_relativeroughness(fragm)

and add the result to the array of values
 relative_roughness.append(rr)

np.savetxt(f"rel_rough_name={symbol_1}_window={window}_ \
 step={tstep}_rettype={ret_type}.txt", relative_roughness)

values_plot = time_ser_1.values[window:length:tstep], relative_roughness
ylabels = ylabel_1, "RR"
file_name = f"rel_rough={symbol_1}_window={window}_ \
 step={tstep}_rettype={ret_type}"

plot_pair(time_ser_1.index[window:length:tstep], values_plot,
 xlabel, ylabels, file_name)

Fig. 1.8 shows the comparative dynamics of S&P 500, Hang Seng index,

DAX, BSE Sensex, and their relative roughness indicator.

 (a) (b)

 (c) (d)

Fig. 1.8: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their
relative roughness indicator

The relative roughness indicator shows that crash events are characterized

by an increase in roughness. This kind of behavior is an indicator of increasing

market noise activity: correlation characteristics and overall market variation.

1.5 Entropy analysis of complex systems

The issue of the dynamics of development and functioning of complex

systems can be considered in two ways:

as a study of noise activity;

as a deterministic case with a certain degree of order.

In recent years, several approaches have been used to identify the

mechanisms underlying the evolution of complex systems. Particularly useful

results have been obtained by studying them using the methods of random matrix

theory, mono- and multifractal analysis, chaos theory with reconstruction of the

system trajectory in phase space, recurrence analysis, etc. We have reviewed these

methods in previous papers. However, the use of some of these methods imposes

requirements for the stationarity of the data under study, requires long time series,

and complex calculation of several parameters.

Another well-known approach to modeling the characteristics of complex

systems is to calculate the characteristics of different types of entropy.

The concept of thermodynamic entropy as a measure of system chaos is well

known in physics, but in recent years the concept of entropy has been applied to

complex systems of other objects (biological, economic, social, etc.). For example,

one of the most commonly used methods for determining entropy is based on the

calculation of the Fourier power spectrum and is used to study time series of

various nature. However, using the discrete Fourier transform to analyze time

series has its drawbacks, in particular, the results are affected by the non-

stationarity of the series, the variation of their length from hundreds to hundreds of

thousands, and the limitations of the method itself (the invariance of the frequency-

raises the question of calculating entropy values using other methods.

The thermodynamic entropy , often simply referred to as entropy, in

chemistry and thermodynamics is a measure of the amount of energy in a physical

system that cannot be used to do work. It is also a measure of the disorder present

in the system.

The concept of entropy was first introduced in 1865 by Rudolf Clausius

[133]. He defined the change in entropy of a thermodynamic system during a

reversible process as the ratio of the change in the total amount of heat to the

absolute temperature :

Rudolf Clausius gave the value

Greek word transformation).

In 1877, Ludwig Boltzmann [97] realized that the entropy of a system can

ent with

their thermodynamic properties. Consider, for example, an ideal gas in a vessel. A

microstate is defined as the positions and momenta of each atom that makes up the

system. Connectivity requires us to consider only those microstates for which: (i)

the location of all parts is limited by the boundaries of the vessel, (ii) the kinetic

energies of the atoms are summed to obtain the total energy of the gas. Boltzmann

postulated that

where the constant is now known as the Boltzmann

constant, and is the number of microstates that are possible in the existing

evaluated as the beginning of statistical mechanics, which describes

th

principle relates the microscopic properties of a system () to one of its

thermodynamic properties ().

ate.

Moreover, since () can only be a positive integer, the entropy must be positive,

based on the properties of the logarithm.

In the case of discrete states of quantum mechanics, the number of states is

counted in the usual way. In classical mechanics, the microscopic state of a system

is described by the coordinates and momenta of individual particles, which

take continuous values. In this case

where is the number of independent coordinates, is the reduced Planck

constant, and integration is performed over a region of phase space corresponding

to a certain macroscopic state.

Claude Shannon [35] proposed a formula for estimating the uncertainty of

coded information in communication channels, called Shannon entropy:

where is the probability that character occurs in a code containing

characters, and is a dimensional factor.

We will calculate it using a sliding window procedure:

ret_type = 1
window = 500
tstep = 1
length = len(time_ser_1.values)
log_base = np.exp(1)

shannon = [] # array for Shannon entropy values

for i in tqdm(range(0, length-window, tstep)):

 fragm = time_ser_1.iloc[i:i+window].copy()
 fragm = transformation(fragm, ret_type)

calculate Shannon entropy
 p, be = np.histogram(fragm, # calculate the probability density f
unction
 bins='auto',
 density=True)
 r = be[1:] - be[:-1] # find dx
 P = p * r # represent probability as f(x)*dx
 P = P[P!=0] # filter by all non-zero probabilitie
s

 sh_ent, _ = nk.entropy_shannon(freq=P, base=log_base) # calculate entropy

 sh_ent /= np.log(len(P)) # and normalize

and add the result to the array of values
 shannon.append(sh_ent)

np.savetxt(f"shannon_ent_name={symbol_1}_window={window}_ \
 step={tstep}_rettype={ret_type}.txt" , shannon)

values_plot = time_ser_1.values[window:length:tstep], shannon
ylabels = ylabel_1, "ShEn"
file_name = f"shannon_ent_name={symbol_1}_window={window}_ \
 step={tstep}_rettype={ret_type}"

plot_pair(time_ser_1.index[window:length:tstep],
 values_plot, xlabel, ylabels, file_name)

In Fig. 1.9 is presented the comparative dynamics of S&P 500, Hang Seng

index, DAX, BSE Sensex, and their Shannon entropy.

 (a) (b)

 (c) (d)

Fig. 1.9: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their
ShEn

As we can see from the figure above, ShEn responds with a decline to crisis

periods of the stock indices, which indicates an increase in the degree of

correlation of the system, its determinism.

The connection between entropy and information can be seen in the

that we have complete information about the coordinates and momentum of each

 assume that the momenta of all particles are zero. In

this case, the thermodynamic probability is one and the entropy is zero. At finite

temperatures, the entropy in equilibrium reaches a maximum. We can measure all

the macro parameters that characterize this macro state. However, we know

virtually nothing about the microstate of the system. To be more precise, we know

that a given macro state can be realized with the help of a very large number of

micro states. Thus, zero entropy corresponds to complete information (the degree

of ignorance is zero), and maximum entropy corresponds to complete ignorance of

microstates (the degree of ignorance is maximum).

In information theory, entropy is defined as the amount of information. Let

 be the a priori probability of an event (the probability before the experiment),

and be the probability of this event after the experiment. For simplicity, we

assume that . According to Shannon, the amount of information that gives

an accurate answer (after the experiment) is

By definition, this amount of information is equal to one bit.

The physical meaning of represents a measure of our ignorance. In other

words, is the information we can get by solving a problem. In the example (a

body at absolute zero temperature) discussed above, the measure of our ignorance

is zero, since . After the experiment, we get zero information , since

everything was known before the experiment. If we consider a body at finite

temperatures, the number of microstates, and hence , is very large before the

experiment. After the experiment, we get a lot of information, since we know the

coordinates and momenta of all the particles.

The analogy between the amount of information and the entropy ,

multiplier equal to the Boltzmann constant and use the natural logarithm. It is

for this reason that the value of is called information entropy. Information

entropy (the amount of information) was defined by analogy with ordinary

entropy, and it has properties characteristic of ordinary entropy: additivity, extreme

properties, etc. However, it is impossible to equate ordinary entropy with

information entropy, since it is unclear what the second law of thermodynamics

has to do with information. Recall that an extensive quantity is a characteristic of a

system that increases with the size of the system, i.e., if our system consists of two

independent subsystems A and B, then the entropy of the whole system can be

obtained by adding the entropies of the subsystems:

This is the property that means the extensivity, or additivity, of entropy.

further work:
!pip install EntropyHub

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import yfinance as yf
import neurokit2 as nk
import EntropyHub as eh
import warnings
import scienceplots
from tqdm import tqdm

warnings.filterwarnings('ignore')

Approximation entropy

Approximate Entropy 148, 149] that

determines the ability to predict fluctuations in time series [167]. Intuitively, it

means that the presence of repeating patterns (sequences of a certain length

constructed from consecutive numbers in a series) of fluctuations in a time series

leads to greater predictability of the time series compared to series without

repeating patterns. A relatively large value of ApEn shows the probability that

similar patterns of observations will not follow each other. In other words, a time

series containing a large number of repeating patterns has a relatively small ApEn

value, while the ApEn value for a less predictable (more complex) process is

larger.

When calculating ApEn for a given time series , consisting of values

, two parameters, and , are selected. The first of these

parameters, , indicates the length of the pattern, and the second, , defines the

similarity criterion. Subsequences of elements of the time series , consisting of

 numbers taken starting from number , are studied and are called vectors

. Two vectors (templates), and , are similar if all differences of

pairs of their respective coordinates are less than the value of , i.e. if

For the considered set of all vectors of length of the time series ,

we can calculate the values

,

where is the number of vectors in that are similar to the vector

 (given the chosen similarity criterion). The value of is the

proportion of vectors of length that have similarity to a vector of the same

length whose elements start with the number . For a given time series, the values

of are calculated for each vector in , and then the average value of

 is found, which reflects the prevalence of similar vectors of length in

the series . Directly, the approximation entropy for the time series using the

vectors of length and the similarity criterion is determined by the formula:

That is, as the natural logarithm of the ratio of the repeatability of vectors of

length to the repeatability of vectors of length .

Thus, if similar vectors are found in the time series, ApEn will estimate the

logarithmic probability that the following intervals after each vector will be

different. Smaller ApEn values correspond to a higher probability that vectors are

followed by similar ones. If the time series is very irregular, the presence of similar

vectors cannot be predicted and the ApEn value is relatively large.

Note that ApEn is an unstable characteristic to the input data, as it depends

quite strongly on the parameters and .
window = 500
tstep = 1

m = 3 # embedding dimension
tau = 1 # time delay
r = 0.45 # similarity parameter

ret_type = 6 # type of a series:
1 – initial
2 - detrending (difference between present and previous values)
3 – initial returns
4 – standardized returns
5 – absolute values (volatility)
6 – standardized series

length = len(time_ser.values) # length of a series

ApEn = [] # an array for storing entropy values

for i in tqdm(range(0, length-window, tstep)): #

 fragm = time_ser.iloc[i:i+window].copy()
 fragm = transformation(fragm, ret_type)

calculate the approximation entropy
 Ap, _ = nk.entropy_approximate(signal=fragm,
 dimension=m,
 delay=tau,
 tolerance=r,
 corrected=False)
 ApEn.append(Ap)

Save the value of ApEn to a text file:
np.savetxt(f"ApEn_name={symbol}_window={window}_step={tstep}_\
 dim={m}_tau={tau}_radius={r}_sertype={ret_type}.txt", ApEn)

Defining the labels for the figures and the names of the saved figures:
label_apen = fr'$ApEn$'

file_name_apen = f"ApEn_name={symbol}_window={window}_step={tstep}_\
 dim={m}_tau={tau}_radius={r}_sertype={ret_type}"

Plotting the results:
plot_pair(time_ser.index[window:length:tstep],
 time_ser.values[window:length:tstep],
 ApEn,
 ylabel,
 label_apen,
 xlabel,
 file_name_apen)

In Fig. 1.10 is presented the comparative dynamics of S&P 500, Hang Seng

index, DAX, BSE Sensex, and their approximate entropy.

 (a) (b)

 (c) (d)

Fig. 1.10: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their
ApEn

As can be seen from Fig. 1.10, the approximation entropy falls at crisis and

pre-crisis moments. This indicates that the average value of the correlation integral

obtained for the phase space of dimension does not differ much from that

obtained for the phase space of dimension . That is, when the space is

reconstructed in different dimensions, all points are simply close enough to each

other, despite the geometric transformations of the stock market attractor. This

indicates a fairly high degree of correlation between the price fluctuations of the

stock indices and the focus of market traders on a single trend.

Fuzzy entropy

One of the modifications of Shannon entropy is Fuzzy entropy (FuzzEn)

[16, 79, 171]. This approach excludes self-similarity between the studied vectors,

and instead of the Heaviside function, which gives either 0 or 1 for similar vectors,

a fuzzy membership function is used, which in the case of FuzzEn will associate

the similarity between two vectors with a real value in the range . The

difference can be seen at the stage of constructing the contribution vector, where

we perform detrending for the reconstructed vectors:

where . Next, for consecutive embedded

vectors, we find the distance

In the classical ApEn, distance values are passed through the Heaviside

function. The fuzzy modification uses membership functions to measure the

membership of one trajectory to another:

where , and and are the width and gradient of the

exponential function.

Next, the following function is calculated, which is similar to the correlation

integral in classical ApEn:

Finally,

window = 500 # window length
tstep = 1 # time step

m = 3 # embedding dimension
tau = 1 # time delay

characteristic_func = "default" # type of membership function:
 # default,
 # sigmoid,
 # gudermannian,
 # linear

r = (0.4, 2.0) # parameters that are passed to the membershi
p function:
for ‘default’ and ‘sigmoid’ – 2 values of r,
for ‘gudermannian’ and ‘linear’ - 1 value of r,

ret_type = 6 # type of a series:
1 – initial
2 - detrending (difference between present and previous values)
3 – initial returns
4 – standardized returns
5 – absolute values (volatility)
6 – standardized series

length = len(time_ser.values) # length of a series

FuzzEn = [] # an array for storing entropy values

for i in tqdm(range(0, length-window, tstep)):

 fragm = time_ser.iloc[i:i+window].copy()
 fragm = transformation(fragm, ret_type)

calculation of fuzzy entropy
 Fuzz, _, _ = eh.FuzzEn(Sig=fragm, m=m, tau=tau, Fx=characteristic_func, r
=r)
 FuzzEn.append(Fuzz[-1]) # add the calculated value to the array of values

Save FuzzEn value to a text file:
np.savetxt(f"FuzzEn_name={symbol}_window={window}_step={tstep}_\
 dim={m}_tau={tau}_radius={r}_sertype={ret_type}_\
 memberfunc={characteristic_func}.txt", FuzzEn)

Defining the labels for the figures and the names of the saved figures:
label_fuzzen = fr'$FuzzEn$'

file_name_fuzzen = f"FuzzEn_name={symbol}_window={window}_step={tstep}_\
 dim={m}_tau={tau}_radius={r}_sertype={ret_type}_\
 memberfunc={characteristic_func}"

Plotting the results:
plot_pair(time_ser.index[window:length:tstep],
 time_ser.values[window:length:tstep],
 FuzzEn,
 ylabel,
 label_fuzzen,
 xlabel,
 file_name_fuzzen,
 clr='red')

Fig. 1.11 shows the comparative dynamics of S&P 500, Hang Seng index,

DAX, BSE Sensex, and their sample entropy.

 (a) (b)

 (c) (d)

Fig. 1.11: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their
FuzzEn

Fig. 1.11 demonstrates the downward dynamics of fuzzy entropy in crisis

and pre-crisis periods, which works similarly to approximation entropy. It follows

that fuzzy entropy also indicates an increase in the correlation of the system and its

dynamics of the stock market.

Sample entropy

The calculation of ApEn takes into account the similarities of a particular

vector to itself, which is used to avoid a possible value of in the absence

of similar vectors. However, this feature leads to the leveling of two important

characteristics in the similarity entropy:

ApEn is highly dependent on the length of the pattern (vector) under

consideration and is lower than expected for vectors of small

dimensionality;

ApEn does not take into account the relative density of the data.

This means that when the ApEn value for one series is higher than for

another, it should remain so (but is not) for any possible initial conditions. This

conclusion is all the more important since ApEn is recommended as a measure of

comparison between two data sets by different authors.

Taking into account these limitations, another characteristic, Sample

Entropy (SampEn), was developed for calculation [86].

When calculating SampEn, unlike the ApEn algorithm, two conditions are

added:

the similarity of the vector to itself is not taken into account;

when calculating the values of conditional probabilities, SampEn

does not use the length of the vectors.

Based on the analysis of the above, we can conclude that SampEn:

more than ApEn, corresponds to the theory of random numbers for a

series with a known distribution density function;

preserves the relative density, while ApEn loses this characteristic;

adds a much smaller error to the calculated value when using vectors

of small dimensionality.
window = 500 # window length
tstep = 1 # time step

m = 3 # embedding dimension
tau = 1 # time delay
r = 0.4 # similarity parameter

ret_type = 6 # type of a series:
1 – initial
2 - detrending (difference between present and previous values)
3 – initial returns
4 – standardized returns
5 – absolute values (volatility)
6 – standardized series

length = len(time_ser.values) # length of a series

SampEn = [] # an array for storing sample entropy values

for i in tqdm(range(0, length-window, tstep)):

 fragm = time_ser.iloc[i:i+window].copy()
 fragm = transformation(fragm, ret_type)

calculations of sample entropy
 Samp, _ = nk.entropy_sample(signal=fragm,
 dimension=m,
 delay=tau,
 tolerance=r)
 SampEn.append(Samp)

Save the SampEn values to a text file:
np.savetxt(f"SampEn_name={symbol}_window={window}_step={tstep}_\
 dim={m}_tau={tau}_radius={r}_sertype={ret_type}.txt", SampEn)

Defining the labels for the figures and the titles of the saved figures:
label_sampen = fr'$SampEn$'

file_name_sampen = f"SampEn_name={symbol}_window={window}_step={tstep}_\
 dim={m}_tau={tau}_radius={r}_sertype={ret_type}"

Plotting the results:
plot_pair(time_ser.index[window:length:tstep], time_ser.values[window:length:
tstep], SampEn, ylabel, label_sampen, xlabel, file_name_sampen, clr='darkgree
n')

Fig. 1.12 demonstrates the comparative dynamics of S&P 500, Hang Seng

index, DAX, BSE Sensex, and their sample entropy.

(a) (b)

 (c) (d)

Fig. 1.12: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their

SampEn

Fig. 1.12 shows that SampEn decreases in the pre-crisis periods of the stock

market, which indicates an increase in the correlation of the trajectories of the

reconstructed phase space of the N225 index. This suggests that the market in pre-

crisis periods becomes more orderly and trend-resistant.

Permutation entropy

Permutation entropy (PEn) is a measure from chaos theory proposed by

Bandt and Pompe [33] and characterized by conceptual simplicity and

computational speed. The idea of PEn is based on the usual Shannon entropy, but

uses permutation patterns ordinal relations between the values of the system.

Compared to other measures of complexity, it has certain advantages, such as noise

resistance and invariance to nonlinear monotonic transformations [77].

As in the previous types of entropy, we reconstruct a time series of values

with a fixed embedding dimension and a time delay , and use the embedding

matrix to form time vector sequences

and as a result we get vectors.

Each element of is converted into numerical ranks according to their

order. For example, for and and the time series

, the embedded matrix will have the following pairs:

, , , .

Next, we form ordinal sequences according to their numerical order. Such

vectors as satisfy the condition and one vector

 satisfies the condition . We can consider possible

permutations of order . In our example, there are only 2! patterns:

.

For each pattern, we determine its relative frequency:

The probability of finding a vector with a pattern is and with a

pattern is , i.e., we form the probability distribution

. Finally, this type of entropy can be calculated in the same

way as the ShEn:

For convenience, PEn is normalized according to the following equation

[165]:

where , and the normalized entropy of permutations is in

the range .
window = 500 # window length
tstep = 1 # time step

m = 3 # embedding dimension
tau = 15 # time delay

Type = 'none' # none - classical
 # finegrain – Finegrained PEn
 # modified – Modified PEn
 # weighted – Weighted PEn

 # ampaware – Amplitude-Aware PEn
 # edge – Edge PEn
 # uniquant – Uniquant PEn

tpx = -1 # finegrain tpx - parameter , positive scalar (by default: 1)
 # ampaware tpx - parameter A, value in the range [0, 1] (by defau
lt: 0.5)
 # edge tpx - sensitivity parameter r, scalar > 0 (by default: 1)
 # uniquant tpx - parameter L, integer > 1 (by default: 4)

log = np.exp(1)
norm = True # normed entropy

ret_type = 1 # type of a series:
1 – initial
2 - detrending (difference between present and previous values)
3 – initial returns
4 – standardized returns
5 – absolute values (volatility)
6 – standardized series

length = len(time_ser.values) # length of a series

PEn = [] # array for storing values of normalized PEn

for i in tqdm(range(0, length-window, tstep)):

 fragm = time_ser.iloc[i:i+window].copy()

 fragm = transformation(fragm, ret_type)

calculate PEn
 _, Pnorm, cPE = eh.PermEn(fragm,
 m=m,
 tau=tau,
 Typex=Type,
 tpx=tpx,
 Logx=log,
 Norm=norm)

 PEn.append(Pnorm[-1])

Save the permutation entropy value to a text file:
np.savetxt(f"PEn_name={symbol}_window={window}_step={tstep}_\
 dim={m}_tau={tau}_sertype={ret_type}_type={Type}_param={tpx}.txt", PE
n)

Defining the labels for the figures and the titles of the saved figures:
label_permen = fr'PEn'

file_name_perm = f"PEn_name={symbol}_window={window}_step={tstep}_\
 dim={m}_tau={tau}_sertype={ret_type}_type={Type}_param={tpx}"

plot_pair(time_ser.index[window:length:tstep],
 time_ser.values[window:length:tstep],
 PEn,
 ylabel,
 label_permen,
 xlabel,
 file_name_perm,
 clr='indigo')

Fig. 1.13 demonstrates the comparative dynamics of S&P 500, Hang Seng

index, DAX, BSE Sensex, and their permutation entropy.

 (a) (b)

 (c) (d)

Fig. 1.13: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their
PEn

Fig. 1.13 shows that PEn decreases during crisis and pre-crisis periods in the

stock market. This indicates an increase in the likelihood of one particular pattern

emerging for further market dynamics, and thus in the amount of information

expected when analyzing fluctuations in the stock market indices.

Singular value decomposition entropy

The singular value decomposition entropy (SVDEn) [147] can be

intuitively viewed as an indicator of how many eigenvectors are needed to

adequately explain a data set. In other words, it measures the richness of features:

the higher the SVDEn, the more orthogonal vectors are needed to adequately

based on the decomposition of the singular value of the signal reconstructed by the

time-delay method.
window = 500 # window length
tstep = 1 # time step

m = 3 # embedding dimension
tau = 1 # time delay

ret_type = 6 # type of a series:
1 – initial
2 - detrending (difference between present and previous values)
3 – initial returns
4 – standardized returns
5 – absolute values (volatility)
6 – standardized series

length = len(time_ser.values) # length of a series

SVDEn = [] # an array for storing values of SVD entropy

for i in tqdm(range(0, length-window, tstep)):

 fragm = time_ser.iloc[i:i+window].copy()
 fragm = transformation(fragm, ret_type)

calculation of the svd entropy
 svden, _ = nk.entropy_svd(signal=fragm,
 dimension=m,
 delay=tau)

 SVDEn.append(svden)

Saving SVDEn to a text file:
np.savetxt(f"SVDEn_name={symbol}_window={window}_step={tstep}_\
 dim={m}_tau={tau}_sertype={ret_type}.txt", SVDEn)

Defining the labels for the figures and the titles of the saved figures:
label_svden = fr'$SVDEn$'

file_name_svden = f"SVDEn_name={symbol}_window={window}_step={tstep}_\
 dim={m}_tau={tau}_sertype={ret_type}"

Plotting the results:
plot_pair(time_ser.index[window:length:tstep],
 time_ser.values[window:length:tstep],
 SVDEn,
 ylabel,
 label_svden,
 xlabel,
 file_name_svden,
 clr='darkorange')

Fig. 1.14 shows the comparative dynamics of S&P 500, Hang Seng index,

DAX, BSE Sensex, and their singular value decomposition entropy.

 (a) (b)

 (c) (d)

Fig. 1.14: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their
SVDEn

Fig. 1.14 shows that the entropy of the singular value decomposition

decreases in (pre)crisis periods, which indicates an increase in correlations in the

stock market. Since SVDEn is based on the distribution of eigenvectors, we can

assume that in pre-crisis moments, market dynamics are driven by one or more

eigenvectors, which are the driving component of the index under study.

Dispersion entropy

For a given one-dimensional signal of length : , the

Dispersion entropy algorithm (DispEn) includes 4 main steps [111]:

1) First, the are mapped to classes labeled from 1 to .

There are a number of linear and nonlinear approaches for this. Although

the linear mapping algorithm is the fastest when the maximum and/or

minimum values of the time series are much larger or smaller than the

mean/median value of the signal, most values of are assigned to only a

few classes. Thus, we first use a normal cumulative distribution function

(NCDF) to map to from 0 to 1. Next, a linear

algorithm is performed to assign each an integer from 1 to . To do

this, for each term of the displayed signal, we use ,

where represents the -th term of the classified time series, and

rounding implies either increasing or decreasing the number to the next

digit. It is worth noting that this step can be performed using other linear

and nonlinear mapping methods.

2) Each vector with dimension and time delay is of the form

, and is

projected onto the variance pattern , where

. The number of possible dispersion patterns

that can be assigned to each vector is , since the signal has

elements and each element can be assigned an integer value from 1 to .

3) For all potential dispersion patterns, the relative frequency is

calculated:

4) Finally, based on the Shannon entropy formula, DispEn is calculated as

When all possible dispersion patterns have the same probability, we get the

largest value of DispEn, which is . Conversely, if only one

differs from zero (a perfectly regular/predictable signal), we get the smallest value

of DispEn.
window = 500 # sliding window width
tstep = 1 # sliding window time step
m = 3 # embedding dimension
tau = 1 # time delay

fluct = False # fluctuation-dispersion entropy
rho = 1 # parameter for Type="finesort", positive scalar value (by defa
ult: 1)
classes = 6 # number of symbols, which are used during transofrmation

type = 'ncdf' # type of symbolic conversion of a series:
"ncdf" - Normalized cumulative distribution function
"kmeans" - K-means clustering algorithm
"linear" - Linear segmentation of the signal range
"finesort" - Entropy of fine scattering

ret_type = 6 # type of a series:
1 – initial
2 - detrending (difference between present and previous values)
3 – initial returns
4 – standardized returns
5 – absolute values (volatility)
6 – standardized series

length = len(time_ser.values) # length of a series

DispEn = [] # an array of values for storing dispersion entropy

for i in tqdm(range(0, length-window, tstep)):

 fragm = time_ser.iloc[i:i+window].copy()
 fragm = transformation(fragm, ret_type)

calculations of the dispersion entropy
 Disp, _ = nk.entropy_dispersion(signal=fragm,
 dimension=m,

 delay=tau,
 c=classes,
 symbolize=type,
 fluctuation=fluct,
 rho=rho)
 DispEn.append(Disp)

Saving DispEn value to a text file:
np.savetxt(f"DispEn_symbol={symbol}_window={window}_step={tstep}_d_e={m}_tau=
{tau}_\
 series_type={ret_type}_fluct={fluct}_rho={rho}_\
 classes={classes}_type={Type}.txt", DispEn)

Defining the labels for the figures and the names of the saved figures:
label_dispen = fr'$DispEn$'

file_name_dispen = f"DispEn_symbol={symbol}_window={window}_step={tstep}_d_e=
{m}_tau={tau}_\
 series_type={ret_type}_fluct={fluct}_rho={rho}_\
 classes={classes}_type={Type}"

Plotting the results:
plot_pair(time_ser.index[window:length:tstep],
 time_ser.values[window:length:tstep],
 DispEn,
 ylabel,
 label_dispen,
 xlabel,
 file_name_dispen,
 clr='coral')

Fig. 1.15 shows the comparative dynamics of S&P 500, Hang Seng index,

DAX, BSE Sensex, and their dispersion entropy.

 (a) (b)

 (c) (d)

Fig. 1.15: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their
DispEn

Fig. 1.15 shows DispEn declines in the run-up to the crashes. This is

particularly noticeable for the 1970, 1990, 2010, and 2020 crashes. This suggests

that the distribution of dispersion patterns becomes skewed, which is reflected in

the drop in entropy. This also indicates a periodization of the market. For periods

diverse, making the market more unpredictable.

Spectral entropy

Spectral entropy (SE or SpecEn) [84] considers the normalized power

spectral density (PSD) of a signal in the frequency domain as a probability

distribution and calculates its Shannon entropy:

A signal with a single frequency component (for example, a pure sine wave)

has the lowest entropy. On the other hand, a signal with all frequency components

of equal power (white noise) has the highest entropy.
window = 500 # window length
tstep = 1 # time step

num_bins = 30 # if an integer is passed, divides the PSD into several frequen
cy bands

method = 'fft' # method for calculating the PSD:

 # welch
 # fft
 # multitapers
 # lombscargle
 # burg

ret_type = 1 # type of a series:
1 – initial
2 - detrending (difference between present and previous values)
3 – initial returns
4 – standardized returns
5 – absolute values (volatility)
6 – standardized series

length = len(time_ser.values) # length of a series

SpEn = [] # an array of values for storing spectral entropy

for i in tqdm(range(0, length-window, tstep)):

 fragm = time_ser.iloc[i:i+window].copy()
 fragm = transformation(fragm, ret_type)

calculate the spectral entropy
 spec, _ = nk.entropy_spectral(signal=fragm,
 bins=num_bins,
 method=method)

 SpEn.append(spec)

Saving SpecEn values to a text file:
np.savetxt(f"SpEn_symbol={symbol}_window={window}_step={tstep}_\
 series_type={ret_type}_bins={num_bins}_psd={method}.txt", SpEn)

Defining the labels for the figures and the names of the saved figures:
label_spen = fr'$SpEn$'

file_name_spen = f"SpEn_symbol={symbol}_window={window}_step={tstep}_\
 series_type={ret_type}_bins={num_bins}_psd={method}"

Plotting the results:
plot_pair(time_ser.index[window:length:tstep],
 time_ser.values[window:length:tstep],
 SpEn,
 ylabel,
 label_spen,
 xlabel,
 file_name_spen,
 clr='deeppink')

In Fig. 1.16 is presented the comparative dynamics of S&P 500, Hang Seng

index, DAX, BSE Sensex, and their spectral entropy.

 (a) (b)

 (c) (d)

Fig. 1.16: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their
SpecEn

Fig. 1.16 demonstrates that SpecEn has too chaotic a dynamics, which

makes it inapplicable for monitoring and prevention of the stock market crashes.

1.6 Conclusions on informational measures of complexity

Thus, the considered information measures of complexity allow us to study

certain aspects of the complexity of systems of any nature. The multiscale version

of the introduced measures is especially productive. A thorough analysis of time

series for systems of different nature, different levels of complexity, comparing

them with test signals, studying the behavior of systems in different (not

necessarily equilibrium, stationary) conditions will allow us to understand the

nature of complexity and predict the possible behavior of systems in critical

conditions.

Using the example of entropy measures of complexity, this section tests the

hypothesis about the relationship between complexity measures and crisis

phenomena, which was put forward on the basis of complex systems theory. Using

a sliding window algorithm based on a set of entropy indicators, it is shown that

financial collapses are characterized by changes in complexity: in the pre-crisis

period, as a rule, we can observe the ordering of the system, and in the crisis and

post-crisis periods, the growth of chaos. Comparing entropy characteristics opens

up the possibility of early identification and prevention of crisis phenomena in

systems of different nature and complexity.

Thus, the presented indicators-precursors of crisis phenomena, theoretically,

allow to circumvent the need for significant computing resources and rather

controversial methods of forecasting price fluctuations and their trends.

2 Application of recurrence analysis and recurrence

diagrams to the study of dynamics and topology of

complex systems

2.1 Topological and structural analysis of recurrence diagrams

Studies of complex systems, both natural and artificial, have shown that they

are based on nonlinear processes, a thorough study of which is necessary for

understanding and modeling complex systems. In recent decades, the set of

traditional (linear) research methods has been significantly expanded by nonlinear

methods derived from the theory of nonlinear dynamics and chaos; many studies

have been devoted to the assessment of nonlinear characteristics and properties of

processes occurring in nature (scaling, fractal dimensionality). However, most

methods of nonlinear analysis require either sufficiently long or stationary data

series, which are quite difficult to obtain naturally. Moreover, it has been shown

that these methods give satisfactory results for models of real systems that are

idealized. These factors required the development of new methods of nonlinear

data analysis.

The state of natural or artificial systems usually changes over time. The

study of these often complex processes is an important task in many disciplines,

allowing to understand and describe their essence, for example, to predict the state

for some time into the future. The goal of such research is to find mathematical

models that sufficiently correspond to real processes and can be used to solve the

tasks at hand.

e the theory of recurrent analysis,

give some examples, and consider its possible applications in the analysis and

forecasting of complex financial and economic systems.

2.2 Phase space and its reconstruction

The state of the system is described by its state variables

 where the upper index is the variable number. The set of

state variables at time constitutes the state vector in the -dimensional phase

space. This vector moves in time and in the direction determined by its velocity

vector

The sequence of vectors forms a trajectory in phase space, and the

velocity field is tangent to this trajectory. The evolution of the trajectory

describes the dynamics of the system and its attractor. Knowing , we can obtain

information about the state of the system at time by integrating the expression.

Since the shape of the trajectory allows us to judge the nature of the process

(periodic or chaotic processes have characteristic phase portraits), it is not

necessary to perform integration to determine the state of the system, it is enough

to build a graphical representation of the trajectory.

When studying complex systems, there is often no information on all state

variables, or not all of them can be measured. As a rule, we have a single

observation made at a discrete time interval . Thus, measurements are written in

the form of a series , where . The interval can be constant, but

this is not always possible and creates problems for the application of standard data

analysis methods that require a uniform scale of observations.

The interactions and their number in complex systems are such that even one

state variable can be used to judge the dynamics of the entire system as a whole.

Thus, an equivalent phase trajectory that preserves the structures of the original

phase trajectory can be recovered from a single observation or time series [118] by

the using the time-delay method [66]:

Here is the embedding dimension, is the time delay (the real time delay

is defined as). The topological structures of the recovered trajectory are

preserved if , where d is the dimension of the attractor [66]. In

practice, in most cases, the attractor can be recovered when . The delay is

usually chosen a priori.

There are several approaches to choosing the minimum sufficient dimension

, except for the analytical one. Methods based on the concept of false nearest

neighbors (FNN) have shown high efficiency. Its essence lies in the fact that when

the dimensionality of the embedding is reduced, the number of false points falling

in the neighborhood of any point of the phase space increases. This leads to a

simple method determining the number of FNNs as a function of the

dimensionality. There are other methods based on this concept, for example,

determining the distance relations between the same neighboring points at different

. The dimensionality of an attractor can also be determined using cross-

correlation sums.

 (a) (b)

Fig. 2.1:
recurrence plot (b). The phase space vector at point , which falls in the neighborhood (gray
circle in (a)) of the given phase space vector at point , is a considered recurrence point. It is
indicated by a black dot on the recurrence diagram at position (). The phase space vector
outside the neighborhood (the empty circle in (a)) is denoted by a white dot on the recurrence
diagram

2.3 Recurrence analysis

Processes in nature are characterized by pronounced recurrent behavior, such

as periodicity or irregular cyclicity. Moreover, the recurrence (repeatability) of

states in the sense of following a subsequent trajectory close enough to the

previous one is a fundamental property of dissipative dynamical systems. This

property was noted back in the 80s of the XIX century by the French

If the system reduces its dynamics to a limited subset of the phase space,

then it almost certainly, i.e. with a probability practically equal to 1, returns to any

initially state as close as possible.

The essence of this fundamental property is that even a small perturbation in

a complex dynamic system can lead the system to an exponential deviation from

its state, and after a while the system tends to return to a state close to the previous

one, and goes through similar stages of evolution.

This can be verified by graphically depict

space. However, the possibilities of such an analysis are severely limited. As a

rule, the dimensionality of the phase space of a complex dynamical system is

greater than three, which makes it practically inconvenient to consider it directly;

the only possibility is projection into two- and three-dimensional spaces, which

often does not give a correct picture of the phase portrait.

In 1987, Eckmann and co-authors proposed a way to map an m-dimensional

phase trajectory of states of a system of length onto a two-dimensional

square binary matrix of size [93], where 1 (black dot) corresponds to the

repetition of a state at some time at some other time , and both coordinate axes

are time axes. Such a representation was called a recurrence plot (RP) or

recurrence diagram because it captures information about the recurrent behavior of

the system.

Mathematically, the above is described as

where is the number of states , is the size of the neighborhood of

point at time , is the norm, and is the Heaviside function.

It is impractical and, as a rule, impossible to find full recurrence in the value

of (the state of a dynamic, and especially a chaotic system, does not repeat

itself completely equivalent to the initial state, but approaches it as close as

possible). Thus, recurrence is defined as the sufficient closeness of state to state

. In other words, recurrent states are those states that fall into an -

dimensional neighborhood with radius and centered at . These points are

called recurrence points [163, 164].

Since , by definition, a recurrence diagram always

contains a black diagonal line the line of identity (LOI) at an angle to the

coordinate axes. An arbitrarily taken recurrent point does not carry any useful

information about the states at times and . Only the entire set of recurrent points

allows you to restore the properties of the system.

The appearance of the recurrence diagram allows us to judge the nature of

the processes taking place in the system, the presence and influence of noise, states

of

(extreme events).

(a)

(b)

(c)

(d)

(e)

Fig. 2.2: Dynamic time series characterizing homogeneity (a), drift (b), oscillation (c),
contrasting topology (d), laminarity (e) and their recurrence diagrams

2.4 Analysis of the diagrams

Obviously, processes of different behavior will produce recurrence diagrams

with different patterns. Thus, visual evaluation of the diagrams can give an idea of

the evolution of the trajectory under study. There are two main classes of image

structure: topology, represented by large-scale structures, and texture, formed by

small-scale structures.

Topology gives a general idea of the nature of the process. There are four

main classes:

homogeneous recurrence diagrams are typical for stationary and

autonomous systems in which the relaxation time is small compared to

the length of the series;

periodic structures that repeat (diagonal lines, staggered patterns)

correspond to various oscillating systems with periodicity in dynamics;

drift corresponds to systems with slowly changing parameters, and this

makes the upper left and lower right corners of the recurrence diagram

white;

adrupt changes in the system dynamics, as well as extreme situations,

cause the appearance of white areas or bands.

RPs make it easier to identify extreme and rare events.

 (a) (b) (c) (d)

Fig. 2.3: Characteristic topologies of recurrent diagrams: (a) homogeneous (normally
distributed noise); (b) periodic (Van der Pol generator); (c) drift (Ikeda mapping with a
superimposed linearly growing sequence); (d) contrasting regions or bands (generalized
Brownian motion) [96]

A detailed examination of recurrence diagrams reveals small-scale structures

 a texture made up of simple points, diagonal, horizontal, and vertical lines.

Combinations of vertical and horizontal lines form rectangular clusters of points:

single, separately located recurrent points appear when the corresponding

states are rare, or unstable in time, or caused by strong fluctuations. In

this case, they are not signs of randomness or noise;

diagonal lines (for where is the length of the

diagonal line) appear when a segment of the trajectory in phase space

runs parallel to another segment, i.e., the trajectory repeats itself,

returning to the same region of phase space at different times. The length

of such lines is determined by the time during which the trajectory

segments remain parallel; the direction (angle of inclination) of the lines

characterizes the internal time of the subprocesses corresponding to these

trajectory segments. The passage of lines parallel to the identity line (at

an angle of to the coordinate axes) indicates the same direction of

the trajectory segments, perpendicularly

segments), which may also be a sign of phase space reconstruction with

an inappropriate embedding dimension. Irregular appearance of diagonal

lines is a sign of a chaotic process;

vertical (horizontal) lines (with , where is the

length of a vertical or horizontal line) highlight the time intervals in

which the state of the system does not change or changes insignificantly

Fig. 2.4: Basic concepts of recurrence analysis. The displayed recurrence diagram is based on a
time series that has been reconstructed to 11 reconstructed vectors, from to . A
diagonal line of length , a vertical line of length , and a white vertical line of length

 were identified [158]

2.5 Quantitative analysis of recurrence diagrams

For a qualitative description of a system, a graphical representation of the

system is the best. However, the main disadvantage of graphical representation is

that it forces users to subjectively intuitively interpret the patterns and structures

presented in the recurrence diagram.

In addition, as the size of the data increases, it becomes problematic to

analyze all values. As a result, you have to work with separate sections of the

original data. Analyzing in this way can create new defects that distort the

objectivity of the observed patterns and lead to incorrect interpretations. To

overcome this limitation and to disseminate an objective assessment among

researchers, definitions and procedures for quantifying the complexity of recurrent

charts were introduced by Webber and Zbilut [39, 85] in the early 1990s and later

extended by Marwan et al [119].

Small-scale clusters can be a combination of isolated points (random

recurrences). Such an evolution at different time periods or in reverse time order

will represent diagonal lines (deterministic structures), as well as

vertical/horizontal lines to indicate laminar states (discontinuities) or states

representing singularities. For quantitative description of the system of systems,

such small-scale clusters serve as the basis for recurrence quantification analysis

(RQA) [18].

RQA within the sliding window procedure

For further work, we create a window procedure in which we again define

the type of series and a few more parameters. Then we initialize the arrays for each

recurrence measure:
ret_type = 6 # type of a series
window = 500 # sliding window length
tstep = 1 # sliding window step
length = len(time_ser) # length of a series

m = 1 # embedding dimension
tau = 1 # time delay
eps = 0.3 # radius

Initialize arrays to store windowed values of recurrence measures

RR = [] # recurrence rate
DET = [] # determinism
DIV = [] # divergence
AVG_DIAG_LINE = [] # average diagonal line length
ENT_DIAG = [] # entropy of diagonal lines
LAM = [] # laminarity
TT = [] # trapping time
ENT_VERT = [] # entropy of vertical lines
ENT_WHITE_VERT = [] # entropy of white vertical lines
AVG_WVERT_LINE = [] # average white vertical line length
VERT_DIV = [] # divergence of vertical lines
RATIO_DET_REC = [] # ratio of determinism to recurrence rate
RATIO_LAM_DET = [] # ratio of laminarity to determinism
WHITE_VERT_DIV = [] # divergence of white vertical lines
DIAG_RR = [] # diagonal recurrence rate

For further calculations, we will use the complexity_rqa() method of the

neuralkit2 library. Its syntax is the following:
complexity_rqa(signal, dimension=3, delay=1, tolerance='sd',

min_linelength=2, method='python', show=False)

Parameters:

signal (Union[list, np.array, pd.Series]) the signal (i.e., a time

series) in the form of a vector of values;

delay (int) time delay (often denoted , sometimes referred to as

) in samples;

dimension (int) embedding dimension (, sometimes referred to as

 or or);

tolerance (float) tolerance (often denoted as), distance to consider

two data points as similar. If (default), will be set

to 0.2 SDsignal;

min_linelength (int) minimum length of diagonal and vertical lines.

Default to 2;

method (str) can be to use the PyRQA package (requires to

install it first);

show (bool) visualize recurrence matrix.

Returns:

rqa (DataFrame) the RQA results;

info (dict) a dictionary containing additional information regarding

the parameters used to compute RQA.

Now we can start the sliding window procedure:
for i in tqdm(range(0, length-window, tstep)):

 fragm = time_ser.iloc[i:i+window].copy()
 fragm = transformation(fragm, ret_type)

 resultRQA, _ = nk.complexity_rqa(fragm,
 delay=tau,
 dimension=m,
 tolerance=eps)

Calculating the ratio of laminarity to determinism
 resultRQA['LamiDet'] = resultRQA['Laminarity']/resultRQA['Determinism']

Calculating the divergence of black vertical lines
 resultRQA['VDiv'] = 1./resultRQA['VMax']

Calculating the divergence of white vertical lines
 resultRQA['WVDiv'] = 1./resultRQA['WMax']

 RR.append(resultRQA['RecurrenceRate'])
 DET.append(resultRQA['Determinism'])
 DIV.append(resultRQA['Divergence'])
 AVG_DIAG_LINE.append(resultRQA['L'])
 ENT_DIAG.append(resultRQA['LEn'])
 LAM.append(resultRQA['Laminarity'])
 TT.append(resultRQA['TrappingTime'])
 ENT_VERT.append(resultRQA['VEn'])
 ENT_WHITE_VERT.append(resultRQA['WEn'])
 AVG_WVERT_LINE.append(resultRQA['W'])
 VERT_DIV.append(resultRQA['VDiv'])
 WHITE_VERT_DIV.append(resultRQA['WVDiv'])
 RATIO_DET_REC.append(resultRQA['DeteRec'])
 RATIO_LAM_DET.append(resultRQA['LamiDet'])
 DIAG_RR.append(resultRQA['DiagRec'])

Saving the results to text files:
name =f"RQA_classic_name={symbol}_window={window}_ \
 step={tstep}_rettype={ret_type}_m={m}_ \
 tau={tau}_eps={eps}.txt"

np.savetxt("RR"+ name, RR)
np.savetxt("DIAG_RR"+ name, DIAG_RR)
np.savetxt("DET"+ name, DET)
np.savetxt("DIV"+ name, DIV)
np.savetxt("VERT_DIV"+ name, VERT_DIV)
np.savetxt("WHITE_VERT_DIV"+ name, WHITE_VERT_DIV)
np.savetxt("LAM"+ name, LAM)
np.savetxt("TT"+ name, TT)
np.savetxt("AVG_DIAG_LINE"+ name, AVG_DIAG_LINE)
np.savetxt("AVG_WRITE_VERT_LINE"+ name, AVG_WVERT_LINE)
np.savetxt("ENT_DIAG"+ name, ENT_DIAG)
np.savetxt("ENT_VERT"+ name, ENT_VERT)
np.savetxt("ENT_WHITE_VERT"+ name, ENT_WHITE_VERT)
np.savetxt("RATIO_DET_REC"+ name, RATIO_DET_REC)
np.savetxt("RATIO_LAM_DET"+ name, RATIO_LAM_DET)

Recurrence measures of complexity

the following function:

def plot_recurrence_measure(measure, label, clr="magenta"):

 fig, ax = plt.subplots()

 ax2 = ax.twinx()

 ax2.spines.right.set_position(("axes", 1.03))

 p1, = ax.plot(time_ser.index[window:length:tstep],
 time_ser.values[window:length:tstep],
"b-", label=fr"{ylabel}")
 p2, = ax2.plot(time_ser.index[window:length:tstep],
 measure,
 color=clr,
 label=fr'${label}$')

 ax.set_xlabel(xlabel)
 ax.set_ylabel(f"{ylabel}")

 ax.yaxis.label.set_color(p1.get_color())
 ax2.yaxis.label.set_color(p2.get_color())

 tkw=dict(size=2, width=1.5)

 ax.tick_params(axis='x', rotation=45, **tkw)
 ax.tick_params(axis='y', colors=p1.get_color(), **tkw)
 ax2.tick_params(axis='y', colors=p2.get_color(), **tkw)
 ax2.legend(handles=[p1, p2])

 plt.savefig(label +
f" RQA_classic_name={symbol}_window={window}_step={tstep}_ \
 rettype={ret_type}_m={m}_tau={tau}_eps={eps}.jpg")

 plt.show();

2.5.2.1 Recurrence rate

The simplest indicator is the recurrence rate (RR), which determines the

density of recurrent points on the plot, ignoring the LOI:

where is the number of points on the phase space trajectory.

The recurrence rate corresponds to the probability that a certain state will be

repeated.

Fig. 2.5 demonstrates the comparative dynamics of S&P 500, Hang Seng

index, DAX, BSE Sensex, and their measure.

 (a) (b)

 (c) (d)

Fig. 2.5: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their
 measure

As we can see from Fig. 2.5, the degree of recurrence increases during crash

events, indicating an increase in the degree of self-organization and coherence of

trading activity among traders in this market.

2.5.2.2 Diagonal recurrence rate

This approach is based on diagonal recurrence profiles of the time series

[22]. The diagonal recurrence profile determines the number of recurrence points

at different lags similar to the autocorrelation function. To obtain the diagonal

recurrence profile, the proportion of recurrence points on the diagonals located in

the lower right or lower left corner of the chart is simply counted and plotted as a

function of distance from the main diagonal, i.e. lag.

In other words, the diagonal recurrence rate captures the amount of

autocorrelation at different lags.

Fig. 2.6 demonstrates the comparative dynamics of S&P 500, Hang Seng

index, DAX, BSE Sensex, and their diagonal index.

 (a) (b)

 (c) (d)

Fig. 2.6: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their
diagonal measure

Fig. 2.6 shows that the diagonal recurrence rate increases in the pre-crisis

and crisis periods, indicating an increase in the magnitude of autocorrelation,

which in turn demonstrates an increase in the degree of self-organization.

2.5.2.3 Measure of determinism

The next indicator represents the proportion of recurrent trajectories that

form diagonal lines of minimum length . This measure is called determinism

and is related to the predictability of a dynamic system:

where is the frequency distribution of the diagonal lines with lengths .

Deterministic systems are characterized by a significant variation of

diagonal lines of different lengths. Periodic signals are characterized by long

diagonal lines, while for chaotic signals the diagonal lines will be short. For

stochastic systems, there will be no diagonal lines at all, except for random

patterns that will form very short diagonal lines.

White noise, for example, would have a recurrence pattern with almost

isolated recurrence points and a very small percentage of diagonal lines, while a

deterministic process would show a very small number of single recurrences but a

high density of long diagonal lines.

Fig. 2.7 demonstrates the comparative dynamics of S&P 500, Hang Seng

index, DAX, BSE Sensex, and their determinism measure.

 (a) (b)

 (c) (d)

Fig. 2.7: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their

As we can see from Fig. 2.7, in the pre-crisis periods, begins to

increase, which also indicates an increase in the degree of predictability

(orderliness) of system fluctuations.

2.5.2.4 Laminarity

The indicator characterizing the number of recurrent states that form vertical

lines is called laminarity and is related to the number of laminar phases in the

system:

and is the frequency distribution of the lengths of vertical lines that

have a length of at least . Laminarity characterizes the probability of a system

to remain in an unchanged state. As the number of isolated recurrent points in the

system increases, the degree of laminarity will decrease.

Fig. 2.8 demonstrates the comparative dynamics of S&P 500, Hang Seng

index, DAX, BSE Sensex, and their laminarity index.

 (a) (b)

 (c) (d)

Fig. 2.8: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their

It can be seen that the degree of laminarity increases during crisis states.

Both the density of diagonal points and the overall number of recurrent trajectories

in the phase space increases. Crises are characterized by trend stability, persistence

and determinism of their behavior.

2.5.2.5 Average diagonal line length

You can also measure the average diagonal lines length. The average

diagonal lines length is defined as

In general, this indicator characterizes the average period of time when two

phase space trajectories are sufficiently close to each other. The average length of

the diagonal lines determines the average time at which the system remains

predictable.

In Fig. 2.9 is presented the comparative dynamics of S&P 500, Hang Seng

index, DAX, BSE Sensex, and their average length of diagonal lines

 (a) (b)

 (c) (d)

Fig. 2.9: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their
average length of diagonal lines

As before, we can see that the average time the studied stock indices stays in

the deterministic state increases before crisis periods, which indicates an increase

in the degree of collectivization of traders in the market.

2.5.2.6 Trapping/delay time

The average length of the vertical line is related to the predictability time of

the dynamic system and the trapping time:

The average length of the vertical lines determines the average time the

system stays in the laminar state. That is, it corresponds to the average period of

value characterizes the longer and longer delay time of the system under study in a

certain state.

In Fig. 2.10 is presented the comparative dynamics of S&P 500, Hang Seng

index, DAX, BSE Sensex, and their trapping time indicator.

 (a) (b)

 (c) (d)

Fig. 2.10: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their

Fig. 2.10 shows that increases in (pre-)crisis states, indicating that the

system is trying to stay in a state of crisis for some time.

2.5.2.7 Average white vertical lines length

The average white vertical lines length can be defined as

where is the frequency distribution of white vertical lines of length ,

and corresponds to the shortest length of white vertical lines (the shortest

period of return to the recurrence state). The presented measure can be

characterized as the average system unpredictability horizon.

In Fig. 2.11 is presented the comparative dynamics of S&P 500, Hang Seng

index, DAX, BSE Sensex, and their average length of white vertical lines.

 (a) (b)

 (c) (d)

Fig. 2.11: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their
average length of white vertical lines

2.5.2.8 Diagonal lines entropy

Given the appropriate diagonal segments, the amount of information needed

to describe the entire distribution of this type of line can be calculated. The

probability that a diagonal line has length can be estimated from the

frequency distribution with . The Shannon

entropy of the probability of occurrence of such diagonal lines (diagonal lines

entropy) can be defined as follows:

This indicator reflects the complexity of the structure under study.

For uncorrelated noise or oscillations, we would get small value of the

entropy, which would indicate an asymmetric distribution of diagonal lines: there

would be a small fraction of diagonal lines of a particular length, which would

characterize the recurrence of the system under study. An increase in this entropy

would indicate an increase in the symmetry of the distribution of diagonal line

lengths.

In Fig. 2.12 is presented the comparative dynamics of S&P 500, Hang Seng

index, DAX, BSE Sensex, and their entropy of diagonal lines.

 (a) (b)

 (c) (d)

Fig. 2.12: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their
entropy of diagonal lines

Fig. 2.12 shows that the entropy of the diagonal lines increases during crises,

indicating the growing influence of deterministic processes with varying degrees of

predictability.

2.5.2.9 Vertical lines entropy

We can define the Shannon entropy for the distribution of vertical

structures (vertical lines entropy) of a recurrence plot. The probability that a

vertical line has length can be estimated from the frequency distribution

with . The Shannon entropy of this probability is

defined as

ln

This measure, similar to the previous entropy, is also a measure of system

complexity.

For a sinusoidal process, we would expect a small value of this entropy,

since it is a simple periodic process. For a complex process with memory, we

expect a high value of this type of recurrent entropy. This would mean that the

laminarity of the process is characterized by different periods of long-term memory

of the system.

In Fig. 2.13 is presented the comparative dynamics of S&P 500, Hang Seng

index, DAX, BSE Sensex, and their entropy of vertical lines.

 (a) (b)

 (c) (d)

Fig. 2.13: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their
entropy of vertical lines

Fig. 2.13 shows that the entropy of vertical lines begins to increase during

the crash, indicating an increase in the degree of laminarity, i.e., an increase in the

uniformity of the distribution of vertical lines of different lengths.

2.5.2.10 Divergence

The indicator can provide us with information about the maximum

degree of predictability of the period under study. The inverse value of the

maximum length of the diagonal lines or divergence can indicate the speed

and duration of the divergence of the studied trajectories. This indicator can be

defined as

This measure is similar to the largest Lyapunov exponent [93]. However, the

relationship between this measure and the positive maximum Lyapunov exponent

is much more complicated (to calculate the Lyapunov exponent from RP, the entire

frequency distribution of the diagonal lines must be taken into account).

The higher the divergence value, the faster the phase space trajectories

diverge. And vice versa, the lower the divergence value, the closer the trajectories

under study are to each other.

In Fig. 2.14 is presented the comparative dynamics of S&P 500, Hang Seng

index, DAX, BSE Sensex, and their divergence indicator.

 (a) (b)

 (c) (d)

Fig. 2.14: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their
 indicator

Fig. 2.14 shows that the divergence of the diagonal lines begins to decline in

the crisis and pre-crisis periods, which also indicates an increase in the degree of

2.5.2.11 Divergence of vertical lines

The inverse value of the maximum vertical line length or vertical line

divergence can be defined as

The maximum length of the vertical lines provided us with information

about the maximum degree of system invariance. Vertical divergence allows us to

characterize the rate of onset or decay of laminarity in the system. The higher the

value of , the faster the system leaves the laminar state and vice versa.

In Fig. 2.15 is presented the comparative dynamics of S&P 500, Hang Seng

index, DAX, BSE Sensex, and the divergence index of their vertical lines.

 (a) (b)

 (c) (d)

Fig. 2.15: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their
divergence of vertical lines

Fig. 2.15 shows that periods of crises are characterized by a decline in

vertical divergence, i.e., an increase in the number of vertical structures that

characterize an even greater degree of laminarity of states.

2.5.2.12 White vertical lines divergence

The inverse value of the maximum length of the white vertical lines

() can be described as white vertical lines divergence. It can be defined

as follows:

The increase of this indicator should indicate an increase in the degree of

recurrence of the system, and its decline should demonstrate an increase in

unpredictability.

In Fig. 2.16 is presented the comparative dynamics of S&P 500, Hang Seng

index, DAX, BSE Sensex, and their divergence of white vertical lines.

 (a) (b)

 (c) (d)

Fig. 2.16: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their
divergence of white vertical lines

Fig. 2.16 shows that the divergence of the white vertical lines begins to

increase in the pre-crisis periods of stock indices, indicating an increase in the

degree of determinism of the system and a decrease in the time spent by the stock

market phase trajectories in a divergent state.

2.5.2.13 Entropy of white vertical lines

The probability that a white vertical line has length can be estimated

from the frequency distribution with . The

Shannon entropy of the probability of white vertical lines is defined as

where is the minimum length of the white vertical line.

In Fig. 2.17 is presented the comparative dynamics of S&P 500, Hang Seng

index, DAX, BSE Sensex, and their entropy of white vertical lines.

 (a) (b)

 (c) (d)

Fig. 2.17: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their
entropy of white vertical lines

It can be seen that the entropy of the white vertical lines decreases in crisis

and pre-crisis periods of the stock market and indicates an increase in the overall

predictability of the system and a shift in the distribution of white vertical lines to

specific lengths. That is, their distribution in times of crisis becomes less

symmetrical and signals a gradual replacement of white vertical lines with black

ones.

2.5.2.14 Recurrence rate to determinism ratio

The ratio between and () can be used to detect hidden

phase transitions in a system:

In Fig. 2.18 is presented the comparative dynamics of S&P 500, Hang Seng

index, DAX, BSE Sensex, and ratio between and measures.

 (a) (b)

 (c) (d)

Fig. 2.18: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their
ratio between the measure of and

This indicator decreases before stock market crises. This suggests that the

overall density of recurrent points, both isolated and the entire distribution of

vertical structures, should increase. In crisis periods, is higher than .

2.5.2.15 The ratio of laminarity to determinism

Just like the previous measure, the ratio of laminarity to determinism can

allow us to identify hidden transitions in the signal under study:

In Fig. 2.19 is presented the comparative dynamics of S&P 500, Hang Seng

index, DAX, BSE Sensex, and ratio between and measures.

 (a) (b)

 (c) (d)

Fig. 2.19: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their
ratio between the measure of and

Regarding the dynamics of the indicator, we can say that the overall

degree of determinism begins to prevail over laminarity during crises.

2.6 Conclusions on recurrence analysis

In this section, quantitative recurrence measures were presented to study the

evolution of the system. These measures were applied to a time series representing

the closing prices of S&P 500, Hang Seng index, DAX, and BSE Sensex stock

indices. It has been demonstrated that quantitative indicators are able to detect

transitions between chaotic and periodic states (and vice versa), allow identifying

laminar states (chaos-chaos transitions), states of determinism and the time until

the onset of a state of predictability. Based on the results of the presented

indicators, we can say that the studied collapse and pre-collapse events are

characterized by an increase in recurrence, and this kind of behavior can be used as

a harbinger of possible crisis phenomena.

3 Non-extensive Tsallis statistics

3.1 Non-equilibrium thermodynamics and non-extensive statistical

mechanics

The great challenge of complexity theory, which is the basis of the modern

scientific paradigm, originates from old and important problems such as the arrow

of time, the existence of a simple and fundamental physical level for a single

description of macroscopic and microscopic levels, the relationship between the

observer and the object under study, etc. In general, with regard to the theory of

complexity and each new level of reality, new concepts and new classifications are

needed.

In particular, the theory of complexity includes: chaotic dynamics in the

space of states, far from equilibrium phase transitions, long-term correlations, self-

organization and multiscale, fractal processes in space and time, and other

significant phenomena [4]. Complexity theory is considered the third scientific

revolution of the last century (after relativity and quantum theory). However,

complexity theory is still far from its academic maturity. In this direction, a

book by G. Nikolis and I. Prigogine [70]. Generally, we can summarize the basic

concept of complexity theory as follows:

1. Complexity theory is a generalization of statistical physics for critical

states of thermodynamic equilibrium and for processes far from

equilibrium.

2. Complexity is the extension of dynamics to nonlinearity and strange

dynamics.

3. Also, according to Ilya Prigogine, complexity theory is related to the

dynamics of correlations instead of the dynamics of trajectories or wave

functions.

According to complexity theory, various physical phenomena occurring in

distributed physical systems, such as cosmic plasma, liquids or solids, chemistry,

biology, ecosystems, DNA dynamics, socio-economic or information systems,

networks can be described and understood in a similar way. This description is

based on the principle of entropy maximization. Also, according to the theory of

complexity, these systems are holistically stable dissipative structures formed by a

general natural process aimed at maximizing entropy. From the point of view of

complexity, there is no significant differentiation between a group of galaxies,

stars, animals, flowers, or elementary particles, because everywhere we have open,

dynamic, and self-organized systems and everywhere nature works to maximize

entropy.

In the study of complex physical systems and phenomena, such as self-

organizing and fractal structures, subdiffusion, turbulence, chemical reactions, and

various economic, social, and biological systems, the Gibbs distribution does not

provide a good fit to the observed phenomena. Many studies have shown that such

systems are characterized by power distributions [46]. They are not derived from

the Gibbs-Shannon maximum entropy principle, which is the basis of both

equilibrium and non-equilibrium statistical thermodynamics [43-45]. This has

led to numerous attempts to construct a generalized statistic that would provide

power law asymptotics of the distribution function. Such generalized statistics can

be constructed on the basis of several entropies. Among them, an important place

is occupied by the Tsallis entropy.

Research in the field of mechanics of non-extensive (non-additive) systems

has recently become a subject of considerable interest in connection with the

manifestations of non-additive properties in anomalous physical phenomena. This

is due to both the novelty of the general theoretical problems that arise here and the

importance of practical applications (see the bibliography presented at

(https://tsallis.cbpf.br/biblio.htm), which is constantly updated). The beginning of a

systematic study in this area is associated with the work of Tsallis, in which the

author introduced a parametric formula for the statistical -entropy, which depends

on some real number (the so-called deformation parameter) and is non-additive

for a set of independent complex systems. The theory of non-extensional systems

based on the Tsallis entropy is currently being intensively developed. These works

have become a significant step in the development of the information theoretic

approach and in the development of the principles of non-extensive statistical

mechanics and equilibrium thermodynamics of open systems. It is important to

note that the range of applications of these and many other non-extensive

parametric entropies is currently constantly expanding, covering various areas of

science, such as cosmology and cosmogony, plasma theory, quantum mechanics

and statistics, nonlinear dynamics and fractals, geophysics, biomedicine, and many

others.

From a physical point of view, economic dynamics can be viewed as

spatially distributed dynamics and is related to the general category of nonlinear

distributed systems. The analysis of economic time series demonstrates complex

and chaotic dynamics in phase s

method of delays) allows us to reconstruct a topological equivalent to the original

phase space that preserves the basic geometric and dynamic properties, such as

degrees of freedom, fractal dimension, multifractality, Lyapunov exponents,

prediction matrix, etc. The reconstructed phase space can be used to estimate all of

the above quantities, as well as phase transitions, statistical behavior, entropy

generation, etc. In addition, the phase space can have multifractal properties and

discontinuous turbulence characteristics, which indicate the existence of long-

range interactions in space and time, as well as multiscale interactions.

These characteristics also indicate the existence of fractional dynamics in

phase space, which can be described by the Fokker-Planck fractional differential

equations and anomalous diffusion equations. The solutions of these equations are

fractional space-time functions and non-Gaussian distribution functions, which

belong to the category of Levy distributions and Tsallis distributions. Non-

equilibrium steady states of economic dynamics originate from processes of strong

self-organization corresponding to local maxima of the Tsallis entropy, while

changes in the control parameters of the economic system can cause a phase

transition and a shift of economic dynamics to a new stable equilibrium, a steady

state with maximum Tsallis entropy. This phase transition leads to a multifractal

change in the formation of the phase space and to a change in the phenomenology

of the economic system. Finally, the statistics of the dynamics in the multifractal

phase space can be described by means of power functions of the Tsallis

ods.

In recent years, statistical mechanics has expanded its original purpose: the

application of statistics to large systems whose states are governed by some kind of

Hamiltonian functionals [46]. Their ability to relate the microscopic states of

individual system components to macroscopic properties is now widely used [43].

Undoubtedly, the most important of these connections is still the determination of

thermodynamic properties through the correspondence between the concept of

entropy, originally introduced by Rudolf Clausius in 1865, and the number of

allowed microscopic states, introduced by Ludwig Boltzmann around 1877 when

he studied the approach to the equilibrium of an ideal gas [44]. This relationship

can be expressed as

where is a positive constant, and is the number of microstates

compatible with the macroscopic state of an isolated system. This equation, known

as Boltzmann's principle, is one of the cornerstones of standard statistical

mechanics. When the system is not isolated, but instead is in contact with some

large reservoir, we can modify Eq. (3.1) to obtain the Boltzmann-Gibbs entropy

(BG):

where is the probability of a microscopic configuration [46]. BG

statistical mechanics is still based on hypotheses such as molecular chaos [70] and

ergodicity [42]. Despite the absence of an actual fundamental derivation, BG

statistics has undoubtedly been successful in studying systems dominated by short

spacetime interactions. Thus, it is quite possible that other physical entropies

besides BG can be defined to properly describe anomalous systems for which the

simplified ergodicity and/or independence hypothesis does not hold. Inspired by

such concepts, in 1988 Constantino Tsallis proposed a generalization of BG

statistical mechanics to cover systems that violate ergodicity, systems whose

microscopic configurations cannot be considered independent. This generalization

is based on non-additive entropies, characterized by an index and leading to non-

extensive statistics:

where are the probabilities associated with microscopic configurations,

 their total number, a real number, and

a measure of the non-extensive nature of the system. It corresponds to the standard

BG statistic. Eq. (3.3) modifies () as the basis for a

possible generalization of BG statistical mechanics [60, 134]. The value of the

entropy index for a particular system should be determined a priori from

microscopic dynamics.

Since its introduction, the Tsallis entropy (3.3) has been the source of

several important results in both fundamental and applied physics, as well as in

other scientific fields such as biology, chemistry, economics, geophysics, and

medicine [71].

3.2 Non-extensive entropy and Tsallis triplet

Systems characterized by BG statistical mechanics have the following

characteristics: (i) their distribution functions for energies are proportional to an

exponential function; (ii) they have a strong sensitivity to initial conditions that

grows exponentially with time (chaos), characterized by a positive maximum

Lyapunov exponent; (iii) their relaxation occurs exponentially with a certain

relaxation time. In other words, these three behaviors are described by exponential

functions (i.e.,). However, it has been found that for systems that can be

studied within the framework of non-expansive statistical mechanics, the energy

probability density function (associated with stationarity or equilibrium),

sensitivity to initial conditions, and relaxation are described by three entropy

indices called the Tsallis triplet, or -triplet [43, 69].

Non-extensive statistical theory is mathematically based on the nonlinear

equation

the solution of which is the -exponential function:

For , -Gaussian corresponds to the usual Gaussian distribution.

The solution of Eq. (3.4) can be realized in three different ways included in

the Tsallis -triplet: . These quantities characterize the three

physical processes that are summarized here, while the -triplet values characterize

the attractor set of dynamics in the phase space of the dynamic, and they can

change when the dynamics of the system is attracted to another set of attractors.

For a non-extensive system, the value of the -exponent depends on the

estimated properties of the dynamics and phase space of the system. For dynamic

systems, a -triplet is estimated, which reflects three properties of the system (Fig.

3.1). The index is estimated on the basis of an equilibrium model of the rank

distribution using nonlinear estimation methods [151]. This index is a parameter of

the system's area of attraction. The exponent reflects the sensitivity of the

system to initial conditions and entropy production and is determined by the

multifractal spectrum [32]. The relaxation index is found on the basis of

autocorrelation and characteristics of diffusion processes [47].

Fig. 3.1: Time periodization of the periods of -entropy production. The first period corresponds
to the production of entropy through the parameter of the Tsallis -triplet. The second
period corresponds to a certain relaxation process through the parameter . The system detects
fluctuations due to the parameter

Index and non-extensive physical conditions

The value of for the steady state is estimated from the yield distribution

function, which in turn is obtained by fitting -Gaussian:

for an empirically constructed histogram and various

 values selected by minimizing . Depending on the

value of , can take the following forms:

To assess the dynamics of the value, a graph of the dependence of

 on is plotted for the selected interval (for example, from 1 to 5),

which provides the best linear approximation (estimated by the maximum

coefficient of determination) [54]. It is clear that the values of become

markedly non-Gaussian along the tails, and can instead be described by a power

law.

Study of relaxation processes through the prism of the

The corresponding -value for the relaxation process is obtained from the

autocorrelation coefficient:

For BG statistics, such a correlation should decrease exponentially. The

same algorithm as for must be worked out on a graph of the dependence of

on to determine which best linearizes empirical data.

Sensitivity to the initial conditions

Entropy production is related to the general nature of the attractor set. This

attractor can be described by multifractality and sensitivity to initial conditions.

The sensitivity to initial conditions can be expressed as

where is the deviation of the trajectory in phase space:

, and is the distance between adjacent trajectories due to time . The

solution of Eq. (3.9) can be represented as:

First, it was hypothesized and later proved for time series of non-extensive

systems of different nature that such a correlation exists [14]:

where and are the minimum and maximum values of the

corresponding multifractal spectrum .

The spectrum of multifractality, therefore, follows from the procedure of

multifractal detrended fluctuation analysis, which allows you to calculate the Hurst

exponent for different moments and time scales.

Practical calculations of -triplet

import matplotlib.pyplot as plt
import numpy as np
import yfinance as yf
import pandas as pd
import scienceplots
import neurokit2 as nk
import fathon
import scipy
import statsmodels.api as sm
from fathon import fathonUtils as fu
from scipy.stats import norm
from scipy.special import gamma
from scipy.optimize import curve_fit
from tqdm import tqdm

%matplotlib inline

And we will define the necessary functions for further work:
q-exponential function
def np_exp_q(x, q=1):
 if q == 1:
 return np.exp(x)
 else:
 return (1+(1-q)*x)**(1/(1-q))

q-logarithm
def np_log_q(x, q=1):
 if q == 1:
 return np.log(x)
 else:
 return x**(1-q)-1/(1-q)

values for q-Gaussian
def C_q(q=1.0):
 if q == 1:
 return np.sqrt(np.pi)
 elif q < 1:
 return 2*np.sqrt(np.pi)*gamma(1/(1-q))/(3-q)*np.sqrt(1-q)*gamma((3-q)/
(2*(1-q)))
 elif q > 1:
 return (np.sqrt(np.pi)*gamma((3-q))/(2*(q-1)))/(np.sqrt(q-1)*gamma(1/(

q-1)))

pdf of q-Gaussian for q_stat calculations
def G_q(r, beta, q):
 return np.sqrt(beta)/C_q(q) * np_exp_q(-beta*r, q)

autocorrelation function for q_rel
def acf(x, maxlag):

 n = len(x)
 a = (x - x.mean()) / (x.std() * n)
 b = (x - x.mean()) / x.std()

 cor = np.correlate(a, b, mode="full")
 acf = cor[n:n+maxlag+1]
 lags = np.arange(maxlag +1)

 return acf, lags

relaxation function for q_rel
def rel_func(x, q, tau):
 return np_exp_q(-x/tau, q)

a function for calculating the returns of a series or its standardization
def transformation(signal, ret_type):

 for_rec = signal.copy()

 if ret_type == 1:
 pass
 elif ret_type == 2:
 for_rec = for_rec.diff()
 elif ret_type == 3:
 for_rec = for_rec.pct_change()
 elif ret_type == 4:
 for_rec = for_rec.pct_change()
 for_rec -= for_rec.mean()
 for_rec /= for_rec.std()
 elif ret_type == 5:
 for_rec = for_rec.pct_change()
 for_rec -= for_rec.mean()
 for_rec /= for_rec.std()
 for_rec = for_rec.abs()
 elif ret_type == 6:
 for_rec -= for_rec.mean()
 for_rec /= for_rec.std()

 for_rec = for_rec.dropna().values

 return for_rec

function for plotting paired charts
def plot_pair(x_values,
 y1_values,
 y2_values,
 y1_label,

 y2_label,
 x_label,
 file_name, clr="magenta"):

 fig, ax = plt.subplots()

 ax2 = ax.twinx()
 ax2.spines.right.set_position(("axes", 1.03))

 p1, = ax.plot(x_values,
 y1_values,
"b-", label=fr"{y1_label}")
 p2, = ax2.plot(x_values,
 y2_values,
 color=clr,
 label=y2_label)

 ax.set_xlabel(x_label)
 ax.set_ylabel(f"{y1_label}")
 ax.yaxis.label.set_color(p1.get_color())
 ax2.yaxis.label.set_color(p2.get_color())

 tkw = dict(size=2, width=1.5)

 ax.tick_params(axis='x', rotation=45, **tkw)
 ax.tick_params(axis='y', colors=p1.get_color(), **tkw)
 ax2.tick_params(axis='y', colors=p2.get_color(), **tkw)
 ax2.legend(handles=[p1, p2])

 plt.savefig(file_name +".jpg")
 plt.show();

plt.style.use(['science', 'notebook', 'grid'])

size = 22
params = {
'figure.figsize': (8, 6),
'font.size': size,
'lines.linewidth': 2,
'axes.titlesize': 'small',
'axes.labelsize': size,
'legend.fontsize': size,
'xtick.labelsize': size,
'ytick.labelsize': size,
"font.family": "Serif",
"font.serif": ["Times New Roman"],
'savefig.dpi': 300,
'axes.grid': False
}

plt.rcParams.update(params)

Calculations of the exponent

3.2.5.1 -Gaussian estimation for the whole time series

q_stat_time_ser = time_ser.copy()
ret_type = 4 # type of a series
q_stat_time_ser = transformation(q_stat_time_ser, ret_type)

hist, bin_edg = np.histogram(q_stat_time_ser, bins=250, density=True)

mu, std = norm.fit(q_stat_time_ser)
x = np.linspace(q_stat_time_ser.min(), q_stat_time_ser.max(), len(bin_edg[1:]
))
p = norm.pdf(x, mu, std)

xval = bin_edg[1:]**2
yval = hist

popt, pcov = curve_fit(G_q, xdata=xval, ydata=yval, bounds=([0.0, 0.0], [np.i
nf, 3.0]))

fig, ax = plt.subplots(1, 1)
ax.plot(bin_edg[1:], hist, 'o', label=r"$P_{empirical}$")
ax.plot(x, p, 'o', label="Gauss")
ax.plot(x, G_q(x**2, popt[0], popt[1]), label=r"q-Gaussian")
ax.set_yscale('log')
ax.set_xlabel("x")
ax.set_ylabel(r"$\log{P(\beta, x)}$")

plt.legend()
plt.show();

Fig. 3.2 demonstrates distribution function of normalized returns for S&P

500, Hang Seng index, DAX, and BSE Sensex compared to theoretical Gaussian

and -Gaussian distributions

 (a) (b)

 (c) (d)

Fig. 3.2: Distribution function of normalized returns for S&P 500 (a), Hang Seng index (b),
DAX (c), and BSE Sensex (d) compared to theoretical Gaussian and -Gaussian distributions

Fig. 3.2 shows that the standardized returns for the studied stock indices go

beyond . As can be seen, the theoretical Gaussian distribution significantly

underestimates the occurrence of extremely high and low returns. If the logarithm

of the empirical probability for such returns is, approximately, at the level of

for S&P 500, for Hang Seng, for DAX, and for BSE Sensex, then

the Gaussian distribution is, approximately, for S&P 500, for Hang

Seng, for DAX, and for BSE Sensex. That is, as an example, the

Gaussian distribution underestimates the empirical probability of positive returns

by a factor of . Although the -Gaussian also does not seem ideal for

describing such returns, the underestimation of heavy tails in the case of non-

extensive statistics is much smaller compared to the normal Gaussian.

3.2.5.2 calculations within the sliding window procedure

window = 500 # sliding window width
tstep = 1 # sliding window step
ret_type = 4 # type of a series:

length = len(time_ser)

q_stats = []

for i in tqdm(range(0, length-window, tstep)):

 fragm = time_ser.iloc[i:i+window].copy()
 fragm = transformation(fragm, ret_type)

 hist_fragm, bin_edg_fragm = np.histogram(fragm, bins=100, density=True)

 xval = bin_edg_fragm[1:]**2
 yval = hist_fragm

 popt, pcov = curve_fit(G_q, xdata=xval, ydata=yval, bounds=([0.01, 1.0],
[np.inf, 5.0]))
 q_stat = popt[1]

 q_stats.append(q_stat)

Saving the results to a text file:
name = f"q_stat_name={symbol}_window={window}_step={tstep}_rettype={ret_type}
.txt"

np.savetxt(name, q_stats)

Defining the parameters for saving figures:
labeling of the q_stat indicator in the figure legend
label_q_stat = r'q_{stat}'

figure title
file_name = f"q_stat_name={symbol}_window={window}_step={tstep}_rettype={ret_
type}"

color of the indicator
color = 'brown'

plot_pair(time_ser.index[window:length:tstep], time_ser.values[window:length:
tstep], q_stats, ylabel, label_q_stat, xlabel, file_name, color)

Fig. 3.3 represents the comparative dynamics of S&P 500, Hang Seng index,

DAX, BSE Sensex, and their exponent.

 (a) (b)

 (c) (d)

Fig. 3.3: Comparative dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), and BSE
Sensex (d), and their exponent

Calculation of the exponent

window = 500 # sliding window width
tstep = 1 # sliding window time step
ret_type = 1 # type of a series:

max_lag = 100

length = len(time_ser)

q_rels = []

for i in tqdm(range(0, length-window, tstep)):

 fragm = time_ser.iloc[i:i+window].copy()
 fragm = transformation(fragm, ret_type)
 autocor, lags = acf(x=fragm, maxlag=max_lag)
 lags = lags
 autocor = autocor

 popt, pcov = curve_fit(rel_func, xdata=lags[1:], ydata=autocor[1:], bound
s=(1, [np.inf, 10]))
 q_rel = popt[0]

 q_rels.append(q_rel)

Saving the results to a text file:
name = f"q_rel_name={symbol}_window={window}_step={tstep}_rettype={ret_type}_
maxlag={max_lag}.txt"

np.savetxt(name, q_rels)

Defining the parameters for saving figures:
labeling of the q_rel indicator in the figure legend
label_q_rel = r'q_{rel}'

figure title
file_name = f"q_rel_name={symbol}_window={window}_step={tstep}_rettype={ret_t
ype}_maxlag={max_lag}"

color of the exponent
color = 'red'

Plot the results:
plot_pair(time_ser.index[window:length:tstep],
 time_ser.values[window:length:tstep],
 q_rels,
 ylabel,
 label_q_rel,
 xlabel,
 file_name,
 color)

In Fig. 3.4 is presented the comparative dynamics of S&P 500, Hang Seng

index, DAX, BSE Sensex, and their exponent.

 (a) (b)

 (c) (d)

Fig. 3.4: Comparative dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex
(d), and their exponent

For the studied indicator, Fig. 3.4 shows that the degree of relaxation

increases in the pre-crisis state of the system, which is an indicator of the growth of

-organization through certain external indicators.

Calculation of the exponent

window = 500 # sliding window width
tstep = 1 # sliding window step
ret_type = 4 # type of a series:

rev = True # whether to repeat the calculation of the fluctuation function fr
om the end of the series
accumulate = False # re-accumulation of a detrended series to work with highl
y uncorrelated series

q_min = -5 # minimum value of q
q_max = 5 # maximum value of q
q_inc = 1 # increment step of q

win_beg = 10 # Initial segment width
win_end = window-1 # Final segment width

length = len(time_ser)

q = np.arange(q_min, q_max+q_inc, q_inc)
q = np.round_(q, decimals =1)

order = 3 # polynomial order for detrending (MF-DFA)

q_sens_values = []

for i in tqdm(range(0, length-window, tstep)):

 fragm = time_ser.iloc[i:i+window].copy()

 fragm = transformation(fragm, ret_type)

 if accumulate == True:
 fragm = np.cumsum(fragm-np.mean(fragm))

 a = fu.toAggregated(fragm)

 pymfdfa = fathon.MFDFA(a)

 wins = fu.linRangeByStep(win_beg, win_end)

 n, F = pymfdfa.computeFlucVec(wins, q, revSeg=rev, polOrd=order)
 list_H, list_H_intercept = pymfdfa.fitFlucVec()

 if accumulate == True:
 list_H = list_H - 1

calculation of tau(q) values
 tau = q * list_H - 1

calculation of singularity values
 alpha = np.gradient(tau, q, edge_order=2)

maximum value of the singularity
 maximal_alpha = alpha.max()

minimum value of the singularity
 minimal_alpha = alpha.min()

q_sens calculations
 q_sens = (maximal_alpha-minimal_alpha-maximal_alpha*minimal_alpha)/(maxim
al_alpha-minimal_alpha)

 q_sens_values.append(q_sens)

Saving the results to a text file:
name = f"q_sens_name={symbol}_ret={ret_type}_qmin={q_min}_qmax={q_max}_qinc={
q_inc}_wind={window}_step={tstep}.txt"

np.savetxt(name, q_sens_values)

Defining the parameters for saving figures:
labeling of the q_rel indicator in the figure legend
label_q_sens = r'q_{sens}'

figure title
file_name = f"q_sens_name={symbol}_ret={ret_type}_qmin={q_min}_qmax={q_max}_q
inc={q_inc}_wind={window}_step={tstep}"

color of the indicator
color = 'green'

Plot the results:
plot_pair(time_ser.index[window:length:tstep],
 time_ser.values[window:length:tstep],
 q_sens_values,
 ylabel,
 label_q_sens,
 xlabel,
 file_name,
 color)

Fig 3.5 presents the comparative dynamics of S&P 500, Hang Seng index,

DAX, BSE Sensex, and their exponent.

 (a) (b)

 (c) (d)

Fig. 3.5: Comparative dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex
(d), and their exponent

The indicator shows a decline in the pre-crisis periods, indicating that

the market is particularly sensitive at these moments. For completely identical and

independently distributed values, would remain close to 1. In pre-crisis

states, it tends to negative values, which indicate s

attractor to singularity, i.e. the convergence of trajectories to each other.

Tsallis entropy calculations

window = 500 # sliding window width
tstep = 1 # sliding window time step
ret_type = 1 # type of a series

length = len(time_ser)

tsallis_en = []

for i in tqdm(range(0, length-window, tstep)):

 fragm = time_ser.iloc[i:i+window].copy()
 fragm = transformation(fragm, ret_type)
 p, be = np.histogram(fragm, bins='auto',
 density=True)
 r = be[1:] - be[:-1]
 P = p * r
 P = P[P!=0]

 tsen, _ = nk.entropy_tsallis(freq=P,
 q=1,
 base=np.exp(1))
 tsen /= np.log(len(P))

 tsallis_en.append(tsen)

Saving the results to a text file:
name = f"tsen_name={symbol}_ret={ret_type}_wind={window}_step={tstep}.txt"

np.savetxt(name, tsallis_en)

Defining the parameters for saving figures:
Tsallis entropy notation in the figure legend
label_ts_en = r'$TsEn$'

figure title
file_name = f"tsen_name={symbol}_ret={ret_type}_wind={window}_step={tstep}"

color of the indicator
color = 'purple'

Plot the results:
plot_pair(time_ser.index[window:length:tstep],
 time_ser.values[window:length:tstep],
 tsallis_en,
 ylabel,
 label_ts_en,
 xlabel,
 file_name,
 color)

Fig. 3.6 shows the comparative dynamics of S&P 500, Hang Seng index,

DAX, BSE Sensex, and their Tsallis entropy

 (a) (b)

 (c) (d)

Fig. 3.6: Comparative dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex
(d), and their Tsallis entropy

Fig. 3.6 shows that the non-extensive Tsallis entropy decreases in the pre-

crisis periods, indicating an increase in the degree of non-additivity (self-organized

dynamics) of the market.

3.3 Conclusions on non-extensive statistics and -triplet

In this chapter, a non-extensive statistical mechanics approach to the

dynamics of daily historical values of the major stock indices and their returns is

presented. It was found that the stock indices obey the Tsallis statistics. The time

dynamics of the -triple was modeled, which made it possible to obtain the

reaction of the components of the triple to the formation and course of crisis

phenomena when compared with the original time series. The value increases

in times of crises, as price fluctuations increase. The value increases in pre-

-

equilibrium state and subsequent relaxation. Finally, has a minimal value in

the pre-crisis period, indicating a special sensitivity of the system near the

bifurcation point, which is the crisis itself.

It seems promising to study the features of the -triplet for complex network

structures obtained by transforming a time series into a network using one of the

known methods. It is also interesting to search for alternative components of non-

extensivity, such as a measure of irreversibility of the time series, or a measure of

recurrence, etc. Obviously, these approaches can provide the necessary progress

both at the fundamental and applied levels to achieve a deeper understanding of the

nature of complex systems.

4 Fractal and multifractal measures of complexity

4.1 Definition of a fractal

Fractals are geometric objects: lines, surfaces, spatial bodies that have a

highly rough surface or shape and are characterized by the property of self-

similarity [25, 26, 76]. The word fractal comes from the Latin word fractus and is

translated as fractional, broken. Self-similarity as the main characteristic of a

fractal means that it varies more or less homogeneously over a wide range of

scales. Thus, when zoomed in, small fractal fragments become very similar to large

ones. In the ideal case, this self-similarity leads to the fact that the fractal object is

invariant with respect to stretching, i.e., it is said to have dilatational symmetry. It

implies that the main geometric features of a fractal remain unchanged when the

scale changes.

Obviously, fractal objects in the real world are not infinitely self-similar, and

there is a minimum scale such that the self-similarity property disappears at a

scale . In addition, at sufficiently large length scales , where

is the characteristic geometric size of objects, this self-similarity property is also

violated. Therefore, the properties of natural fractals are considered only on scales

 that satisfy the relation . Such restrictions are natural, since

when we give an example of a fractal a broken, nonsmooth trajectory of a

Brownian particle we understand that this image represents an obvious

idealization. The fact is that on small scales, the finite mass and size of the

Brownian particle, as well as the finite time of the collision, are hidden. When

these circumstances are taken into account, the trajectory of a Brownian particle

begins to represent a smooth curve.

It is worth noting that the property of exact self-similarity is characteristic

only of regular fractals. If, instead of a deterministic method of construction,

some element of randomness is included in the algorithm of their creation (as is the

case, for example, in many processes of differential cluster growth, electrical

breakdown, etc.), then so-called random fractals appear. Their main difference

from regular fractals is that the self-similarity properties are valid only after

appropriate averaging over all statistically independent realizations of the object. In

this case, the enlarged part of the fractal is not exactly identical to the original

fragment, but their statistical characteristics coincide.

4.2 Coastline length

Initially, the concept of a fractal in physics arose in connection with the task

of determining the length of a coastline. When it was measured using an existing

map of the area, an interesting detail emerged: the larger the map used, the longer

the coastline appeared to be [23, 27, 31, 78

straight line distance between points A and B located on the coastline is R (see Fig.

4.1).

Fig. 4.1: Determining the length of the coastline between points A and B [152]

Then, to measure the length of the coastline between these points, we will

place rigidly connected nodes along the shore so that the distance between adjacent

nodes would be, for example, km. The length of the coastline in kilometers

between points A and B is then equal to the number of nodes minus 1 multiplied

by 10. The next measurement of this length will be done in the same way, but the

distance between neighboring nodes will be km.

It turns out that the result of these measurements will be different. As the

scale decreases, we will get larger and larger values of the length. Unlike a

smooth curve, the coastline is often so indented (down to the smallest scale) that as

the length of the link decreases, the value of the length of the coastline does

not tend to a finite limit, but increases according to a power law

and is a certain power-law index called the fractal dimension of the

coastline [31]. The larger the value of , the more broken or detailed the coastline

appears. The origin of the Eq. (4.1) should be intuitive: the smaller the scale we

use, the less details of the coastline will be taken into account and the less they will

contribute to the measured length. On the contrary, by increasing the scale, we

.

Thus, we can see that to determine the length of the coastline using a rigid

scale , we need to make steps, and the value of varies with so that

depends on according to the law . As a result, the length of the

coastline grows unlimitedly as the scale decreases. This circumstance sharply

distinguishes a fractal curve from an ordinary smooth curve (such as a circle or

ellipse), for which the limit of the length of the approximating broken line is

finite as the length of its link approaches zero. As a result, for a smooth curve, its

fractal dimension is , i.e., it coincides with the topological dimension.

4.3 Fractal dimension of sets

Previously, we introduced the concept of the fractal dimension of the

coastline. Now let us give a general definition of this quantity. Let be the usual

Euclidean dimension of the space in which our fractal object is located (

line, plane, usual three-dimensional space). Now

object with entirely -

at least spheres for this. Then, if for sufficiently small the value of

varies with according to the power law

then is called the Hausdorff or fractal dimension of this object [155].

Obviously, this formula is equivalent to the relation , which was used

above to determine the length of the coastline. Eq. (4.3) can be rewritten as

This ratio serves as a general definition of the fractal dimension .

According to it, the value of represents the local characteristic of the object

under study.

4.4 Procedures for calculating monofractal dimensions

Currently, there are many definitions and methods for measuring fractal

dimension. The most common one-dimensional fractal dimensions are the

Hausdorff dimension, the Higuchi dimension, and the Petrosian and Minkowski

dimension [95]. The Hausdorff dimension is the simplest fractal dimension.

However, its computational complexity is high, which makes it difficult to apply in

practice. The Minkowski dimension is relatively simple, and the fractal dimension

of the signal can be obtained by adjusting the size of the length of the side of the

e signal surface is determined. Therefore, it

is widely recognized and used. Which of the fractal dimension indicators most

accurately describes the complexity of the signal and is able to identify crisis

phenomena is the key point of this section.

R/S analysis

The Rescaled range (R/S analysis) method, developed by Mandelbrot and

Wallace [25], is based on the previously established Hurst hydrological analysis

method [74, 75], and allows for the calculation of the self-similarity parameter ,

which measures the intensity of long-term dependencies in a time series. The

coefficient , called the Hurst coefficient, contains minimal predictions about the

nature of the system under study and can classify time series. This indicator

distinguishes between random (Gaussian) and nonrandom series; in addition, it is

associated with the fractal dimension, which, in turn, characterizes the degree of

smoothness of the graph based on the time series. The R/S analysis method can

also identify the maximum length of the interval (cycle) at which values retain

information about the system's initial data (long-term memory).

The analysis begins with the construction of a series of logarithmic returns,

, where is the value of the original time series at

time , is the time step. The resulting sequence is divided into

subsequences of length .

For each subsequence :

1) The mean value and the standard deviation are found.

2) The data is normalized by subtracting the mean of the sequence

, .

3) The cumulative sum of the sequence of s is found: ,

.

4) Within each subsequence is the range between the maximum and

minimum values: ,

which is standardized by the standard deviation .

5) The average of the normalized range values for all subsequences

of length is calculated.

The R/S-statistics calculated in this way corresponds to the ratio

, where the value of can be obtained by calculating for sequences of

intervals with increasing time horizon:

The Hurst coefficient can be found by plotting the relationship vs.

on a double logarithmic scale and taking the slope of the line interpolating the

points of the resulting graph. If , the sequence is white noise;

indicates a persistent (trending) series, when there is a tendency for large values of

the series to follow large values and vice versa; indicates an anti-

persistent (mean-reversion) series.

As the time horizon increases, the slope of the interpolating line should tend

to ; the transition process itself indicates the loss of the influence of the

initial conditions on the current values, and thus we can talk about the long

memory horizon this is the point before which the slope of the interpolating line

is different from 0.5, and after about 0.5.

 Note to the R/S analysis

There is also a relationship between fractal dimension and Hurst exponent

While for the coastline we determined the scaling of its length depending

on the change in , in the case of R/S analysis we determine the change in the

normalized range of the series values within the scale

Detrended fluctuation analysis

Detrended fluctuation analysis (DFA) [49] is based on the hypothesis that

a correlated time series can be mapped to a self-similar process by integration.

Thus, measuring the self-similarity properties can indirectly indicate the

correlation properties of the series. The advantages of DFA compared to other

methods (spectral analysis, R/S analysis) are that it reveals long-term correlations

of non-stationary time series and also allows to ignore obvious random correlations

that are a consequence of non-stationarity [178].

There are DFAs of different orders that differ in the trends that are extracted

from the data.

order DFA.

1) For a time series of length N, the cumulative sum,

, where is the -th value of the time series, is its

average value, .

2) The resulting series is divided into subsequences (windows)

of equal width and for each subsequence (in each window) the

following procedures are performed:

the local linear trend of is found using the least squares

method;

the subsequence is detrended by subtracting the value of the local

trend from the values of the series belonging to the

sequence ;

the average of the detrended values is found.

For the values obtained in this way, all the subsequences are

where is the number of points in the subsequence (window width), is

the number of subsequences, and is the average of the detrended values for

subsequence .

The above procedure is repeated for different values of , resulting in a set

of dependencies on . Plotting versus and interpolating the

obtained values with a regression line allows us to calculate the scaling index ,

which is the coefficient of the slope of the interpolation line and characterizes the

change in the correlations of fluctuations in the time series with an increase in

the time interval .

Compared to R/S analysis, DFA provides more opportunities for interpreting

the scaling factor :

;

in the presence of only short-term correlations, may differ from 0.5,

but tends to tend to 0.5 with increasing window size;

a value of indicates persistent long-term correlations

that follow a power law;

 indicates an anti-persistent series;

the special case when means the presence of noise.

for cases when , correlations exist, but no longer reflect power

law;

the case of indicates Brownian noise, which represents

integrated white noise.

In the case of power law dependence of the autocorrelation function, there is

a decrease in autocorrelation with :

In addition, the spectral density also decreases according to a power law:

The corresponding exponents are expressed through the following relations:

;

.

The second-order DFA (DFA2) calculates the deviations of of the

profile from the second-order interpolation polynomial. Thus, the effects of

possible linear and parabolic trends for scales larger than those under consideration

are removed. In general, the DFA of order calculates the profile deviations from

the interpolation polynomial of the -th order, which removes the influence of all

possible trends of orders up to for scales larger than the window size.

Then, the nearest polynomial for the profile at each of the

segments is calculated and the deviation is determined

Next, we find the average value of the fluctuations of all detrended profiles:

The value of Eq. (4.7) can be interpreted as the root mean square

displacement (movement) of the point of random walks in the chain after steps.

Higuchi fractal dimension

The Higuchi fractal dimension [36, 157] is a type of monofractal

dimension defined as follows:

Suppose that we have a time series and a reconstructed

time series for

, where represents the original time; represents

the degree of time shift. The notation represents the integer part of . For each

reconstructed time series , the average length of the time sequence is

calculated:

Then, for all average lengths , the general average

average value of is proportional to the scale , i.e. . Next, we find

a logarithm of both sides and obtain the equation . By

interpolating the regression line through the dependence of on , we

can obtain the fractality index as the slope of this line. The index will

represent the Higuchi fractal dimension.

Petrosian fractal dimension

First, for the time series , we create its discretized (binary)

version, :

The Petrosian fractal dimension [20, 37, 135] can be defined as

where is the number of total changes in the sign of :

.

Katz fractal dimension

Suppose that the signal consists of a pair of points . Then, the Katz

fractal dimension [109] is defined as

where , and the value of

.

Sevcik fractal dimension

First, for the set of values , normalization is performed:

 and .

The Sevcik fractal dimension [40] can be defined as

 is the length of the signal, which can be calculated by the formula

.

Fractal dimension via normalized length density

This indicator is calculated as follows [7]:

1) For the time series , standardization is performed:

, where is the mean value of the series, is the standard

deviation.

2) The normalized length density is calculated

. The actual calculation of the fractal dimension via

Normalized Length Density (FNLD) is based on the construction of

a monotonic calibration curve using a set of Weierstrass

functions for which the values of are set theoretically.

3) For computational purposes, two models of this relationship have

been created:

logarithmic model: ;

a power law model: . The neurokit2

Python library uses the power law model. The parameters

, , and , according to [7].

Fractal dimension and power spectral density

The fractal dimension can be calculated based on the analysis of the power

spectral density slope (PSD) [62, 136] in signals characterized by a power law

frequency dependence.

First, the time series is transformed to the frequency domain and then the

signal is divided into harmonic oscillations of a certain amplitude, which are

relationship between the frequencies in the signal and the power of these

frequencies, then in logarithmic coordinates this is manifested through a linear

relationship. The slope of the regression line is taken as an estimate of the fractal

dimension.

A slope of 0 corresponds to white noise, and a slope less than 0 but greater

than -1 corresponds to pink noise, i.e. noise. Spectral slopes steeper than -2

indicate fractional Brownian motion, which is a manifestation of random walk

processes.

Correlation dimension

The correlation dimension () is a derivative of the correlation integral

(correlation sum) and can be represented as [122-124]:

The correlation dimension can be derived from the following power law:

or

where is the total number of pairs of points whose distance is less than

the radius .

In the first case, we select the -th trajectory and all other -th trajectories,

and see if the -th trajectories fall within the -neighborhood of the -th trajectory.

If the distance between them does not exceed the circle of radius , we set 1. But if

the distance between the trajectories is greater than , then we set 0. Then all this is

summed up, divided by the total number of trajectories. In essence, the correlation

integral is the average probability that the two trajectories in the phase space under

consideration will be close enough to each other. The closer the points of the phase

space are located, the higher the value of the correlation integral. The more

equidistant the trajectories appear from each other, the closer the value of the

correlation integral is to zero.

We can find the value of the correlation dimension similarly to the previous

fractal indicators: we look for the dependence of the correlation integral on the

value of . This dependence is plotted on a logarithmic scale.

Here are some interesting examples.

Electrocardiogram (ECG): ECG signals reflect the electrical activity of the

heart. The complexity of an ECG signal can be estimated using the correlation

dimension. The correlation dimension of a healthy heart ECG is expected to be

higher due to the presence of complex patterns and variability. On the other hand,

abnormal ECG signals, for example, from patients with arrhythmias or heart

disease, may have a lower correlation dimension due to the loss of signal

complexity.

Electroencephalogram (EEG): EEG signals record the electrical activity of

the brain. The correlation dimension can be used to analyze the complexity of

brain activity, which can vary with different cognitive states, sleep stages, or

neurological disorders. In healthy individuals, EEG signals during wakefulness and

attention may have a higher correlation dimension compared to signals during

sleep, when brain activity is more regular and synchronized.

Respiratory signals: Respiratory signals, such as respiratory rate or airflow,

can also be analyzed using correlation dimensionality. The complexity of these

signals can vary depending on factors such as stress, exercise, or the presence of

respiratory disease. Normal breathing may have a higher correlation dimension,

while abnormalities in breathing signals, such as obstructive sleep apnea or

respiratory disorders, may result in a lower correlation dimension.

Gait analysis: The correlation dimension can be used to analyze gait

patterns. It helps to understand the complexity of a person's movements while

walking or running. Changes in the correlation dimension of gait signals can

indicate changes in gait stability or gait abnormalities caused by neurological or

musculoskeletal conditions.

Heart rate variability (HRV): HRV is a change in the time intervals

between successive heartbeats. It is influenced by the autonomic nervous system

and reflects the adaptability and complexity of the cardiovascular system. A higher

HRV level, corresponding to a higher correlation dimension, is usually associated

with a better state of the cardiovascular system and its adaptability to physiological

and environmental changes. Its decline may be associated with abnormal cardiac

dynamics.

DNA sequences: The correlation dimension can also be used in the analysis

of DNA sequences. It helps to identify self-similar or fractal patterns within

sequences, which can be important for understanding genetic complexity,

evolutionary relationships, and gene regulation. High correlation dimensionality

means high complexity of the DNA strand. Low correlation dimension simplified

DNA strand.

Financial markets: Higher correlation dimensionality in financial market

time series data indicates greater complexity and the existence of underlying self-

similar models or fractal structures. Chaotic behavior of stock prices may be

associated with periods of high volatility and unpredictability. On the other hand, a

lower value of the correlation dimension may indicate more predictable and less

complex price movements, which corresponds to periods of stability or less

volatile market conditions.

4.5 Practical estimations of monofractal indicators

First, import the necessary libraries:
import matplotlib.pyplot as plt
import numpy as np
import neurokit2 as nk
import yfinance as yf
import pandas as pd
import scienceplots
from tqdm import tqdm

%matplotlib inline

plt.style.use(['science', 'notebook', 'grid'])

size = 22
params = {
'figure.figsize': (8, 6),
'font.size': size,
'lines.linewidth': 2,
'axes.titlesize': 'small',
'axes.labelsize': size,
'legend.fontsize': size,
'xtick.labelsize': size,
'ytick.labelsize': size,

"font.family": "Serif",
"font.serif": ["Times New Roman"],
'savefig.dpi': 300,
'axes.grid': False
}

plt.rcParams.update(params)

transformation() function to standardize the series:
def transformation(signal, ret_type):

 for_rec = signal.copy()

 if ret_type == 1:
 pass
 elif ret_type == 2:
 for_rec = for_rec.diff()
 elif ret_type == 3:
 for_rec = for_rec.pct_change()
 elif ret_type == 4:
 for_rec = for_rec.pct_change()
 for_rec -= for_rec.mean()
 for_rec /= for_rec.std()
 elif ret_type == 5:
 for_rec = for_rec.pct_change()
 for_rec -= for_rec.mean()
 for_rec /= for_rec.std()
 for_rec = for_rec.abs()
 elif ret_type == 6:
 for_rec -= for_rec.mean()
 for_rec /= for_rec.std()

 for_rec = for_rec.dropna().values

 return for_rec

Calculation of the Hurst exponent using R/S analysis

For further calculations, we will use the neurokit2 and fathon libraries.

The second of them can be installed as follows:
!pip install fathon

Next, import the library itself and related modules:
import fathon
from fathon import fathonUtils as fu

The neurokit2 library contains the necessary method for R/S analysis

fractal_hurst. Its syntax:
fractal_hurst(signal, scale='default', corrected=True, show=False)

Parameters:

signal (Union[list, np.array, pd.Series]) the signal (i.e., a time series)

in the form of a vector of values or dataframe;

scale (list) a list containing the lengths of the windows (number of data

points in each subseries) that the signal is divided into;

corrected (boolean) if True, the Anis-Lloyd-Peters correction factor

will be applied to the output according to the expected value for the

individual (R/S) values;

show (bool) if True, returns a plot.

Returns:

h (float) Hurst exponent;
kwargs a dictionary containing information regarding the parameters
used in the procedure.

the sliding window procedure.

4.5.1.1 Calculations of R/S analysis for the whole time series

First of all, we will find the value of profitability for our series and

standardize them. After that, we will perform the calculations:
signal = time_ser.copy()
ret_type = 4 # type of a series:
1 – initial
2 - detrending (difference between present and previous values)
3 – initial returns
4 – standardized returns
5 – absolute values (volatility)
6 – standardized series

for_rs = transformation(signal, ret_type)

 (see Fig. 4.2):

 (a) (b)

 (c) (d)

Fig. 4.2: Dependence of R/S values on scaling for S&P 500 (a), Hang Seng index (b), DAX (c),
BSE Sensex (d)

As we can see from Fig. 4.2, the value of for the studied stock indices

close to 0.5, which indicates the similarity of their dynamics to a random walk. But

as the laws governing the market change over time, so must the correlations within

the system, and therefore the Hurst exponent can also change.

4.5.1.2 Sliding window procedure for R/S analysis

def plot_pair(x_values,
 y1_values,
 y2_values,
 y1_label,
 y2_label,
 x_label,
 file_name, clr="magenta"):

 fig, ax = plt.subplots()

 ax2 = ax.twinx()
 ax2.spines.right.set_position(("axes", 1.03))

 p1, = ax.plot(x_values,
 y1_values,
 "b-", label=fr"{y1_label}")
 p2, = ax2.plot(x_values,
 y2_values,
 color=clr,
 label=y2_label)

 ax.set_xlabel(x_label)
 ax.set_ylabel(f"{y1_label}")
 ax.yaxis.label.set_color(p1.get_color())
 ax2.yaxis.label.set_color(p2.get_color())

 tkw = dict(size=2, width=1.5)

 ax.tick_params(axis='x', rotation=45, **tkw)
 ax.tick_params(axis='y', colors=p1.get_color(), **tkw)
 ax2.tick_params(axis='y', colors=p2.get_color(), **tkw)
 ax2.legend(handles=[p1, p2])

 plt.savefig(file_name +".jpg")

 plt.show();

sliding window procedure:
ret_type = 4 # type of a series:
1 – initial
2 - detrending (difference between present and previous values)
3 – initial returns
4 – standardized returns
5 – absolute values (volatility)
6 – standardized series
window = 500 # sliding window width
tstep = 1 # sliding window step
length = len(time_ser.values) # length of a series
corr = False # Anis-Lloyd-Peters correction factor

H = [] # array for values of Hurst exponent

for i in tqdm(range(0, length-window, tstep)):

 fragm = time_ser.iloc[i:i+window].copy()
 fragm = transformation(fragm, ret_type)

calculate hurst exponent
 h, _ = nk.fractal_hurst(fragm, corrected=corr, show=False)

 H.append(h)

np.savetxt(f"rs_hurst_name={symbol}_window={window}_step={tstep}_ \
 rettype={ret_type}_corrected={corr}.txt" , H)

Visualize the result:
measure_label = r'H'
file_name = f"rs_hurst_name={symbol}_window={window}_step={tstep}_ \
 rettype={ret_type}_corrected={corr}"

plot_pair(time_ser.index[window:length:tstep],
 time_ser.values[window:length:tstep],
 H,
 ylabel,
 measure_label,
 xlabel,
 file_name)

Fig. 4.3 represents the visualization of the comparative dynamics of S&P

500, Hang Seng index, DAX, BSE Sensex, and their Hurst exponent.

 (a) (b)

 (c) (d)

Fig. 4.3: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their
Hurst exponent

In Fig. 4.3, we can see that the Hurst exponent increases in the pre-crisis

period and decreases during the crisis. Before the crisis, market dynamics are

characterized by an increase in trend resistance (persistence), which reflects the

DFA-based calculations

The fathon library provides tools for both the classical detrended fluctuation

analysis and its multifractal analog.

4.5.2.1 DFA-based calculations for the whole time series

 for the entire series. The calculation

procedure based on the fathon library will look in the following way:

Find the standardized returns of the series:
signal = time_ser.copy()
ret_type = 4 # type of a series

for_dfa = transformation(signal, ret_type)

cumulat = fu.toAggregated(for_dfa) # find cumulative values

rev = True # whether to repeat the calculation of the fluctuation function fr
om the end
order = 2 # order of the local trend

pydfa = fathon.DFA(cumulat) # initializing the DFA object to perform further
calculations

win_beg = 100 # initial width of the segments
win_end = 2000 # final width of the segments

wins = fu.linRangeByStep(win_beg, win_end) # generate an array of linearly se
parated elements.

n, F = pydfa.computeFlucVec(wins,
 polOrd=order,
 revSeg=rev) # calculate the fluctuation functi
on

H, H_intercept = pydfa.fitFlucVec() # calculate alpha exponent

We derive the dependence of the fluctuation function on the scale:
polyfit = np.polyfit(np.log(n), np.log(F), 1)
fluctfit = np.exp(1)**np.polyval(polyfit, np.log(n))

We plot the dependence of the fluctuation function on the scale in a

logarithmic scale (see Fig. 4.4):
fig, ax = plt.subplots()
fig.suptitle("DFA-based Hurst exponent")

ax.scatter(np.log(n), np.log(F), marker="o", zorder=1, label="_no_legend_")

label = fr"α = {H:.2f}"
ax.plot(np.log(n), np.log(fluctfit), color="#E91E63", zorder=2, linewidth=3,
label=label)

ax.set_ylabel(r'$\ln{F_{2}(n)}$')
ax.set_xlabel(r'\ln{n}')

ax.legend(loc="lower right")

plt.show()

 (a) (b)

 (c) (d)

Fig. 4.4: Logarithmic dependence of the fluctuation function values on scaling for S&P 500 (a),
Hang Seng index (b), DAX (c), and BSE Sensex (d)

The DFA procedure shows that the values of stock indices appear to be

rather anti-persistent, but the result presented is quite close to the one obtained

using the R/S

algorithm.

4.5.2.2 DFA-based calculations within the sliding window procedure

window = 500 # sliding window width
tstep = 1 # sliding window step
ret_type = 4 # type of a series:

rev = True # whether to repeat the calculation of the fluctuation function fr
om the end
order = 2 # order of the polynomial trend

periods = 1

win_beg = 10 # initial scale of segments
win_end = window-1 # the final scale of the segments

length = len(time_ser.values) # time series length

alpha = [] # an array of alpha (Hurst) indicators
D_f = [] # fractal dimension
beta = [] # spectral density indicator
gamma = [] # autocorrelation indicator

, the fractal dimension , the spectral

density index , and the autocorrelation index :
for i in tqdm(range(0, length-window, tstep)):

 fragm = time_ser.iloc[i:i+window].copy()
 fragm = transformation(fragm, ret_type)

calculate cumulative values
 cumulat_wind = fu.toAggregated(fragm)

initializing the DFA object
 pydfa = fathon.DFA(cumulat_wind)

generate an array of linearly separated elements
 wins = fu.linRangeByStep(win_beg, win_end)

find the fluctuation function
 n, F_wind = pydfa.computeFlucVec(wins, polOrd=order, revSeg=rev)

find the alpha exponent
 H_wind, _ = pydfa.fitFlucVec()

find the fractal dimension
 D = 2. - H_wind

find spectral density indicator
 bi = 2. * H_wind - 1

find autocorrelation indicator
 gi = 2. - 2. * H_wind

 alpha.append(H_wind)
 D_f.append(D)
 beta.append(bi)
 gamma.append(gi)

Save absolute values of indicators to text files:
np.savetxt(f"alpha_{symbol}_{window}_{tstep}_ \
{ret_type}_{order}_{win_beg}_{win_end}.txt", alpha)
np.savetxt(f"D_f_{symbol}_{window}_{tstep}_ \
{ret_type}_{order}_{win_beg}_{win_end}.txt", D_f)
np.savetxt(f"beta_{symbol}_{window}_{tstep}_ \
{ret_type}_{order}_{win_beg}_{win_end}.txt", beta)
np.savetxt(f"gamma_{symbol}_{window}_{tstep}_ \
{ret_type}_{order}_{win_beg}_{win_end}.txt", gamma)

Define labels for figures and names of saved figures:
label_alpha = fr'α'
label_d = fr'D_f'
label_beta = fr'β'
label_gamma = fr'γ'

file_name_alpha = f"alpha_{symbol}_{window}_{tstep}_ \
{ret_type}_{order}_{win_beg}_{win_end}"
file_name_d = f"D_f_{symbol}_{window}_{tstep}_ \
{ret_type}_{order}_{win_beg}_{win_end}"
file_name_beta = f"beta_{symbol}_{window}_{tstep}_ \
{ret_type}_{order}_{win_beg}_{win_end}"
file_name_gamma = f"gamma_{symbol}_{window}_{tstep}_ \
{ret_type}_{order}_{win_beg}_{win_end}"

plot_pair(time_ser.index[window:length:tstep],
 time_ser.values[window:length:tstep],
 alpha,
 ylabel,
 label_alpha,
 xlabel,
 file_name_alpha)

Fig 4.5 represents the comparative dynamics of S&P 500, Hang Seng index,

DAX, BSE Sensex, and their exponent.

 (a) (b)

 (c) (d)

Fig. 4.5: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their
exponent

When compared with R/S analysis, Fig. 4.5 shows that the DFA dynamics of

the generalized Hurst exponent is much more stable. We are now able to

differentiate a significant proportion of the crash events that took place in the gold

market. The generalized Hurst exponent shows that pre-crisis phenomena are

characterized by an increase in the trend stability of the market, an increase in the

degree of self-organization of the system.
plot_pair(time_ser.index[window:length:tstep],
 time_ser.values[window:length:tstep],
 D_f,
 ylabel,
 label_d,

 xlabel,
 file_name_d)

Fig. 4.6 shows the comparative dynamics of S&P 500, Hang Seng index,

DAX, BSE Sensex, and their fractal dimension .

 (a) (b)

 (c) (d)

Fig. 4.6: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their
fractal dimension

Fig. 4.6 shows that is characterized by a decline in times of crisis. This is

an indicator that a higher degree of market organization is reflected in smoother or

less volatile fluctuations of the signal under study.
plot_pair(time_ser.index[window:length:tstep],
 time_ser.values[window:length:tstep],
 beta,
 ylabel,
 label_beta,
 xlabel,
 file_name_beta)

Fig. 4.7 shows the comparative dynamics of S&P 500, Hang Seng index,

DAX, BSE Sensex, and their spectral density index .

 (a) (b)

 (c) (d)

Fig. 4.7: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their
spectral density index

In Fig 4.7, the spectral power density increases during crisis periods, which

indicates a decrease in signal power at a unit frequency interval. This is also

evidence of an increase in the correlation properties of the system.
plot_pair(time_ser.index[window:length:tstep],
 time_ser.values[window:length:tstep],
 gamma,
 ylabel,
 label_gamma,
 xlabel,
 file_name_gamma)

Fig. 4.8 provides the comparative dynamics of S&P 500, Hang Seng index,

DAX, BSE Sensex, and their autocorrelation index.

 (a) (b)

 (c) (d)

Fig. 4.8: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their
autocorrelation index

Fig. 4.8 shows that the indicator decreases in crisis and pre-crisis periods.

This is an indicator of a slowdown in the decline of the autocorrelation function,

dynamics.

Calculating the Higuchi fractal dimension

As already mentioned, the Higuchi fractal dimension is a type of fractal

dimension for time series. It is calculated by reconstructing a number of new

data sets. For each reconstructed data set, the length of the curve is calculated and

plotted against the corresponding -value on a logarithmic scale. The HFD

corresponds to the slope of a linear trend using the least squares method.

We calculate the optimal value for the entire time series. The neurokit2

library provides a ready-made procedure for automated selection of this parameter.

The optimal value is calculated based on the point at which the fractal

dimension reaches a plateau for a range of values [83].

The syntax of this function is as follows:
complexity_k(signal, k_max='max', show=False)

Parameters:

signal (Union[list, np.array, pd.Series]) the signal (i.e., a time

series) in the form of a vector of values;

k_max (Union[int, str, list], optional) maximum number of interval

times (should be greater than or equal to 3) to be tested. If max, it

selects the maximum possible value corresponding to half the length

of the signal;

show (bool) visualize the slope of the curve for the selected

value.

Returns:

k (float) the optimal of the time series;

info (dict) a dictionary containing additional information regarding

the parameters used to compute optimal .

4.5.3.1 Higuchi fractal dimension for the whole time series

transformation. We will

use the original time series for further calculations:
signal = time_ser.copy()
ret_type = 1 # type of a series:
1 – initial
2 - detrending (difference between present and previous values)
3 – initial returns
4 – standardized returns
5 – absolute values (volatility)
6 – standardized series

for_higuchi = transformation(signal, ret_type)

 (see

Fig. 4.9):
k_max, info = nk.complexity_k(for_higuchi, k_max=100, show=True)

 (a) (b)

 (c) (d)

Fig. 4.9: Dependence of the Higuchi fractal dimension on the range of values for the whole
time series of S&P 500 (a), Hang Seng index (b), DAX (c), and BSE Sensex (d)

logarithmic scale. For a fractal signal, a linear relationship should hold. The

neurokit2 library contains a method for calculating this fractal dimension. The

syntax of this procedure is as follows:
fractal_higuchi(signal, k_max='default', show=False, **kwargs)

Parameters:

signal (Union[list, np.array, pd.Series]) the signal (i.e., a time

series) in the form of a vector of values;

k_max (str or int) maximum number of interval times (should be

greater than or equal to 2);

show (bool) visualize the slope of the curve for the selected

value.

Returns:

HFD (float) Higuchi fractal dimension of the time series;

info (dict) a dictionary containing additional information regarding

the parameters used to compute Higuchi fractal dimension.
hfd, info = nk.fractal_higuchi(for_higuchi, k_max=k_max, show=True)

In Fig. 4.10 is presented the dependence of signal length on time delay for

the whole time series of S&P 500, Hang Seng index, DAX, and BSE Sensex

 (a) (b)

 (c) (d)

Fig. 4.10: Dependence of signal length on time delay for the whole time series of S&P 500 (a),
Hang Seng index (b), DAX (c), and BSE Sensex (d)

In the following, we will use the obtained optimal value to calculate the

Higuchi fractal dimension within the sliding window algorithm.

4.5.3.2 Calculations of Higuchi fractal dimension within the sliding window algorithm

window = 500 # window length
tstep = 1 # time step
ret_type = 1 # type of a series:
1 – initial
2 - detrending (difference between present and previous values)
3 – initial returns
4 – standardized returns
5 – absolute values (volatility)
6 – standardized series

k_max_wind = 30 # maximum time delay

length = len(time_ser.values) # series length

hfd_wind = [] # array of Higuchi dimensions

and start the sliding window procedure:
for i in tqdm(range(0, length-window, tstep)):

 fragm = time_ser.iloc[i:i+window].copy()

 fragm = transformation(fragm, ret_type)

calculate the Higuchi fractal dimension
 higuchi, _ = nk.fractal_higuchi(fragm,
 k_max=k_max_wind,
 show=False)

save the result to an array of values
 hfd_wind.append(higuchi)

Save the initial values to a text file:
np.savetxt(f"fd_higuchi_name={symbol}_kmax={k_max_wind}_\
 wind={window}_step={tstep}.txt", hfd_wind)

Define the labels for the figures and the titles of the saved figures:
label_higuchi = fr'HFD'

file_name_higuchi = f"fd_higuchi_name={symbol}_kmax={k_max_wind}_\
 wind={window}_step={tstep}"

Display the result:
plot_pair(time_ser.index[window:length:tstep],
 time_ser.values[window:length:tstep],
 hfd_wind,
 ylabel,
 label_higuchi,
 xlabel,
 file_name_higuchi)

Fig. 4.11 represents the comparative dynamics of S&P 500, Hang Seng

index, DAX, BSE Sensex, and their Higuchi fractal dimension.

 (a) (b)

 (c) (d)

Fig. 4.11: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their
Higuchi fractal dimension

As can be seen from the figure, the Higuchi fractal dimension can serve as

an indicator or precursor of crisis phenomena. It can be seen that this indicator

begins to decline in pre-crisis periods or at the very moment of the crisis,

indicating an increase

correlation and the trend stability of market dynamics.

Calculating the Petrosian fractal dimension

Petrosian [20] proposed a fast method for estimating fractal dimensionality

by converting a signal into a binary sequence from which the fractal

dimensionality is estimated. There are several variations of the algorithm

(neurokit2, for example, offers options "A" "B" "C", or "D"), which differ

primarily in the way the discrete (symbolic) sequence is created (see

complexity_symbolize() for details). The most common method "C", by

default) binarizes the signal by the sign of consecutive differences.

Most of these sampling methods assume that the signal is periodic (without a

linear trend). To remove linear trends, linear detrending can be useful.

The syntax of this procedure is as follows:
fractal_petrosian(signal, symbolize='C', show=False)

Parameters:

signal (Union[list, np.array, pd.Series]) the signal (i.e., a time

series) in the form of a vector of values;

symbolize (str) method to convert a continuous signal input into a

symbolic (discrete) signal. By default, assigns 0 and 1 to values below

and above the mean. Can be None to skip the process (in case the

input is already discrete);

show (bool) if True, will show the discrete the signal.

Returns:

pfd (float) the Petrosian fractal dimension (PFD);

info (dict) a dictionary containing additional information regarding

the parameters used to compute PFD.

complexity_symbolize() function. We will describe only those discretization

methods that are related to PFD:

 binarizes the signal by higher vs. lower values as

 is also valid);

 uses values that are within the mean +/- 1 SD band vs.

values that are outside this band.

 computes the difference between consecutive samples

and binarizes depending on their sign;

 forms separates consecutive samples that exceed 1

the sliding window dynamics of the indicator.

4.5.4.1 Calculations of Petrosian fractal dimension within sliding window procedure

Since most of these discretization methods require detrending the series, we

will perform calculations for the gold price returns. We will use the following

parameters:
window = 500 # sliding window width
tstep = 1 # sliding window time step
ret_type = 4 # type of a series:
1 – initial
2 - detrending (difference between present and previous values)
3 – initial returns
4 – standardized returns
5 – absolute values (volatility)
6 – standardized series

symb = "B" # type of series discretization

length = len(time_ser.values) # series length

petr_wind = [] # array for Petrosian FD

Start the sliding window procedure:
for i in tqdm(range(0, length-window, tstep)):

 fragm = time_ser.iloc[i:i+window].copy()
 fragm = transformation(fragm, ret_type)

calculate the Petrosian fractal dimension
 petrocian, _ = nk.fractal_petrosian(fragm,
 symbolize=symb,
 show=False)

save the result to an array of values
 petr_wind.append(petrocian)

Save the initial values to a text document:
np.savetxt(f"fd_petrosian_name={symbol}_method={symb}_\
 wind={window}_step={tstep}.txt", petr_wind)

Define labels for figures and titles of saved figures:
label_petrocian = fr'PFD'

file_name_petrocian = f"fd_petrosian_name={symbol}_method={symb}_\
 wind={window}_step={tstep}"

Plot the result:
plot_pair(time_ser.index[window:length:tstep],
 time_ser.values[window:length:tstep],
 petr_wind,
 ylabel,
 label_petrocian,
 xlabel,
 file_name_petrocian)

Fig. 4.12 shows the comparative dynamics of S&P 500, Hang Seng index,

DAX, BSE Sensex, and their Petrosian fractal dimension.

 (a) (b)

 (c) (d)

Fig. 4.12: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their
Petrosian fractal dimension

Fig. 4.12 shows that the Petrosian dimension also decreases during crisis

events, indicating an increase in market periodization and synchronization of

Calculating Katz fractal dimension

consecutive signal points are summed and averaged, and the maximum distance

between the starting point and any other point in the sample is determined.

The fractal dimension varies from 1.0 for straight lines, to about 1.15 for

The syntax of the procedure for calculating this dimension is as follows:
fractal_katz(signal)

Parameters:

signal (Union[list, np.array, pd.Series]) the signal (i.e., a time

series) in the form of a vector of values.

Returns:

kfd (float) Katz fractal dimension of the single time series;

info (dict) a dictionary containing additional information (currently

empty, but returned nonetheless for consistency with other functions).

4.5.5.1 Calculating Katz fractal dimension within the sliding window procedure

Since this indicator is parameter-independent, we only need the size of the

time window, step, and series type:
window = 500 # sliding window width
tstep = 1 # sliding window time step
ret_type = 1 # type of a series
1 - initial
2 - detrending (difference between present and previous values)
3 - initial returns
4 - standardized returns
5 - absolute values (volatility)
6 - standardized series
length = len(time_ser.values)

kz_wind = [] # array for Katz FD

Start the sliding window procedure:
for i in tqdm(range(0, length-window, tstep)):

 fragm = time_ser.iloc[i:i+window].copy()
 fragm = transformation(fragm, ret_type)

calculate Katz FD
 katz, _ = nk.fractal_katz(fragm)

save results
 kz_wind.append(katz)

Save the initial values to a text document:
np.savetxt(f"fd_katz_name={symbol}_wind={window}_step={tstep}.txt", kz_wind)

Define the labels for the figures and the titles of the saved figures:
label_katz = fr'KFD'

file_name_katz = f"fd_katz_name={symbol}_wind={window}_step={tstep}"

Plot the result:
plot_pair(time_ser.index[window:length:tstep],
 time_ser.values[window:length:tstep],
 kz_wind,
 ylabel,
 label_katz,
 xlabel,
 file_name_katz)

In Fig. 4.13 is presented the comparative dynamics of S&P 500, Hang Seng

index, DAX, BSE Sensex, and their Katz fractal dimension.

 (a) (b)

 (c) (d)

Fig. 4.13: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their
Katz fractal dimension

Fig. 4.13 shows that the Katz fractal dimension also decreases in crisis and

pre-crisis periods and is also an indicator of the growing degree of correlation of

the system during these periods.

Calculating the Sevcik fractal dimension

The algorithm of this fractal dimension was proposed to calculate the fractal

dimension of signals by Sevcik [40]. This method can be used to quickly measure

the complexity of a signal.

Syntax of the method:
fractal_sevcik(signal)

Parameters:

signal (Union[list, np.array, pd.Series]) the signal (i.e., a time

series) in the form of a vector of values.

Returns:

sfd (float) the sevcik fractal dimension;

info (dict) an empty dictionary returned for consistency with the

other complexity functions.

4.5.6.1 Calculating Sevcik fractal dimension within the sliding window procedure

window = 500 # sliding window width
tstep = 1 # sliding window time step
ret_type = 1 # type of a series:
1 - initial
2 - detrending (difference between present and previous values)
3 – initial returns
4 – standardized returns
5 – absolute values (volatility)
6 – standardized series

length = len(time_ser.values) # series length

sfd_wind = [] # array for Sevcik FD

Start the sliding window procedure:
for i in tqdm(range(0, length-window, tstep)):

 fragm = time_ser.iloc[i:i+window].copy()
 fragm = transformation(fragm, ret_type)

calculate the fractal dimension of Sevchik
 sevcik, _ = nk.fractal_sevcik(fragm)

save the result to an array of values
 sfd_wind.append(sevcik)

Save the initial values to a text document:
np.savetxt(f"fd_cevcik_name={symbol}_wind={window}_step={tstep}.txt", sfd_win
d)

Define the labels for the figures and the titles of the saved figures:
label_sevcik = fr'SFD'

file_name_sevcik = f"fd_cevcik_name={symbol}_wind={window}_step={tstep}"

Plot the results:
plot_pair(time_ser.index[window:length:tstep],
 time_ser.values[window:length:tstep],

 sfd_wind,
 ylabel,
 label_sevcik,
 xlabel,
 file_name_sevcik)

Fig. 4.14 shows the comparative dynamics of S&P 500, Hang Seng index,

DAX, BSE Sensex, and their Sevcik fractal dimension.

 (a) (b)

 (c) (d)

Fig. 4.14: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their
Sevcik fractal dimension

We can see that Sevcik fractal dimension reacts with a decline to crash

events in the stock market. The downturns during the crises of 2008, 2011, 2015,

and 2020 are particularly characteristic. Stock price fluctuations during these crisis

events were also characterized by an increase in persistence (correlations).

Calculating the fractal dimension through normalized length density

This is a fairly simple measure corresponding to the average absolute

sequential differences of a (standardized) signal

(np.mean(np.abs(np.diff(std_signal)))). The method was developed for

measuring the complexity of signals of very short duration (< 30 samples), and can

be used, for example, when continuous changes in the fractal dimension of a signal

are of interest when computing within sliding windows.

Procedure syntax:
fractal_nld(signal, corrected=False)

Parameters:

signal (Union[list, np.array, pd.Series]) the signal (i.e., a time

series) in the form of a vector of values;

corrected (bool) if True, will rescale the output value according to

the power model estimated by Kalauzi et al. (2009) to make it more

FD =

1.9079*((NLD-0.097178)^0.18383). Note that this can result

in np.nan if the result of the difference is negative.

Returns:

NLDFD (float) fractal dimension;

info (dict) A dictionary containing additional information (currently,

but returned nonetheless for consistency with other functions).

Calculating NLD fractal dimension within the sliding window

procedure

window = 500 # window length
tstep = 1 # time step
ret_type = 4 # type of a series:
1 – initial
2 - detrending (difference between present and previous values)
3 – initial returns
4 – standardized returns

5 – absolute values (volatility)
6 – standardized series

nld_corrected = True # FD normalization

length = len(time_ser.values) # series length

nldfd_wind = [] # array of NLDFD

Start the sliding window procedure:
for i in tqdm(range(0, length-window, tstep)):

 fragm = time_ser.iloc[i:i+window].copy()
 fragm = transformation(fragm, ret_type)

calculate NLDFD
 nld, _ = nk.fractal_nld(fragm,
 corrected=nld_corrected)

save the result to an array of values
 nldfd_wind.append(nld)

Save the initial values to a text document:
np.savetxt(f"fd_nld_name={symbol}_wind={window}_\
 step={tstep}_corrected={nld_corrected}.txt", nldfd_wind)

Define the labels for the figures and the titles of the saved figures:
label_nld = fr'$NLDFD$'

file_name_nld = f"fd_nld_name={symbol}_wind={window}_\
 step={tstep}_corrected={nld_corrected}"

Plot the results:
plot_pair(time_ser.index[window:length:tstep],
 time_ser.values[window:length:tstep],
 nldfd_wind,
 ylabel,
 label_nld,
 xlabel,
 file_name_nld)

Fig. 4.15 presents the comparative dynamics of S&P 500, Hang Seng index,

DAX, BSE Sensex, and their fractal dimension dynamics through the normalized

length density.

 (a) (b)

 (c) (d)

Fig. 4.15: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their
fractal dimension dynamics through the normalized length density

Fig. 4.15 shows that decreases during crisis and pre-crisis events,

indicating that correlations increase during these periods.

Calculation of fractal dimension through the slope of the power spectral

density

neurokit2 library:
fractal_psdslope(signal, method='voss1988', show=False, **kwargs)

Parameters:

signal (Union[list, np.array, pd.Series]) the signal (i.e., a time

series) in the form of a vector of values;

method (str) method to estimate the fractal dimension from the

slope, can be "voss1988" (default) or "hasselman2013";

show (bool) if True, returns the log-log plot of PSD versus

frequency;

**kwargs other arguments to be passed to signal_psd().

Returns:

slope (float) estimate of the fractal dimension obtained from PSD

slope analysis;

info (dict) a dictionary containing additional information regarding

the parameters used to perform PSD slope analysis.

4.5.9.1 Calculating the PSD fractal dimension for the whole time series

use the initial time series for further calculations:
signal = time_ser.copy()
ret_type = 1 # type of a series:
1 – initial
2 - detrending (difference between present and previous values)
3 – initial returns
4 – standardized returns
5 – absolute values (volatility)
6 – standardized series

for_psd = transformation(signal, ret_type)

logarithmic scale (see Fig. 4.16):
psdslope, info = nk.fractal_psdslope(for_psd, method="voss1988", show=True)

Fig. 4.16: Dependence of power spectral density on frequency in logarithmic scale for S&P 500
index

Obviously, the slope of the power spectral density at different frequencies

has a linear dependence, and the slope of the line constructed from the spectrum is

close to -2, indicating that the dynamics of the S&P 500 index is close to fractional

Brownian motion.

the slope of the spectrum within the

sliding window algorithm.

4.5.9.2 Calculating the PSD fractal dimension within the sliding window procedure

window = 500 # sliding window width
tstep = 1 # sliding window time step
ret_type = 4 # type of a series:
1 – initial
2 - detrending (difference between present and previous values)
3 – initial returns
4 – standardized returns
5 – absolute values (volatility)
6 – standardized series

method_psd = "voss1988" # method for calculating spectral density

length = len(time_ser.values) # series length

psd_wind = [] # array for PSDFD

Start the sliding window procedure:
for i in tqdm(range(0, length-window, tstep)):

 fragm = time_ser.iloc[i:i+window].copy()
 fragm = transformation(fragm, ret_type)

calculate PSDFD
 psd, _ = nk.fractal_psdslope(fragm, method=method_psd)

save results to an array
 psd_wind.append(psd)

Save the initial values to a text document:
np.savetxt(f"fd_psd_name={symbol}_method{method_psd}_\
 wind={window}_step={tstep}.txt", psd_wind)

Define the labels for the figures and the titles of the saved figures:

label_psd = fr'$PSDFD$'

file_name_psd = f"fd_psd_name={symbol}_method{method_psd}_\
 wind={window}_step={tstep}"

Plot the results:
plot_pair(time_ser.index[window:length:tstep],
 time_ser.values[window:length:tstep],
 psd_wind,
 ylabel,
 label_psd,
 xlabel,
 file_name_psd)

In Fig. 4.17 is presented the comparative dynamics of S&P 500, Hang Seng

index, DAX, BSE Sensex, and their fractal dimension by the slope of the power

spectral density.

 (a) (b)

 (c) (d)

Fig. 4.17: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their
fractal dimension by the slope of the power spectral density

The figure above shows that this indicator also reacts with a decline to crisis

and pre-crisis events, indicating an increase in the autocorrelation of the time

series. It is also clear that there are variations in the slope of the power density

spectrum. At some points in time, the signal dynamics can be similar to Brownian

motion, and at others to white noise.

 Calculation of the correlation dimension

The correlation dimension is a lower bound for estimating the fractal

dimension of the investigated phase space.

First, the phase space of the signal is reconstructed according to the time-

delay method, and then the distances between all points of the trajectory are

pairs of points whose distance is less than a given radius. The final correlation

dimension is approximated by a graph of the correlation sum versus the radius of

the multidimensional neighborhood of the trajectories under study on a logarithmic

scale.

This dimension can be called with fractal_correlation(). Its syntax is

as follows:
fractal_correlation(signal, delay=1, dimension=2, radius=64,

show=False, **kwargs)

Parameters:

signal (Union[list, np.array, pd.Series]) the signal (i.e., a time

series) in the form of a vector of values;

delay (int) time delay () in samples;

dimension (int) embedding dimension ();

radius (Union[str, int, list]) the sequence of radiuses to test. If an

integer is passed, will get an exponential sequence of

length radius ranging from 2.5% to 50% of the distance range.

Methods implemented in other packages can be used via "nolds",

"Corr_Dim" or "boon2008";

show (bool) plot of correlation dimension if True. Defaults to False.

Returns:

cd (float) the correlation dimension (CD) of the time series;

info (dict) a dictionary containing additional information regarding

the parameters used to compute the correlation dimension.

4.5.10.1 Calculating the correlation dimension for the whole time series

signal = time_ser.copy()
ret_type = 6 # type of a series:
1 – initial
2 - detrending (difference between present and previous values)
3 – initial returns
4 – standardized returns
5 – absolute values (volatility)
6 – standardized series

for_corr = transformation(signal, ret_type)

against the radius on a logarithmic scale (see Fig. 4.18):
cd, info = nk.fractal_correlation(for_corr,
 delay=1,
 dimension=1,
 radius="nolds",
 show=True)

 (a) (b)

 (c) (d)

Fig. 4.18: Dependence of the correlation sum on the radius of the multidimensional
neighborhood of the studied trajectories for the time series of S&P 500 (a), Hang Seng index (b),
DAX (c), and BSE Sensex (d)

As we can see, the correlation sum does indeed have a linear dependence for

different values of the radius of the neighborhood of a particular trajectory, which

correlation dimension varies during periods of turbulence.

4.5.10.2 Calculating the correlation dimension within the sliding window algorithm

For this indicator, we define the following parameters:
window = 500 # sliding window width
tstep = 1 # sliding window time step
ret_type = 6 # type of a series:
1 – initial
2 - detrending (difference between present and previous values)
3 – initial returns
4 – standardized returns
5 – absolute values (volatility)
6 – standardized series

d_wind = 3 # embedding dimension
tau_wind = 1 # time delay
rad_wind = "nolds" # method for determining an array of radii

length = len(time_ser.values) # series length

corr_wind = [] # array for CD

Start the sliding window procedure:
for i in tqdm(range(0, length-window, tstep)):

 fragm = time_ser.iloc[i:i+window].copy()

 fragm = transformation(fragm, ret_type)

calculate correlation dimension
 cd_wind, _ = nk.fractal_correlation(fragm,
 delay=tau_wind,
 dimension=d_wind,
 radius=rad_wind)

save results
 corr_wind.append(cd_wind)

Save the initial values to a text file:
np.savetxt(f"fd_correlation_name={symbol}_wind={window}_\
 step={tstep}_dim={d_wind}_tau={tau_wind}_\
 radius={rad_wind}.txt", corr_wind)

Define the labels for the figures and the titles of the saved figures:
label_cd = fr'CD'

file_name_cd = f"fd_correlation_name={symbol}_wind={window}_\
 step={tstep}_dim={d_wind}_tau={tau_wind}_\
 radius={rad_wind}"

Plot the results:
plot_pair(time_ser.index[window:length:tstep],
 time_ser.values[window:length:tstep],
 corr_wind,
 ylabel,
 label_cd,
 xlabel,
 file_name_cd)

Fig. 4.19 provides the comparative dynamics of S&P 500, Hang Seng index,

DAX, BSE Sensex, and their correlation fractal dimension.

 (a) (b)

 (c) (d)

Fig. 4.19: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their
correlation fractal dimension

Fig. 4.19 shows that the correlation dimension for the stock indices also

decreases in crisis and pre-crisis periods, indicating that current stocks prices are

more correlated with previous ones. Another way to put it is that during crises,

traders begin to self-organize and collectively buy or sell the asset in question; in

other words, their dynamics become more synchronized. Since the correlation

dimension is measured for the trajectories of the phase space, a decline in this

indicator indicates an increase in the density of the trajectories under study. That is,

the phase space becomes sparser, and all its trajectories are concentrated in only

one specific area, which is an indicator of the cohesion of the hidden variables of

the system under study.

4.6 Definition of multifractals

In this laboratory, we will present the basics of the theory of multifractals

inhomogeneous fractal objects, for a complete description of which, in contrast to

regular fractals, it is not enough to introduce only one quantity, its fractal

dimension , but a whole range of such dimensions is needed, the number of

which, generally speaking, is infinite. The reason for this is that, along with purely

geometric characteristics, which are determined by the value of , such fractals are

also characterized by some specific statistical properties. The easiest way to

- example of the

Sierpinski triangle obtained using the method of random iterations (see Fig. 4.20).

Fig. 4.20: Sierpinski triangle whose regions are generated with different probabilities

Suppose that in the random iteration method, we have now for some reason

preferred one of the vertices of the triangle, for example, vertex A, and began to

choose it with a probability of 90%. The other two vertices B and C are equivalent

for us, but they now account for only 5% each. The result of such an

asymmetrical game is shown in the figure above. It can be seen that the points

inside the ABC triangle are now extremely unevenly distributed. Most of them are

located near the top of A and its prototypes. At the same time, vertices B and C

(and their prototypes) have very few of them. However, according to the usual

terminology, this set of points (provided that the number of iterations tends to

infinity) is a fractal, because the main property of the fractal self-similarity

has been preserved. Indeed, the triangle DFC, although it has 20 times fewer

points, is completely similar in its statistical and geometric properties to the large

triangle ABC. As in the great triangle, the points in it are concentrated mostly near

the vertex D, an analogue of the vertex A.

Fig. 4.21 shows in more detail the resulting distribution of points along the

Sierpinski triangle. The numbers in each of the small triangles show its relative

population of set points.

Fig. 4.21: Distribution of points along the Sierpinski triangle shown in the previous figure

However, despite the uneven distribution of fractal points, the fractal

dimension remained the same, . Covering this set with smaller and

smaller triangles can be carried out according to the same algorithm as before.

Such a coincidence makes us think about the search for new quantitative

characteristics that could distinguish an uneven distribution of points from a

uniform one. Another, more complex example of a non-uniform fractal, which we

would like to cite, is shown in the following figure. On the left is a large square

with a side equal to one, which at this (zero) stage completely covers some fractal

set of points . In the next (first) stage, in the center of the figure, it is shown how

the same set can be covered by three smaller squares with sides ,

, which, respectively, contain the quotient and

 of all points.

The next stage of coverage (shown in the figure on the right) already

contains 9 squares with sides , (in the lower right

corner) and , (top right and left). The relative

population of these squares by the points of the set is shown in the figure. It

corresponds to the product of population factors (probabilities): ,

, for the lower right group, , ,

for the upper left and , , for the upper right

group. Note that there is a clear correspondence between the population of the

square and its size .

The further process of partitioning and covering the set is carried out

according to this renormalization scheme. Each square having size and

population at the -th step is replaced at step by three squares with

dimensions of and populations of respectively, placed in

the same way relative to each other, as shown in Fig. 4.22.

Fig. 4.22: An example of a multifractal obeying a renormalization scheme

Two of the cases discussed above are examples of heterogeneous fractals.

set across the fractal or the uneven distribution of small and large fluctuations in

the time series. The reason for the heterogeneity in the previous cases is the same:

different probabilities of filling geometrically identical elements of the fractal, or,

in the general case, the discrepancy between the filling probabilities and the

geometric dimensions of the corresponding regions. Such inhomogeneous fractal

objects are called multifractals in the literature, and we will study them in the

future.

4.7 Generalized fractal dimensions

ect

occupying some bounded area size in Euclidean space with dimension .

Suppose at some stage of its construction it is a set of points somehow

distributed in this region. We will assume that in the end, . An example of

such a set is the Sierpinski triangle constructed by random iterations. Each step of

the iterative procedure adds one new point to this set.

 area into cubic cells with side and volume

. Let the number of occupied cells vary between , where

is the total number of occupied cells, which, of course, depends on the size of cell

.

Let represent the number of points in cell number , then the value

 represents the probability that a randomly selected point

in our set is in cell . In other words, the probabilities characterize the relative

population of cells. From the condition of probability normalization, it follows that

Let us now introduce into consideration the generalized partition function

, which is characterized by an exponent of the degree , which can acquire

any values in the interval

The spectrum of generalized fractal dimensions of , which characterizes

a given distribution of points in the region, is determined by the relation

, where the function has the form

ln ln

As we will show below, if , i.e., independent of , then a

given set of points is an ordinary, regular fractal characterized by only one

quantity, the fractal dimension . Conversely, if the function somehow changes

with , then the set of points in question represents a multifractal.

Thus, the multifractal in the general case is characterized by some nonlinear

function , which determines the behavior of the statistical sum at

:

It should be borne in mind that in a real situation we always have a finite,

albeit very large, number of discrete points , so in computer simulation of a

particular set, the limit transition must be performed with caution,

remembering that it is always preceded by a limit .

Let us now show how the generalized statistical sum behaves in the case of

an ordinary regular fractal with fractal dimension . In this case, all occupied cells

contain the same number of points, , i.e. the fractal appears to be

homogeneous. Then it is obvious that the relative populations of the cells,

, are also the same, and the generalized statistical sum takes the form

Let us now consider that, according to the definition of the fractal dimension

, the number of occupied cells at a sufficiently small behaves as follows:

Substituting (4.10) for (4.9), and comparing with (4.8), we get

We conclude that in the case of an ordinary fractal, the function (4.11) is

linear. Then all are really independent of . A fractal in which all generalized

fractal dimensions do coincide is called a monofractal.

If the distribution of points among the cells is not the same, then the fractal

is called inhomogeneous, that is, it is a multifractal, and to characterize it, a whole

range of generalized fractal dimensions is required, the number of which, in the

general case, is infinite.

Thus, for example, in the main contribution to the generalized

statistical sum (4.8) is made by the cells containing the largest number of

particles in them and, accordingly, characterized by the highest probability of

filling them . On the contrary, at , the main contribution to the

generalized statistical sum is made by the most sparse cells with the lowest

probability of filling them . Thus, the function shows how heterogeneous the

studied set of points seems to be.

Further, to characterize the distribution of points, it is necessary to know not

only the function , but also its derivative:

This derivative has an important physical content that will be demonstrated

later. Now again note that for a multifractal system it does not remain constant and

changes with .

4.8 Multifractal spectrum function

Spectrum of fractal dimensions

In the previous paragraph, we introduced the concept of a multifractal an

object that is an inhomogeneous fractal. To describe it, we introduced a set of

generalized fractal dimensions , where takes any values in the interval

. However, the quantities of are not, strictly speaking, fractal

dimensions in the general sense of the word.

Therefore, the so-called multifractal spectrum (the spectrum of

multifractal singularities) is often used to characterize a multifractal set, to which,

as we will see later, the term fractal dimension is more suitable. We will show that

the magnitude is actually equal to the Hausdorff dimension of some

homogeneous fractal subset from the original set , which gives the dominant

contribution to the statistical sum for a given value .

One of the main characteristics of a multifractal is a set of probabilities

that show the relative population of the cells of the with which we cover this set.

The smaller the size of the cell, the smaller the value of its population. For self-

similar sets, the dependence of on the size of the cell has a power character:

where represents some exponent (different for different cells).

 Additionaly on

By directing the value to zero, the fractality can be considered locally for

each point (element) of the system under study, and thus the indicator is the local

fractal dimension. It is also called the or the singularity

strength. We can observe a power dependence, since, obviously, the distribution

, so the

probabilistic measure changes in proportion to the size of the windows

 (a) (b) (c)
Fig. 4.23: Schematic representation of the relationship between singularity strength and density
compared to neighborhoods

The gray scale represents a probabilistic measure for each location, as shown

in each panel. In Fig. 4.23 (a), only the -th location has a non-zero density, the rest

of the spaces are empty. The probabilistic measure on the cell remains even

when the cell size increases, which is emphasized by a bold line. However, due

to the fact that we do not observe an increase in density further, the indicator

remains zero. In Fig. 4.23 (b) all cells have the same density. The probabilistic

measures of the cells are , , and for the smallest, second, smallest, and

largest cell (highlighted in bold line). Thus, the singularity strength of the -th cell

is 2. Fig. 4.23 (c) The -th cell is sparse compared to the surrounding cells. The

probabilistic measure of the cells is , , and for the smallest, second,

smallest, and largest cells (highlighted with a bold line). Thus, the singularity

strength of the -th cell is 3.

 Additionally on

It can be said that the smoother the surface of the system appears, the fewer

elements are involved in its development, the smaller the singularity indicator. The

more elements of the system interconnect with each other, the more processes take

place during the evolution of the system, the greater the singularity index

It is known that for a regular (homogeneous) fractal, all exponents of the

degree are the same and equal to the fractal dimension :

In this case, the statistical sum (4.8) takes the following form:

Therefore, and all generalized fractal dimensions

in this case coincide and do not depend on .

However, for such a complex object as a multifractal, due to its

heterogeneity, the probabilities of filling cells generally vary, and the degree

indicator for different cells can take different values. It is quite typical that these

values continuously fill some closed interval , with and

.

values of . Let be the probability that is in the range to . In

other words, is the relative number of cells characterized by the same

degree of with lying in this interval. In the case of a monofractal for which all

 are the same (and equal to the fractal dimension), this number is obviously

proportional to the total number of cells power-dependent on the size

of cell . The exponent in this relation is determined by the fractal dimension of

the set .

For a multifractal, however, this is not the case, and different values of

meet with a probability characterized not by the same value , but by different

(depending on) values of the exponent :

Thus, the physical meaning of the function is that it represents the

Hausdorff dimension of some homogeneous subset from the original set of ,

characterized by the same probabilities of filling cells . Since the fractal

dimension of the subset is obviously always less than or equal to the fractal

dimension of the original set , there is an important inequality for the function

:

As a result, we can conclude that the set of different values of the function

 (at different) represents the spectrum of fractal dimensions [94, 95] of

homogeneous subsets , into which the original set of can be divided, each of

which is characterized by its own value of fractal dimension .

Legendre transformation

Let us establish the connection of the function with the previously

introduced function partition function .

Substituting the probabilities in , and moving from summation by

to integration by with the probability density (7.5), we get

Since the magnitude of is very small, the main contribution to this integral

will be made by those values at which the exponent is minimal

(and the subintegral function is maximum). This contribution will be proportional

to the value of the subintegral function at the maximum point. The value of

itself is determined from the following condition:

Also, from the minimum condition, we have

As a result, we get that the dependence is implicitly defined from

, and that the function is convex everywhere:

This means that the value is indeed the fractal dimension of the

subset that has the largest dominant contribution to the statistical sum (7.6)

for a given value of the exponent .

Since , we conclude that

Remembering that , we can find the function :

Thus, if we know the function of the multifractal spectrum , then from

the relation (4.15) and (4.16) we can find the function . On the contrary,

knowing , we can reproduce the relationship using the equation

and then find from (4.16). These two equations define the function

.

Taking into account that , and reducing this equation by ,

we arrive at the ratio , which is equivalent to (4.16).

The expressions for and define the Legendre transformation

[124, 154] from the variables to the variables : and

. As you know, for a homogeneous fractal

. Therefore, and .

 on the plane consists of

only one point .

4.9 Multifractal detrended fluctuation analysis

Monofractal and multifractal structures of financial signals are a special kind

of scale-invariant structures. Most often, the monofractal structure of financial time

series is defined by a single power law and implies that scale invariance does not

depend on time and space. However, we can often observe spatial and temporal

variation of the scale-invariant structure of the complex system under study. These

space-time variations indicate the multifractal nature of the financial signal, which

is defined by the multifractal spectrum. The multifractal spectrum can help to

quantify the asymmetry of ups and downs in the stock or cryptocurrency markets,

predict a gradually approaching financial crisis, and thus contribute to the success

of further trading decisions. The main purpose of this section is to present one of

the most accurate procedures for determining a set of fractal indicators, the

multifractal detrended fluctuation analysis (MF-DFA) [87-89], which is still

one of the most powerful methods for analyzing systems of different nature and

complexity [61, 63, 72, 82, 101, 113, 125, 140, 146, 179].

There are 9 steps for MF-DFA:

1. Noise and random walks in time series presents a method for making a

time series look like a random walk.

2. Calculating the standard deviation of a time series

deviation, which is the basic procedure for further calculations in MF-DFA

and a typical way to calculate the average variation of time series of various

nature.

3. Local RMS variation of time series n of the local

variation of the time series as the standard deviation of the time series within

segments that may or may not overlap.

4. Local time series detrending is the calculation of the same local standard

deviation around trends that are often found in financial time series.

5. Monofractal detrended fluctuation analysis : the amplitudes of local

standard deviations are summed into a generalized standard deviation. The

total standard deviation for segments with small sample sizes is dominated

by fast fluctuations in the time series. In contrast, the total standard deviation

for segments with large sample sizes is dominated by slow fluctuations. The

power law relationship between the total standard deviation for several

sample sizes (i.e., scales) is determined using monofractal detrended

fluctuation analysis (DFA) and is called the Hurst exponent ().

6. Multifractal detrended fluctuation analysis : MF-DFA is obtained by

expanding the generalized standard deviation by the -th order. The qth

order standard deviation can distinguish between segments with small and

large fluctuations. The power-law relationship between the -th order

standard deviation is numerically defined as the -th order generalized Hurst

exponent.

7. Multifractal spectrum of time series : several multifractal spectra are

calculated based on the -order Hurst index.

8. Generalized fractal dimensions presents a more detailed description of the

 indicators, which will be described further.

9. Analogies of multifractals with thermodynamics shows that the obtained

quantitative multifractal indicators have a connection with thermodynamic

To further visualize each step of the MF-DFA procedure, we import the

following modules:
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
import numpy as np
import neurokit2 as nk
import yfinance as yf
import pandas as pd
import scienceplots
from scipy.integrate import cumulative_trapezoid
from tqdm import tqdm

%matplotlib inline

plt.style.use(['science', 'notebook', 'grid'])

size = 22
params = {
'figure.figsize': (8, 6),
'font.size': size,
'lines.linewidth': 2,
'axes.titlesize': 'small',
'axes.labelsize': size,
'legend.fontsize': size,
'xtick.labelsize': size,
'ytick.labelsize': size,
"font.family": "Serif",
"font.serif": ["Times New Roman"],
'savefig.dpi': 300,
'axes.grid': False
}

plt.rcParams.update(params)

Here, we will present the description of multifractal analysis algorithm using

the example of S&P 500 index. When describing the MF-DFA procedure, we will

compare the multifractality of this series with artificially generated monofractal

series, the complexity of which should obviously be less.

Let us again plot the time series for further explanation:
fig, ax = plt.subplots(1, 1)
ax.plot(time_ser.index, time_ser.values)
ax.legend([symbol])

ax.set_xlabel(xlabel)
ax.set_ylabel(ylabel)

plt.xticks(rotation=45)

plt.savefig(f'{symbol}.jpg')
plt.show();

Fig. 4.24: Dynamics of daily changes in S&P 500 index

The last thing we need to do is to transform the original series to the returns.

transformation() function and use it to find the

returns:
def transformation(signal, ret_type):

 for_rec = signal.copy()

 if ret_type == 1:
 pass
 elif ret_type == 2:
 for_rec = for_rec.diff()
 elif ret_type == 3:
 for_rec = for_rec.pct_change()
 elif ret_type == 4:
 for_rec = for_rec.pct_change()
 for_rec -= for_rec.mean()
 for_rec /= for_rec.std()
 elif ret_type == 5:
 for_rec = for_rec.pct_change()
 for_rec -= for_rec.mean()
 for_rec /= for_rec.std()

 for_rec = for_rec.abs()
 elif ret_type == 6:
 for_rec -= for_rec.mean()
 for_rec /= for_rec.std()

 for_rec = for_rec.dropna().values

 return for_rec

signal = time_ser.copy()
ret_type = 4 # type of a series:

1 – initial
2 - detrending (difference between present and previous values)
3 – initial returns
4 – standardized returns
5 – absolute values (volatility)
6 – standardized series

sp_ret = transformation(signal, ret_type) # calculate returns
sp_length = len(sp_ret) # define length of a series

As already mentioned, when describing the MF-DFA procedure, we will

also use monofractal signals for comparison. For further calculations, we will

generate a signal of white and pink noise. The signal_noise() function of the

neurokit2 library can help us with this. This function generates pure Gaussian

(1/f)**beta noise. The power spectrum of the generated noise is proportional to

S(f)=(1/f)**beta. The following categories of noise have been described:

violet noise: beta ;

blue noise: beta ;

white noise: beta ;

flicker/pink noise: beta ;

brown noise: beta .

Its syntax is as follows:
signal_noise(duration=10, sampling_rate=1000, beta=1,

random_state=None)

Parameters:

duration (float) desired length of duration (s);

sampling_rate (int) the desired sampling rate (in Hz, i.e.,

samples/second);

beta (float) the noise exponent;

random_state (None, int, numpy.random.RandomState or

numpy.random.Generator) seed for the random number generator.

Returns:

noise (array) the signal of pure noise.

Now we can generate 2 types of noises:
white_noise = nk.signal_noise(duration=sp_length, # generate white noise
 sampling_rate=1,
 beta=0,
 random_state=123)

pink_noise = nk.signal_noise(duration=sp_length, # generate pink noise
 sampling_rate=1,
 beta=1,
 random_state=123)

Noise and random walks in time series

The multifractal detrended fluctuation analysis of is based on the classical

detrended fluctuation analysis (DFA). Classical DFA is applied to time series with

a structure similar to random walks [48]. However, most financial time series have

fluctuations that are more similar to random walk increments. If a financial time

series has a noise-like structure, like returns, it should be converted to a random

walk time series before applying DFA. Noise can be converted to random walk by

subtracting the mean and integrating the time series (finding its cumulative sum).

The white noise time series, monofractal (pink noise), and multifractal are noisy

time series and are converted to random walks (see Fig. 4.25):
RW1 = np.cumsum(white_noise-np.mean(white_noise)) # random walk of white nois
e
RW2 = np.cumsum(pink_noise-np.mean(pink_noise)) # random walk of the monofr
actal
RW3 = np.cumsum(sp_ret-np.mean(sp_ret)) # random walk for S&P 500

fig, ax = plt.subplots(3, 1, sharex=True)

ax[0].plot(time_ser.index[1:], sp_ret)
ax[0].plot(time_ser.index[1:], RW3, 'r')
ax[0].margins(x=0)
ax[0].set_title('Multifractal time series', fontsize=16)

ax[1].plot(time_ser.index[1:], pink_noise, label= 'Noise-like time series')

ax[1].plot(time_ser.index[1:], RW2, 'r', label= 'Random walk')
ax[1].margins(x=0)
ax[1].set_title('Monofractal time series', fontsize=16)
ax[1].legend()

ax[2].plot(time_ser.index[1:], white_noise)
ax[2].plot(time_ser.index[1:], RW1, 'r')
ax[2].margins(x=0)
ax[2].set_title('White noise', fontsize=16)

plt.show();

Fig. 4.25: Multifractal (top panel), monofractal (middle panel), and white noise-like (bottom
panel) time series

Calculating the standard deviation of time series

The traditional analysis of the variation in a time series is to calculate the

average value of the variation as the standard deviation. The reader can use the

code below to calculate the standard deviation for time series with white noise,

monofractal, and multifractal data:
RMS_ordinary = np.sqrt(np.mean(white_noise**2)) # root mean square variati
on of white noise
RMS_monofractal = np.sqrt(np.mean(pink_noise**2)) # root mean square variati
on of monofractal
RMS_multifractal = np.sqrt(np.mean(sp_ret**2)) # root mean square variatio
n of multifractal

fig, ax = plt.subplots(3, 1, sharex=True)

ax[0].plot(time_ser.index[1:], sp_ret, label= 'Noise-like time series')
ax[0].axhline(y=np.mean(sp_ret), c='r', linestyle='--', label='Mean')
ax[0].axhline(y=np.mean(sp_ret)+RMS_multifractal, c='r', linestyle='-', label
='+/- 1 RMS')
ax[0].axhline(y=np.mean(sp_ret)-RMS_multifractal, c='r', linestyle='-')
ax[0].set_ylim(-20, 20)
ax[0].margins(x=0)
ax[0].set_title('Multifractal time series', fontsize=16)

ax[1].plot(time_ser.index[1:], pink_noise)
ax[1].axhline(y=np.mean(pink_noise), c='r', linestyle='--')
ax[1].axhline(y=np.mean(pink_noise)+RMS_monofractal, c='r', linestyle='-')
ax[1].axhline(y=np.mean(pink_noise)-RMS_monofractal, c='r', linestyle='-')
ax[1].margins(x=0)
ax[1].set_title('Monofractal time series', fontsize=16)

ax[2].plot(time_ser.index[1:], white_noise)
ax[2].axhline(y=np.mean(white_noise), c='r', linestyle='--')
ax[2].axhline(y=np.mean(white_noise)+RMS_ordinary, c='r', linestyle='-')
ax[2].axhline(y=np.mean(white_noise)-RMS_ordinary, c='r', linestyle='-')
ax[2].margins(x=0)
ax[2].set_title('White noise', fontsize=16)

handles, labels = ax[0].get_legend_handles_labels()
fig.legend(handles, labels, loc='lower center')

plt.show();

Fig. 4.26 shows multifractal, monofractal, and white noise-like time series

with zero mean (red dashed line) and RMS (red solid line).

Fig. 4.26: Multifractal (top panel), monofractal (middle panel) and white noise-like (bottom
panel) time series with zero mean (red dashed line) and RMS (red solid line)

Fig. 4.26 illustrates that the average amplitude of variation (i.e., standard

deviation) is the same for all three time series, even though they have quite

different structures. MF-DFA can distinguish between these structures.

Local RMS variation of time series

The multifractal time series in the top panel have local fluctuations of

different magnitudes. The Root Mean Square Deviation (RMS) in the previous

code can be calculated for segments of the time series to distinguish the magnitude

of local fluctuations. A simple procedure is to divide the time series into equal-

sized, non-overlapping segments and calculate the local RMS for each segment.

This can be done with the code below:
def calc_rms(arr, scale=1335, m=1):

 # simulate a random walk (X)
 X = np.cumsum(arr - np.mean(arr))

 # transpose the values of X
 X = X.T

 # determine the length of the segments
 scale = scale

 # determine the order of the polynomial
 m = m

 # determining the number of segments
 segments = np.floor(len(X) / scale).astype(int)

 Index = {} # dictionary of value indices
 fit = {} # a dictionary for saving the obtained polynomial curves for
each segment
 RMS = [] # list of standard deviations

 for v in range(segments+1): # go through each segment
 Idx_start = v * scale # determine the initial value of the se
gment
 Idx_stop = (v+1) * scale # determine the final value

 # form an array of indices of the values of the segment under study
 Index[v] = np.arange(Idx_start, min(Idx_stop, len(X)))

 # get values by indices

 X_Idx = X[Index[v]]

 # determine the polynomial coefficients of order m
 C = np.polyfit(Index[v], X_Idx, m)

 # build a polynomial curve according to the determined coefficients
 fit[v] = np.polyval(C, Index[v])

 # determine the variation of the series around the polynomial trend
 RMS.append(np.sqrt(np.mean((X_Idx - fit[v])**2)))

 return fit, RMS, Index, X

The first line of code of the calc_rms() function converts a noisy time

series, a multifractal, into a random walk time series . The third line of code sets

the scale of the parameter that determines the sample size of non-overlapping

segments for which the local root mean square deviation, RMS, is calculated. The

fifth line is the number of segments into which the time series can be divided,

where len(X) is the sample size of the time series . Thus, segments = 8 with

len(X) = 11316 and scale = 1335. Lines nine through sixteen are a loop that

calculates the local rms value around the trend fit[v] for each segment, updating

the time index. In the first loop, , Index[0] goes from 0 to 1335 segment

values (not inclusive). In the second cycle, , Index[1] goes from 1335 to

2670 of the second segment value. In the last cycle , Index[8] goes from

10680 to 12015 (not inclusive).

Local time series detrending

In complex systems, there are slowly changing trends, so to quantify the

scale-invariance of fluctuations around these trends, it is necessary to detrend the

signal. In the previous code, a polynomial trend fit[v] is fitted to at each

segment . The parameter m determines the order of the polynomial. The

polynomial trend is linear if , quadratic if , and cubic if . The

line C = np.polyfit(Index[v], X[Index[v]], m) defines the coefficients

of the polynomial C used to create the polynomial trend fit[v] for each segment.

Then, for the residual variation, X(Index[v])-fit[v], the local root mean

square deviation, RMS[v], is calculated within each segment . The local root

mean square variation, RMS[v], is shown in Fig. 4.27 as the distance between the

red dashed trends and the red solid lines.
fit_1, RMS_1, Index_1, X = calc_rms(sp_ret, scale=1335, m=1) # estimation of
local deviation for multifractal
fit_2, RMS_2, Index_2, X = calc_rms(sp_ret, scale=1335, m=2) # Estimation of
local deviation for a monofractal
fit_3, RMS_3, Index_3, X = calc_rms(sp_ret, scale=1335, m=3) # local deviatio
n estimation for white noise

fig, ax = plt.subplots(3, 1, sharex=True)

ax[0].plot(time_ser.index[1:], X)
for v in list(fit_1.keys()):
 ax[0].plot(time_ser.index[Index_1[v]], fit_1[v], 'r--')
 ax[0].plot(time_ser.index[Index_1[v]], fit_1[v]+RMS_1[v], c='r', linestyl
e='-')
 ax[0].plot(time_ser.index[Index_1[v]], fit_1[v]-RMS_1[v], c='r', linestyl
e='-')

ax[0].margins(x=0)
ax[0].set_title('Linear detrending '+r'$(m=1)$', fontsize=16)

ax[1].plot(time_ser.index[1:], X, label='Random walk of a multifractal signal
')
for v in list(fit_2.keys()):
 if v == 1:
 ax[1].plot(time_ser.index[Index_2[v]], fit_2[v], 'r--', label='Local
trend')
 ax[1].plot(time_ser.index[Index_2[v]], fit_2[v]+RMS_2[v], c='r', line
style='-', label='+/- 1 RMS')
 ax[1].plot(time_ser.index[Index_2[v]], fit_2[v]-RMS_2[v], c='r', line
style='-')
else:
 ax[1].plot(time_ser.index[Index_2[v]], fit_2[v], 'r--')
 ax[1].plot(time_ser.index[Index_2[v]], fit_2[v]+RMS_2[v], c='r', line
style='-')
 ax[1].plot(time_ser.index[Index_2[v]], fit_2[v]-RMS_2[v], c='r', line
style='-')

ax[1].margins(x=0)
ax[1].set_title('Quadratic detrending '+r'$(m=2)$', fontsize=16)

ax[2].plot(time_ser.index[1:], X)
for v in list(fit_3.keys()):
 ax[2].plot(time_ser.index[Index_3[v]], fit_3[v], 'r--')
 ax[2].plot(time_ser.index[Index_3[v]], fit_3[v]+RMS_3[v], c='r', linestyl
e='-')
 ax[2].plot(time_ser.index[Index_3[v]], fit_3[v]-RMS_3[v], c='r', linestyl

e='-')

ax[2].margins(x=0)
ax[2].set_title('Cubic detrending '+r'$(m=3)$', fontsize=16)

handles, labels = ax[1].get_legend_handles_labels()
fig.legend(handles, labels, loc='lower center')

plt.show();

Fig. 4.27: Calculation of local RMS fluctuations around linear, quadratic, and cubic trends using
the calc_rms() function (, , and , respectively). The red dashed line is the
fitted trend, fit[v], in seven segments of the 1335 sample. The distance between the red
dashed trend and the solid red lines is RMS

Monofractal detrended fluctuation analysis

In DFA, variations in local RMS are quantified by the overall RMS ().

Fast fluctuations in the time series will affect the total RMS deviation in

segments of short length (scale), while slow fluctuations will affect in segments

of long length (scale). Thus, the fluctuation function should be calculated for

several scales to isolate the influence of both fast and slow fluctuations, which in

turn determine the structural transformations of the time series. The fluctuation

function can be calculated for several scales by modifying the previous

code:
def calc_F(arr, scale, m=1):

 X = np.cumsum(arr - np.mean(arr)) # simulate a random walk (X)
 X = X.T # transpose the values of X

 scale = scale
 m = m
 segments = np.zeros(len(scale), dtype=int)
 F = np.zeros(len(scale))

 Index = {} # dictionary of value indices
 fit = {} # a dictionary for saving the obtained polynomial curves for
each segment
 RMS = {} # list of standard deviations

 for ns in range(len(scale)):
 segments[ns] = np.floor(len(X) / scale[ns]).astype(int)
 RMS[ns] = np.zeros(segments[ns])

 for v in range(segments[ns]): # go through each segment
determine the initial value of the segment
 Idx_start = v * scale[ns]

determine the final value
 Idx_stop = (v + 1) * scale[ns] if v < segments[ns] - 1 else len(X
)

form an array of indices of the values of the segment under study
 Index[v, ns] = np.arange(Idx_start, Idx_stop)

get values by indices
 X_Idx = X[Index[v, ns]]

determine the polynomial coefficients of order m
 C = np.polyfit(Index[v, ns], X_Idx, m)

build a polynomial curve according to the determined coefficients
 fit[v, ns] = np.polyval(C, Index[v, ns])

estimate the standard deviation for the fragment v on the scale ns
 RMS[ns][v] = np.sqrt(np.mean((X_Idx - fit[v, ns])**2))

estimate the total standard deviation within the scale ns
 F[ns] = np.sqrt(np.mean(RMS[ns]**2))

 return F, RMS, Index, X

scales = [16, 32, 64, 128, 256, 512, 1024][::-1]
F, RMS, Index, X = calc_F(sp_ret, scale=scales) # estimation of the generaliz
ed fluctuation function on different scales

fig, ax = plt.subplots(len(scales), sharex=True)

for scale, val in enumerate(scales):
 l = [Index[val] for val in Index.keys() if (val[1] == scale)]

 x = np.array([])
 for v in l:
 x = np.concatenate([x, v])

 y = np.array([])
 for idx, v in enumerate(l):
 y = np.concatenate([y, RMS[scale][idx]*np.ones(len(v))])

 if scales[scale] == 16:
 ax[scale].plot(time_ser.index[1:], y, c='b', label=" Local fluctuatio
ns: RMS")
 ax[scale].axhline(y=F[scale], c='r', linestyle='-', label=r"RMS of lo
cal fluctuations: F")
 ax[scale].set_title(f"Scale = {scales[scale]}", fontsize=16)
 ax[scale].margins(x=0)
 else:
 ax[scale].plot(time_ser.index[1:], y, c='b')
 ax[scale].axhline(y=F[scale], c='r', linestyle='-')
 ax[scale].set_title(f"Scale = {scales[scale]}", fontsize=16)
 ax[scale].margins(x=0)

handles, labels = ax[-1].get_legend_handles_labels()
fig.legend(handles, labels, loc='upper left', fontsize=14)

fig.tight_layout(pad=0.05)
plt.show();

Fig. 4.28 will represent the dynamics of the generalized fluctuation function

calculated for different time scales.

Fig. 4.28: Local fluctuations RMS[ns] are calculated for segments with different scales. The
fluctuation function F[ns] is the total standard deviation of the local fluctuations RMS[ns].
Note that F[ns] decreases with decreasing scale

DFA determines the monofractal structure of the time series according to the

power law relationship between the total standard deviation (i.e.,) calculated for

several scales. The power-law relationship between the total RMS deviation is

denoted by the slope () of the regression line, calculated using the following

code:
C = np.polyfit(np.log(scales), np.log(F), 1)
H = C[0]
RegLine = np.polyval(C, np.log(scales))

Modify the previous code by adding new fragments:
def calc_H(arr, scale, m=1):

 X = np.cumsum(arr - np.mean(arr)) # simulate a random walk (X)
 X = X.T # transpose the values of X

 scale = scale
 m = m
 segments = np.zeros(len(scale), dtype=int)
 F = np.zeros(len(scale))

 Index = {} # dictionary of value indices

 fit = {} # dictionary for saving the obtained polynomial curves for ea
ch segment
 RMS = {} # dictionary of standard deviations

 for ns in range(len(scale)):
 segments[ns] = np.floor(len(X) / scale[ns]).astype(int)
 RMS[ns] = np.zeros(segments[ns])

 for v in range(segments[ns]): # go through each segment
determine the initial value of the segment
 Idx_start = v * scale[ns]

determine the final value
 Idx_stop = (v+1) * scale[ns] if v < segments[ns] - 1 else len(X)

form an array of indices of the values of the segment under study
 Index[v, ns] = np.arange(Idx_start, Idx_stop)

remove values by indexes
 X_Idx = X[Index[v, ns]]

determine the polynomial coefficients of order m
 C = np.polyfit(Index[v, ns], X_Idx, m)

build a polynomial curve according to the determined coefficients
 fit[v, ns] = np.polyval(C, Index[v, ns])

estimate the standard deviation for the fragment v on the scale ns
 RMS[ns][v] = np.sqrt(np.mean((X_Idx - fit[v, ns])**2))

estimate the total standard deviation within the scale ns
 F[ns] = np.sqrt(np.mean(RMS[ns]**2))

find the coefficients of the equation of the line
 C = np.polyfit(np.log(scale), np.log(F), 1)

take the slope angle of the line as the Hurst exponent
 H = C[0]

create the equation itself
 RegLine = np.polyval(C, np.log(scale))

 return H, RegLine, F

Now let us consider the dependence of the generalized fluctuation function

 on different lengths (scales) of local segments of the series for the series we are

studying (see Fig. 4.29):
scmin = 16
scmax = 1024
scres = 19
exponents = np.linspace(np.log(scmin), np.log(scmax), scres)

scales_exp = np.round(np.exp(1)**exponents).astype(int)

H_multifrac, RegLine_multifrac, F_multifrac = calc_H(sp_ret, scale=scales_exp
, m=1)
H_monofrac, RegLine_monofrac, F_monofrac = calc_H(pink_noise, scale=scales_ex
p, m=1)
H_white_noise, RegLine_white_noise, F_white_noise = calc_H(white_noise, scale
=scales_exp, m=1)

fig, ax = plt.subplots(1, 1)

ax.set_xscale('log')
ax.set_yscale('log')
ax.scatter(scales_exp, F_multifrac,
 label=fr"Multifractal series (H={H_multifrac:.2f})",
 color='darkblue')
plt.plot(scales_exp, np.exp(RegLine_multifrac), color='darkblue')

ax.scatter(scales_exp, F_monofrac,
 label=fr"Monofractal series (H={H_monofrac:.2f})",
 color='magenta')
plt.plot(scales_exp, np.exp(RegLine_monofrac), color='magenta')

ax.scatter(scales_exp, F_white_noise,
 label=fr" White noise (H={H_white_noise:.2f})",
 color='red')
plt.plot(scales_exp, np.exp(RegLine_white_noise), color='red')

ax.set_xlabel(r'\log{ns}')
ax.set_ylabel(r"$\log{F(ns)}$")

plt.legend(fontsize=16)

fig.tight_layout()
plt.show();

Fig. 4.29: Plot of the dependence of the total standard deviation (i.e., the fluctuation function)
on scale. The scale-invariant dependence is indicated by the slope of the regression lines
(Hurst exponent)

The Hurst exponent determines the monofractal structure of the time series

by indicating how fast the total standard deviation of the local RMS fluctuations

increases with the size of the local segments of the series (i.e., the scale). Fig. 4.29

shows that the total RMS value of the local fluctuations compared to S&P 500

index and white noise increases faster with the size of the sample segments for

monofractal pink noise.

Fig. 4.30 illustrates that the Hurst exponent defines a continuum between

noise-like time series and random walk-like time series. The Hurst exponent is in

the range from 0 to 1 for noisy time series, while it is greater than 1 for random

walk-like time series. The time series has a long-term dependent (i.e. correlated)

structure when the Hurst exponent is in the range 0.5-1, and an anticorrelated

structure when the Hurst exponent is in the range 0-0.5. The time series has an

independent or short-term dependent structure in the special case when the Hurst

exponent is 0.5. According to the previous figure, the time series of white noise

appears to be unpredictable as the Hurst exponent is close to 0.5, while pink noise

has a long-term dependent structure with the Hurst exponent close to 1 and S&P

500 index demonstrates more antipersistant dynamics.
betas = np.linspace(0.0, 2.0, 12)[::-1]
scmin = 16
scmax = 1024
scres = 19
exponents = np.linspace(np.log(scmin), np.log(scmax), scres)
scales_exp = np.round(np.exp(1)**exponents).astype(int)

color = iter(plt.cm.rainbow(np.linspace(0, 1, len(betas))))

fig, ax = plt.subplots(len(betas), 1, sharex=True)

for idx, beta in enumerate(betas):

 noise = nk.signal_noise(duration=sp_length, # generate noise with differ
ent beta values
 sampling_rate=1,
 beta=beta,
 random_state=123)

 H_noise, _, _ = calc_H(arr=noise, scale=scales_exp, m=1)

 c = next(color)
 ax[idx].plot(np.arange(len(noise)), noise, label=fr"H = {H_noise:.2f}",
 c=c)
 ax[idx].legend(loc="upper right", fontsize=12)
 ax[idx].margins(x=0)

fig.subplots_adjust(hspace=0)

plt.show();

Fig. 4.30: The range of Hurst exponent values defines a continuum of fractal structures between
white noise () and brown noise (). The pink noise separates the noise

, which has more noticeable fast fluctuations, and the random walks , which have
more noticeable slow fluctuations

Multifractal detrended fluctuation analysis

The structures of monofractal and multifractal time series are different,

although they have similar overall RMS values. Multifractal time series contain

local fluctuations with both extremely small and extremely large values, which is

not typical for monofractal time series. The absence of fluctuations with extremely

large and small values leads to a normal distribution for a monofractal time series,

where the variation is described only by the second-order statistical moment

(variance). Thus, monofractal DFA is based on the second-order statistic of the

total standard deviation (i.e.,). In a multifractal time series, the local fluctuations,

RMS[ns][v], will be extremely large for segments within time periods of large

fluctuations and extremely small for segments within time periods of small

fluctuations. Therefore, multifractal time series are not normally distributed and all

-order statistical moments should be taken into account. Thus, it is necessary to

extend the total RMS value of the monofractal DFA to the -order root mean square

fluctuation function of the multifractal DFA :

def calc_Fq(arr, scale, q, m=1):

 X = np.cumsum(arr - np.mean(arr)) # simulate a random walk (X)
 X = X.T # transpose the values of X

 scale = scale
 qs = q
 m = m
 segments = np.zeros(len(scale), dtype=int)
 Fq = np.zeros((len(qs), len(scale)))
 Index = {}
 RMS = {} # dictionary of local standard deviations
 fit = {} # a dictionary for saving the obtained polynomial curves for
each segment
 qRMS = {} # is a dictionary of local deviations weighted by q

 for ns in range(len(scale)):
 segments[ns] = np.floor(len(X) / scale[ns]).astype(int)
 RMS[ns] = np.zeros(segments[ns])

go through each segment
 for v in range(segments[ns]):

determine the initial value of the segment
 Idx_start = v * scale[ns]

determine the final value
 Idx_stop = (v+1) * scale[ns] if v < segments[ns] - 1 else len(X)

form an array of indices of the values of the segment under study
 Index[v] = np.arange(Idx_start, Idx_stop)

remove values by indexes
 X_Idx = X[Index[v]]

determine the polynomial coefficients of order m
 C = np.polyfit(Index[v], X_Idx, m)

build a polynomial curve according to the determined coefficients
 fit = np.polyval(C, Index[v])

estimate the standard deviation for the fragment v on the scale ns
 RMS[ns][v] = np.sqrt(np.mean((X_Idx - fit)**2))

convert q values to the float type
 qs = np.asarray_chkfinite(qs, dtype=float)

for multifractality

 for nq, qval in enumerate(qs):

 if (qval !=0.):
 qRMS[nq, ns] = RMS[ns] ** q[nq]
 Fq[nq, ns] = np.mean(qRMS[nq, ns]) ** (1/ q[nq])
 else:
 Fq[nq, ns] = np.exp(0.5 * np.mean(np.log(RMS[ns] **2)))
 # ----------------------------

 return Fq, qRMS, Index

The new code block starts a loop that calculates the total root mean square

value of the -order from negative to positive . The -order weighs the

influence of segments of the series with large and small fluctuations, RMS, as

shown in the following figure. For negative , the value of is influenced by

segments of with small RMS(v). On the contrary, for positive is

affected by segments of with large RMS(v). Local RMS fluctuations with large

and small magnitudes are classified by the magnitude of negative or positive order

, respectively. The for and is more affected by the segments of v

with the smallest and largest RMS(v), respectively, compared to the for

and . The midpoint is neutral with respect to the influence of segments

with small and large RMS. Note that the last line of code in the new section

redefines the special case , since goes to infinity (i.e.,

). The reader should also note that is equal to the second-order

statistic , since . Monofractal DFA is now extended to MF-DFA (see

Fig. 4.31).
scales = np.array([32])
nq = np.array([-3, -1, 1, 3])

Fq, qRMS, Index = calc_Fq(sp_ret, scale=scales, q=nq, m=1)
Fq_pink, qRMS_pink, Index = calc_Fq(pink_noise, scale=scales, q=nq, m=1)

fig, ax = plt.subplots((len(nq)+1), 1, sharex=True)

ax[0].plot(time_ser.index[1:], sp_ret, label="Multifractal")
ax[0].plot(time_ser.index[1:], pink_noise, label="Monofractal")
ax[0].grid(False)
ax[0].margins(x=0)
ax[0].legend(loc='upper left', fontsize=12)
ax[0].get_xaxis().set_visible(False)

for idx inrange(1, len(nq)+1):

 l = [Index[val] for val in Index.keys()]

 x = np.array([])
 for v in l:
 x = np.concatenate([x, v])

 y = np.array([])
 y_pink = np.array([])
 for i, v inenumerate(l):
 y = np.concatenate([y, qRMS[(idx-1, 0)][i]*np.ones(len(v))])
 y_pink = np.concatenate([y_pink, qRMS_pink[(idx-1, 0)][i]*np.ones(len
(v))])

 ax[idx].set_title(fr"Local variations for scale {scales[0]} with $q=${nq[
idx-1]}", fontsize=14)
 ax[idx].plot(time_ser.index[1:], y)
 ax[idx].plot(time_ser.index[1:], y_pink)
 ax[idx].margins(x=0)

handles, labels = ax[0].get_legend_handles_labels()

fig.tight_layout(pad=0.01)
plt.show();

Fig. 4.31: Illustration of the dependence of local fluctuations of qRMS on at a scale of 32

The qRMS in Fig. 4.31 is the -order of the local fluctuations (i.e., RMS) and

is a component of the overall -order of the RMS (i.e.,). The qRMS is presented

for monofractal (green bar) and multifractal (blue bar) time series. A negative

order of (and) enhances segments in the multifractal time series with

extremely small RMS, while a positive order of (and) enhances segments

with extremely large RMS. Note that and amplify small and large

variation, respectively, more than and . Note also that a monofractal

time series has no segments with extremely large or small variations and thus no

peaks in the qRMS. The -order total root mean square deviation is able to

distinguish between the structure of small and large fluctuations and, accordingly,

monofractal and multifractal time series.

Now we can define the -order Hurst exponents as the slopes of the

regression lines for each -order RMS value of . Both and the regression

line are determined in a loop for each -order:
def calc_Hq(arr, scale, q, m=1):

 X = np.cumsum(arr - np.mean(arr)) # simulate a random walk (X)
 X = X.T # transpose the values of X

 scale = scale
 qs = q
 m = m
 segments = np.zeros(len(scale), dtype=int)
 Fq = np.zeros((len(qs), len(scale))) # an array to store the genera
l fluctuation function
 hq = np.zeros(len(qs), dtype=float) # is an array for Hurst expone
nts of the qth order
 qRegLine = {} # a dictionary for saving regression lines
 Index = {} # a dictionary for storing serial segment indices
 RMS = {} # dictionary of local standard deviations
 fit = {} # a dictionary for saving the obtained polynomial curves fo
r each segment
 qRMS = {} # is a dictionary of local deviations weighted by q

 for ns in range(len(scale)):
 segments[ns] = np.floor(len(X) / scale[ns]).astype(int)
 RMS[ns] = np.zeros(segments[ns])

go through each segment
 for v inrange(segments[ns]):

determine the initial value of the segment

 Idx_start = v * scale[ns]

determine the final value
 Idx_stop = (v+1) * scale[ns] if v < segments[ns] - 1 else len(X)

form an array of indices of the values of the segment under study
 Index[v] = np.arange(Idx_start, Idx_stop)

get values by indexes
 X_Idx = X[Index[v]]

determine the polynomial coefficients of order m
 C = np.polyfit(Index[v], X_Idx, m)

build a polynomial curve according to the determined coefficients
 fit = np.polyval(C, Index[v])

estimate the standard deviation for the fragment v on the scale ns
 RMS[ns][v] = np.sqrt(np.mean((X_Idx - fit) **2))

convert q values to the float type
 qs = np.asarray_chkfinite(qs, dtype=float)

for multifractality

 for nq, qval in enumerate(qs):
 if (qval !=0.):
 qRMS[nq, ns] = RMS[ns] ** q[nq]
 Fq[nq, ns] = np.mean(qRMS[nq, ns]) ** (1/ q[nq])
 else:
 Fq[nq, ns] = np.exp(0.5 * np.mean(np.log(RMS[ns] ** 2)))

 for nq, _ in enumerate(qs):
 # if the fluctuation is equal to. 0, log2 will collide with divis
ion by 0
 old_setting = np.seterr(divide="ignore", invalid="ignore")
 C = np.polyfit(np.log(scale), np.log(Fq[nq, :]), m)
 np.seterr(**old_setting)
 hq[nq] = C[0]
 qRegLine[nq] = np.polyval(C, np.log(scale))
 # ----------------------------

 return hq, qRegLine, Fq

scmin = 16
scmax = 1024
scres = 19

q_min = -5.0
q_max = 5.0
q_step = 0.1

nq = np.arange(q_min, q_max+q_step, q_step)

exponents = np.linspace(np.log(scmin), np.log(scmax), scres)
scales_exp = np.round(np.exp(1)**exponents).astype(int)

Hq_multifrac, qRegLine_multifrac, Fq_multifrac = calc_Hq(sp_ret, scale=scales
_exp, q=nq, m=1)
Hq_monofrac, qRegLine_monofrac, Fq_monofrac = calc_Hq(pink_noise, scale=scale
s_exp, q=nq, m=1)
Hq_white_noise, qRegLine_white_noise, Fq_white_noise = calc_Hq(white_noise, s
cale=scales_exp, q=nq, m=1)

fig, ax = plt.subplots(2, 2)

ax[0][0].set_title("Multifractal")
ax[0][0].set_xlabel(r"ns")
ax[0][0].set_ylabel(r"$F_{q}(ns)$")
ax[0][0].set_xscale('log')
ax[0][0].set_yscale('log')
for i in range(len(nq)):
 ax[0][0].scatter(scales_exp, Fq_multifrac[i, :], color='darkblue')
 ax[0][0].plot(scales_exp, np.exp(qRegLine_multifrac[i]), color='darkblue
')

ax[0][1].set_title("Monofractal")
ax[0][1].set_xlabel(r"ns")
ax[0][1].set_xscale('log')
ax[0][1].set_yscale('log')
for i in range(len(nq)):
 ax[0][1].scatter(scales_exp, Fq_monofrac[i, :], color='magenta')
 ax[0][1].plot(scales_exp, np.exp(qRegLine_monofrac[i]), color='magenta')

ax[1][0].set_title("White noise")
ax[1][0].set_xlabel(r"ns")
ax[1][0].set_ylabel(r"$F_{q}(ns)$")
ax[1][0].set_xscale('log')
ax[1][0].set_yscale('log')
for i in range(len(nq)):
 ax[1][0].scatter(scales_exp, Fq_white_noise[i, :], color='red')
 ax[1][0].plot(scales_exp, np.exp(qRegLine_white_noise[i]), color='red')

ax[1][1].set_title(r"Hurst exponent of qth order")
ax[1][1].set_xlabel(r"q")
ax[1][1].set_ylabel(r"$h(q)$")
ax[1][1].plot(nq, Hq_multifrac, linestyle='-', marker='o', label=" Multifract
al", color='darkblue')
ax[1][1].plot(nq, Hq_monofrac,linestyle='-', marker='o', label=" Monofractal"
, color='magenta')
ax[1][1].plot(nq, Hq_white_noise, linestyle='-', marker='o', label=" White no
ise", color='red')
ax[1][1].legend(loc='center right', fontsize=12)

fig.tight_layout(pad=0.1)
plt.show();

Fig. 4.32: RMS values of for different -orders and corresponding regression lines calculated
by MF-DFA for multifractal, monofractal, and white noise

We can see that the generalized fluctuation function for the multifractal

depends not only on the scale, but also on , as demonstrated by the different

slopes of the regression lines . The scaling generalized fluctuation functions

 for the monofractal and white noise are -independent, since their regression

lines for different scales have the same slope. The -order Hurst exponent for

the multifractal series (blue line) appears to be independent for and variable

for . This indicates that the source of multifractality of S&P 500 is

abnormally large fluctuations, such as the coronavirus pandemic crisis. For the

monofractal (pink line) and white noise (red line), remain constant.

Multifractal spectrum of time series

The -order Hurst exponent is just one of several types of scaling

measures used to parameterize the multifractal structure of time series. As

presented earlier, we can derive a -order mass index , and then use to

obtain a -order singularity index and a fractal dimension of

fluctuations (regions) with a degree of singularity . The graph of versus

 represents the multifractal spectrum (see Fig. 4.33). The mass, singularity,

and fractality indices can be calculated according to the code below:
tau_multifrac = nq * Hq_multifrac - 1
tau_monofrac = nq * Hq_monofrac - 1
tau_white_noise = nq * Hq_white_noise - 1

alpha_multifrac = np.gradient(tau_multifrac, nq)
alpha_monofrac = np.gradient(tau_monofrac, nq)
alpha_white_noise = np.gradient(tau_white_noise, nq)

f_multifrac = nq * alpha_multifrac - tau_multifrac
f_monofrac = nq * alpha_monofrac - tau_monofrac
f_white_noise = nq * alpha_white_noise - tau_white_noise

fig, ax = plt.subplots(1, 3)

ax[0].set_xlabel(r"q")
ax[0].set_ylabel(r"$\tau(q)$")
ax[0].plot(nq, tau_multifrac, linestyle='-', marker='o', label=" Multifractal
", color='darkblue')
ax[0].plot(nq, tau_monofrac, linestyle='-', marker='o', label="Monofractal",
color='magenta')
ax[0].plot(nq, tau_white_noise, linestyle='-', marker='o', label="White noise
", color='red')
ax[0].legend()

ax[1].set_xlabel(r"α")
ax[1].set_ylabel(r"$f(\alpha)$")
ax[1].plot(alpha_multifrac, f_multifrac, linestyle='-', marker='o', label=" M
ultifractal", color='darkblue')
ax[1].plot(alpha_monofrac, f_monofrac, linestyle='-', marker='o', label="Mono
fractal", color='magenta')
ax[1].plot(alpha_white_noise, f_white_noise, linestyle='-', marker='o', label
="White noise", color='red')

ax[2].set_xlabel(r"q")
ax[2].set_ylabel(r"$f(\alpha)$")
ax[2].plot(nq, f_multifrac, linestyle='-', marker='o', label=" Multifractal",
 color='darkblue')
ax[2].plot(nq, f_monofrac, linestyle='-', marker='o', label="Monofractal", co
lor='magenta')
ax[2].plot(nq, f_white_noise, linestyle='-', marker='o', label="White noise",
 color='red')

fig.tight_layout(pad=0.01)
plt.show();

Fig. 4.33: Multiple representation of the multifractal spectrum for multifractal, monofractal, and
white noise

The singularity indices for large highly concentrated fluctuations are small

and located in the left tail of the spectrum, while for small fluctuations are large

and located in the right tail of the spectrum.

Thus, the strength of multifractality is described by a large deviation of the

local singularity exponent from the central tendency . A monofractal signal

is the case when remains almost constant, and in some cases, the multifractal

spectrum reduces to a single point at a given .

The range of indicates the variety of singularity exponents that describe

the dynamics of the system, and the value of indicates the contribution of

elements with the corresponding .

The multifractal spectrum can be characterized by different widths, which

indicates the variability of processes occurring within the system. It can also be

either symmetrical or asymmetrical. The asymmetry can be both right- and left-

handed, indicating different degrees of influence of highly concentrated and low-

concentrated elements (fluctuations). A multifractal spectrum will have a long left

tail when the time series has a multifractal structure that is sensitive to local

fluctuations with large amplitudes.

On the contrary, a multifractal spectrum will have a long right tail when it is

sensitive to local fluctuations with small amplitudes.

the level of fluctuations in the series. We will demonstrate this dependence on the

example of series distributed according to the alpha-stable Levy distribution. To

generate random variables from this distribution, we will use the scipy.stats

module. From it, we import the levy_stable class to use the rvs() method. The

method takes an indicator , which is responsible for the frequency of events that

fall outside the normal distribution. Consider the range of such values and the

spectra of the generated series in Fig. 4.34.
from scipy.stats import levy_stable

alphas = np.linspace(1.5, 2.0, 7)
scmin = 16
scmax = 1024
scres = 19

q_min = -5.0
q_max = 5.0
q_step = 0.1
nq_levy = np.arange(q_min, q_max+q_step, q_step)

exponents = np.linspace(np.log(scmin), np.log(scmax), scres)
scales_exp = np.round(np.exp(1)**exponents).astype(int)

color = iter(plt.cm.plasma(np.linspace(0, 0.8, len(alphas))))

fig = plt.figure()
subfigs = fig.subfigures(1, 2)
ax1 = subfigs[0].subplots(len(alphas), 1, sharex=True)
ax2 = subfigs[1].subplots(1, 1)

for i in range(len(alphas)):

generate an alpha-stable process
 r = levy_stable.rvs(alpha=alphas[i], beta=0, loc=0,
 scale=1, size=len(sp_ret), random_state=123)

 Hq_levy, qRegLine_levy, Fq_levy = calc_Hq(r, scale=scales_exp, q=nq_levy,
 m=1)
 tau_levy = nq_levy * Hq_levy - 1

 alpha_levy = np.gradient(tau_levy, nq_levy)
 f_levy = nq_levy * alpha_levy - tau_levy

 c = next(color)
 ax1[i].plot(np.arange(len(r)), r, label=fr'α={alphas[i]:.2f}', c=c
)
 ax1[i].margins(x=0)
 ax1[i].legend(loc="upper left", fontsize=12)
 ax2.plot(alpha_levy, f_levy, marker='o', c=c)

ax1[0].set_title("Multifractal time series", fontsize=16)
ax1[-1].set_xlabel("Time (ordinal number)")
ax1[len(alphas)//2].set_ylabel('Oscillation amplitude')

ax2.set_title("Multifractal spectra", fontsize=16)
ax2.set_xlabel(r"α")
ax2.set_ylabel(r"$f(\alpha)$")

fig.subplots_adjust(hspace=0.1)

plt.show();

Fig. 4.34: Illustration of a set of multifractal time series (Levy of alpha stable processes) and
their multifractal spectra generated with different values of . Note the growth of structural
differences between periods with small and large fluctuations with increasing width of the
multifractal spectrum

A system whose complexity is caused by highly concentrated elements will

have a clearly defined left-handed spectrum. The complexity of the system caused

by weakly concentrated elements is characterized by the right tail of the

multifractal spectrum. If the complexity of the system develops due to elements of

two types, then the spectrum will appear symmetrical, where the elements of two

types will be equally probable. For the alpha-stable processes generated by Levy

above, it can be seen that the lower the value of , the stronger the dominance of

highly concentrated (large) fluctuations. At , the spectrum is increasingly

narrowed to a singular point.

Further, it will be shown that for the resulting multifractal parabola of the

multifractal spectrum, the values of both the entire spectral width and its

right and left tails can be calculated. It is also possible to calculate the

value of the singularity, where takes the maximum value , and even the

so- asymmetry . Fig. 4.35 schematically shows the

position of the key indicators of multifractal spectrum.

Fig. 4.35: Graph of the multifractal spectrum with the values of the multifractal spectrum width
(), the values of the minimum, central, and maximum singularity (), the width
of the left and right tails of the spectrum), and the difference between the fractal dimensions
at the ends of the parabola ()

It is also worth noting that this diagram does not represent an exhaustive list

of system multifractality indicators that we will use in the future, but should

provide an intuitive understanding of how most multifractal indicators are derived.

Generalized fractal dimensions

Along with the multifractal spectrum, it will be useful to consider the

spectrum of generalized fractal dimensions, or in other words, Renyi dimensions,

since they also have information-theoretical significance. Let us find out the

physical meaning of generalized fractal dimensions for some values of . When

, . On the other hand, we can define that

. Comparing these inequalities, we can come to the ratio . Thus,

 is the usual Hausdorff dimension of the set . It also corresponds to the

maximum of the multifractal spectrum, , which is always equal to one for a

one-dimensional signal. For crisis recognition tasks, this characteristic is the

coarsest and does not provide information about the statistical properties of the

system.

. Since the statistical sum

when , . Thus, we have uncertainty when

reveal this uncertainty using the following equation:

Now, setting , expanding the exponent, and taking into account the

condition for normalizing the probabilities of , we obtain

As a result, we derive the following expression:

The numerator in this formula is the information entropy of the fractal set

:

Thus, the resulting value of the generalized fractal dimension is related to

the entropy by the following relation:

Returning to the problem of distributing points on a fractal set , we can say

that since , the value of characterizes the information needed to

describe the position of a point in a certain cell.

 Additional information on the information dimension

Information dimension can be used to describe the spatial heterogeneity of a

system. The more homogeneous the attractor is, the higher this indicator should be.

That is, the more configurations the elements of a given system can take, the more

information we need to account for each element. With spatial homogeneity, the

information entropy also increases, which links the information dimension to the

concept of entropy. Since is the tangent of the slope of the regression line

plotted against the entropy and the radius of the circles in which the frequency of

hits of individual attractor elements is measured, we can say that the information

dimension reflects the rate of change of the information entropy. The higher is,

the faster the entropy grows a measure of our current ignorance about the system.

The lower , the lower the entropy itself. In other words, the greater the spatial

asymmetry, the more ordered the complexity, the higher our knowledge of the

current state of the system, and the less information we need to describe the

configurations that the system can take

For the generalized fractal dimension at , the following expression is

valid:

The value represents the probability of a point falling into a cell of size .

Then the value is the probability of two points hitting this cell. Finding the sum

of over all occupied cells, we get the probability that two randomly selected

points from the set are inside the same cell of size . Thus, the distance between

these two points will be less than or of the order of . The probability of finding

two trajectories within a neighborhood of radius can be found using the

correlation integral.

In this case, we conclude that the generalized dimension determines the

dependence of the correlation integral on . For this reason, is referred to

in the literature as the correlation dimension.

. The value of the function at the

maximum can be easily determined by using the expression (4.14), where

 or . When , we obtain that

, i.e., the maximum value of the spectrum is equal to the Hausdorff

dimension.

Fig. 4.36: The maximum of the function is equal to the fractal dimension

Consider the case when . Since , it follows from the equation

above that . On the other hand, we know that since

, the derivative of at this point is 1. Differentiate the relation

 with respect to ,

and assuming that , we get that . Thus, we have

. Thus, the information dimension lies on the curve at the

point where and .

Fig. 4.37: Position of the information dimension

Now consider the case when . Using the previous formula, we obtain

that or .

Fig. 4.38: Geometric definition of the correlation dimension

Next, let us consider the dependence of the generalized fractal dimension

on different values of for a multifractal series, monofractal, and white noise (see

Fig. 4.39).
difference_zero = np.absolute(nq-0)
idx_zero = difference_zero.argmin()

difference_one = np.absolute(nq-1)
idx_one = difference_one.argmin()

difference_two = np.absolute(nq-2)
idx_two = difference_two.argmin()

initialize arrays for the dimensions
Dq_multifrac = np.zeros(len(nq))
Dq_monofrac = np.zeros(len(nq))
Dq_white_noise = np.zeros(len(nq))

We define generalized fractal dimensions where q!=1
Dq_multifrac[nq!=nq[idx_one]] = tau_multifrac[nq!=nq[idx_one]] / (nq[nq!=nq[i
dx_one]]-1)
Dq_monofrac[nq!=nq[idx_one]] = tau_monofrac[nq!=nq[idx_one]] / (nq[nq!=nq[idx
_one]]-1)
Dq_white_noise[nq!=nq[idx_one]] = tau_white_noise[nq!=nq[idx_one]] / (nq[nq!=
nq[idx_one]]-1)

We define separately the generalized fractal dimensions at q=1
Dq_multifrac[nq==nq[idx_one]] = -tau_multifrac[nq==nq[idx_one]]
Dq_monofrac[nq==nq[idx_one]] = -tau_monofrac[nq==nq[idx_one]]
Dq_white_noise[nq==nq[idx_one]] = -tau_white_noise[nq==nq[idx_one]]

fig, ax = plt.subplots(1, 1)

ax.plot(nq, Dq_multifrac, linestyle='-', marker='o', label="Multifractal", co
lor='darkblue')
ax.plot(nq, Dq_monofrac, linestyle='-', marker='o', label="Monofractal", colo
r='magenta')
ax.plot(nq, Dq_white_noise, linestyle='-', marker='o', label="White noise", c
olor='red')
ax.set_xlabel(r"q")
ax.set_ylabel(r"D_{q}")
ax.legend(loc="upper right")

ax.annotate(fr'D_{0}={Dq_multifrac[nq==nq[idx_zero]][0]:.2f}',
 xy=(nq[idx_zero], Dq_multifrac[nq==nq[idx_zero]]),
 xytext=(nq[idx_zero]-2, Dq_multifrac[nq==nq[idx_zero]]+2),
 arrowprops=dict(facecolor='black', shrink=0.05), fontsize=16)

ax.annotate(fr'D_{1}={Dq_multifrac[nq==nq[idx_one]][0]:.3f}',
 xy=(nq[idx_one], Dq_multifrac[nq==nq[idx_one]]),
 xytext=(nq[idx_one]-3, Dq_multifrac[nq==nq[idx_one]]-1.5),
 arrowprops=dict(facecolor='black', shrink=0.05), fontsize=16)

ax.annotate(fr'D_{2}={Dq_multifrac[nq==nq[idx_two]][0]:.2f}',
 xy=(nq[idx_two], Dq_multifrac[nq==nq[idx_two]]),
 xytext=(nq[idx_two], Dq_multifrac[nq==nq[idx_two]]-1.5),
 arrowprops=dict(facecolor='black', shrink=0.05), fontsize=16)

plt.show();

Fig. 4.39: Dependence of generalized fractal dimensions on

The figure shows that, first of all, for all signals, which is consistent

with theoretical considerations. The information dimension for the multifractal

and white noise is the same, which may indicate the information content of both

signals. For the monofractal, it is close to zero. The correlation dimension

shows that, in general, both S&P 500 and white noise are quite similar: their values

appear to be mostly independent of each other. This is in contrast to the

conclusions drawn in our previous work, where the approach of to zero

indicated an increase in the degree of correlation of the system. For the

monofractal, is at the level of 1, which indicates a higher degree of correlation

in this signal compared to the mono- and multifractals.

Analogies of multifractals with thermodynamics

Using MF-DFA concepts, we can take a fresh look at the time signal as a

thermodynamic system. Within the framework of MF-DFA, the mass index

can be considered as an analog of free energy, the singularity index as an analog

of internal energy , and the multifractal spectrum as entropy. Indeed, the

shape of the multifractal spectrum resembles the dependence of the entropy of a

thermodynamic system on the energy . The parameters and can be

characterized as upper and lower limits of the internal energy of the system. The

function is a formal analog of the partition function in thermodynamics,

where .

Fig. 4.40: Schematic representation of the analogy of multifractals with the concepts of
thermodynamics

More specifically, the multifractal heat capacity [57] can be defined as

The specific heat capacity, as a measure of the rate of energy change, is an

indicator of phase transition phenomena. In a thermodynamic system, a phase is

characterized by homogeneous physical properties, and a phase transition is a

sudden change in certain properties under a critical external condition. The study

of phase transitions in the multifractal spectrum has been limited to simple

systems, such as the Cantor set and the logistic map. However, our analysis shows

the presence of phase transitions [8] in the multifractal spectrum of financial

 exhibits significant fluctuations in the

neighborhood of , which are reflected in the peak of the specific heat capacity

 (see Fig. 4.41).

C_q_multifrac = -np.gradient(alpha_multifrac, nq, edge_order=2)
C_q_monofrac = -np.gradient(alpha_monofrac, nq, edge_order=2)
C_q_white_noise = -np.gradient(alpha_white_noise, nq, edge_order=2)

fig, ax = plt.subplots(1, 2)

ax[0].plot(nq, C_q_multifrac, linestyle='-', marker='o', label="Multifractal"
, color='darkblue')
ax[0].plot(nq, C_q_monofrac, linestyle='-', marker='o', label="Monofractal",
color='magenta')
ax[0].plot(nq, C_q_white_noise, linestyle='-', marker='o', label="White noise
", color='red')
ax[0].set_xlabel(r"q")
ax[0].set_ylabel(r"$C(q)$")
ax[0].legend(loc='center left')

ax[1].plot(alpha_multifrac, C_q_multifrac, linestyle='-', marker='o', label="
Multifractal", color='darkblue')
ax[1].plot(alpha_monofrac, C_q_monofrac, linestyle='-', marker='o', label="Mo
nofractal", color='magenta')
ax[1].plot(alpha_white_noise, C_q_white_noise, linestyle='-', marker='o', lab
el="White noise", color='red')
ax[1].set_xlabel(r"α")

fig.tight_layout(pad=0.3)
plt.show();

Fig. 4.41: Dependence of the multifractal heat capacity on and

Fig. 4.41 shows that reaches local and global maxima at positive and

negative values, which indicates that S&P 500 becomes extremely irregular due

to the dynamics of both large and small fluctuations during crisis periods, which

serve as a quasi-phase transitions of S&P 500.

4.10 MF-DFA empirical results

Of course, a fractal analysis of the entire series is important, but this

approach ignores the assumption that both monofractal and multifractal areas exist

in the time sequence. That is, it ignores the assumption that the degree of

complexity changes over time. Quantitative measures of multifractality calculated

within the sliding window approach are the most objective and practical in system

analysis. In addition, quantitative measures can be used as indicators or predictors

of abnormal phenomena, or as a basis for building another predictive model.

Some charts will present a pair plot of only the time series and the

plot_pair() function that we defined in the

previously:
def plot_pair(x_values,
 y1_values,
 y2_values,
 y1_label,
 y2_label,
 x_label,
 file_name,
 clr="magenta"):

 fig, ax = plt.subplots()

 ax2 = ax.twinx()

 ax2.spines.right.set_position(("axes", 1.03))

 p1, = ax.plot(x_values,
 y1_values,
"b-", label=fr"{y1_label}")
 p2, = ax2.plot(x_values,
 y2_values,
 color=clr,
 label=y2_label)

 ax.set_xlabel(x_label)
 ax.set_ylabel(f"{y1_label}")

 ax.yaxis.label.set_color(p1.get_color())
 ax2.yaxis.label.set_color(p2.get_color())

 tkw = dict(size=2, width=1.5)

 ax.tick_params(axis='x', rotation=45, **tkw)
 ax.tick_params(axis='y', colors=p1.get_color(), **tkw)
 ax2.tick_params(axis='y', colors=p2.get_color(), **tkw)

 ax2.legend(handles=[p1, p2])

 plt.savefig(file_name+".jpg")

 plt.show();

For further calculations, we will again use the fathon library, which we used

earlier to perform the classical DFA. The advantages of this particular library are

the ability to use the procedure for calculating the division of the series into

segments starting from the end of the series, since the length of the series does not

always allow us to divide it into local segments as a whole. That is, theoretically,

we are left with a segment of the series that cannot be divided into local segments.

Therefore, repeating the procedure of dividing into local segments starting from

the end of the series allows us to get around this problem. To simplify the

presentation of the theoretical material, we did not implement this procedure, but it

is available in the fathon library. In addition, the library provides the ability to

calculate the cross-correlation DFA of and its multifractal analog.
import fathon
from fathon import fathonUtils as fu

window = 500 # sliding window width
tstep = 5 # sliding window time step
ret_type = 4 # type of a series:
1 – initial
2 - detrending (difference between present and previous values)
3 – initial returns
4 – standardized returns
5 – absolute values (volatility)
6 – standardized series

win_beg = 10 # Initial segment width
win_end = window-1 # Final segment width

scales_exp_wind = fu.linRangeByStep(win_beg, win_end) # generate an array
of linearly separated elements

rev = True # whether to repeat the calculation of the fluctuation function fr
om the end

length = len(time_ser.values)

q_min = -5 # minimum q value
q_max = 5 # maximum q value
q_step = 1 # incremental step of q

nq = np.arange(q_min,
 q_max+q_step,
 q_step)

order = 3 # order of the polynomial trend

delta_alph = []
delta_spec = []
max_alph = []
min_alph = []
mean_alph = []
alpha_zero = []
delta_alph_right = []
delta_alph_left = []
assym = []
delta_s = []
D_0 = []
D_1 = []
D_2 = []
D_left = []
D_right = []
C_q = []
h_q = []
tau_q = []
D_q = []
mfSpect = []
alpha = []
hFI = []
alphaCF = []
C_q_area_wind = []

stages of calculations:
for i in tqdm(range(0, length-window, tstep)):

 fragm = time_ser.iloc[i:i+window].copy()

 fragm = transformation(fragm, ret_type)

finding a cumulative series
 cumulative = fu.toAggregated(fragm)

initialization of the MF-DFA procedure
 pymfdfa = fathon.MFDFA(cumulative)

calculation of the fluctuation function and obtaining the generalized Hurst
 exponent
 n, F = pymfdfa.computeFlucVec(scales_exp_wind, nq, revSeg=rev, polOrd=ord
er)
 Hq_fragm, _ = pymfdfa.fitFlucVec()

obtaining the tau indicator
 tau_wind = nq * Hq_fragm - 1

obtaining the singularity index
 alpha_wind = np.gradient(tau_wind, nq, edge_order=2)

obtaining a multifractal spectrum
 f_wind = nq * alpha_wind - tau_wind

obtaining multifractal heat capacity
 C_q_wind = -np.gradient(alpha_wind, nq, edge_order=2)

integral indicator C(q)
 C_q_area = cumulative_trapezoid(np.abs(C_q_wind), nq, initial=0)[-1]

width of the multifractal spectrum
 delta_alpha_wind = alpha_wind.max() - alpha_wind.min()

distance between the ends of the multifractality spectrum
 delta_phi = f_wind[-1] - f_wind[0]

maximum alpha value
 maximal_alpha = alpha_wind.max()

minimum value of alpha
 minimal_alpha = alpha_wind.min()

average alpha value
 mean_alpha = np.mean(alpha_wind)

is the value of the singularity at which the spectrum takes the maximum val
ue (0)
 alpha_0 = alpha_wind[np.nanargmax(f_wind)]

width of the right tail of the spectrum
 delt_alpha_right = maximal_alpha - alpha_0

width of the left tail of the spectrum
 delt_alpha_left = alpha_0 - minimal_alpha

difference between the width of the left and right tails
 delt_s = delt_alpha_right - delt_alpha_left

asymmetry index
 A = (delt_alpha_left - delt_alpha_right)/(delt_alpha_left + delt_alpha_ri

ght)

define the index at q=0
 difference_zero = np.absolute(nq-0)
 idx_zero = difference_zero.argmin()

define the index at q=1
 difference_one = np.absolute(nq-1)
 idx_one = difference_one.argmin()

define the index at q=2
 difference_two = np.absolute(nq-2)
 idx_two = difference_two.argmin()

initialize arrays for the dimensions
 Dq_wind = np.zeros(len(nq))

define generalized fractal dimensions where q!=1
 Dq_wind[nq!=nq[idx_one]] = tau_wind[nq!=nq[idx_one]] / (nq[nq!=nq[idx_one
]]-1)

define separately the generalized fractal dimensions at q=1
 Dq_wind[nq==nq[idx_one]] = -tau_wind[nq==nq[idx_one]]

generalized fractal dimensions obtained from the multifractal spectrum
 D_zero = f_wind[nq==nq[idx_zero]]
 D_one = f_wind[nq==nq[idx_one]]
 D_two = 2*alpha_wind[nq==nq[idx_two]] - f_wind[np.where(alpha_wind[nq==nq
[idx_two]])]

distance from the center of the distribution of generalized dimensions to t
he left end
 delta_D_Q_left = Dq_wind[nq==q_min] - Dq_wind[nq==nq[idx_zero]]

distance from the center of the distribution of generalized dimensions to t
he right end
 delta_D_Q_right = Dq_wind[nq==nq[idx_zero]] - Dq_wind[nq==q_max]

h-fluctuation index (hFI)
 fluct = np.sum(np.gradient(np.gradient(Hq_fragm, nq, edge_order=2), nq, e
dge_order=2)**2)/(2*np.max(np.abs(nq))+2)

cumulative index of increments of generalized Hurst exponents (CF)
 incr = np.sum(np.gradient(Hq_fragm, edge_order=2)**2/ np.gradient(nq, edg
e_order=2))

 delta_alph.append(delta_alpha_wind)
 delta_spec.append(delta_phi)
 max_alph.append(maximal_alpha)
 min_alph.append(minimal_alpha)
 mean_alph.append(mean_alpha)
 alpha_zero.append(alpha_0)
 delta_alph_right.append(delt_alpha_right)
 delta_alph_left.append(delt_alpha_left)
 delta_s.append(delt_s)

 assym.append(A)
 D_0.append(D_zero)
 D_1.append(D_one)
 D_2.append(D_two)
 D_left.append(delta_D_Q_left)
 D_right.append(delta_D_Q_right)
 C_q.append(C_q_wind)
 mfSpect.append(f_wind)
 alpha.append(alpha_wind)
 hFI.append(fluct)
 alphaCF.append(incr)
 C_q_area_wind.append(C_q_area)
 h_q.append(Hq_fragm)
 tau_q.append(tau_wind)
 D_q.append(Dq_wind)

Save absolute values of indicators to text files.
list of names of each indicator to save to txt
subtitle_of_txts = ['delta_alpha', 'delta_f', 'max_alpha', 'min_alpha', 'mean
_alpha',
'zero_alpha', 'delta_alpha_right', 'delta_alpha_left', 'assymetry',
'delta_s', 'D_0', 'D_1', 'D_2', 'hFI', 'alphaCF', 'C_q_area',
'delta_d_left', 'delta_d_right']

list of output values of indicators for saving to txt
mfdfa_indicators = [delta_alph, delta_spec, max_alph, min_alph, mean_alph, al
pha_zero, delta_alph_right, delta_alph_left, assym, delta_s, D_0, D_1, D_2, h
FI, alphaCF, C_q_area_wind, D_left, D_right]

for i in range(len(subtitle_of_txts)):
 np.savetxt(f"mfdfa_{subtitle_of_txts[i]}_name={symbol}_ret={ret_type}_ \
 order={order}_qmin={q_min}_qmax={q_max}_qinc={q_step}_ \
 wind={window}_step={tstep}_windbeg={win_beg}_winden={win_end}.tx
t", mfdfa_indicators[i])

The width of the multifractal spectrum

The first and one of the most practical indicators of system complexity is the

multifractal width, , which can be represented as the difference between the

maximum degree of singularity and the minimum:

If we draw an analogy with thermodynamic indicators, then the width of the

multifractality spectrum will be the difference between the highest and lowest

s consider the dynamics of this

indicator for the stock market indices (see Fig. 4.42):

measure_label = r'$\Delta\alpha$'
file_name = f"mfdfa_delta_alpha_name={symbol}_ret={ret_type}_order={order}_qm
in={q_min}_qmax={q_max}_qinc={q_step}_ \
 wind={window}_step={tstep}_windbeg={win_beg}_winden={win_end}"

plot_pair(time_ser.index[window:length:tstep],
 time_ser.values[window:length:tstep],
 delta_alph,
 ylabel,
 measure_label,
 xlabel,
 file_name,
 clr='red')

 (a) (b)

 (c) (d)

Fig. 4.42: Multifractal spectrum width indicator for the time series of S&P 500 (a), Hang
Seng index (b), DAX (c), and BSE Sensex (d)

Fig. 4.42 shows that the width of the multifractality spectrum increases

during crisis events, indicating an increase in the overall degree of complexity and

periodization. That is, this indicator serves as another confirmation that traders in

the stock market, for example, behave in a synchronized manner during a crisis.

The growth of the overall degree of multifractality is an indicator of the growth of

correlations in the system, which was confirmed by the previous indicators of

complexity.

The difference between the ends of the multifractal spectrum

However, the simple width of the multifractality spectrum does not show,

for example, what type of fluctuations are most likely, what type of density

elements play the greatest role in increasing or decreasing the complexity of the

system. Later, we proposed such an indicator of multifractality as , which can be

represented as follows [105, 106, 174]:

measure_label = r'Δf'
file_name = f"mfdfa_delta_f_name={symbol}_ret={ret_type}_order={order}_qmin={
q_min}_qmax={q_max}_qinc={q_step}_ \
 wind={window}_step={tstep}_windbeg={win_beg}_winden={win_end}"

plot_pair(time_ser.index[window:length:tstep],
 time_ser.values[window:length:tstep],
 delta_spec,
 ylabel,
 measure_label,
 xlabel,
 file_name,
 clr='brown')

Fig. 4.43 illustrates the comparative dynamics of the distance between the

ends of the multifractality spectrum for the time series of S&P 500, Hang Seng

index, DAX, and BSE Sensex.

 (a) (b)

 (c) (d)

Fig. 4.43: Distance between the ends of the multifractality spectrum for the time series of
S&P 500 (a), Hang Seng index (b), DAX (c), and BSE Sensex (d)

The meaning of this indicator is that it allows us to determine the degree of

probability of occurrence of elements with high densities and low densities. If this

indicator is less than zero, then fluctuations reflecting elements with the highest

concentration (highest fractions) have the highest probability. If this indicator is

higher than zero, then fluctuations reflecting low-concentration elements (small

fluctuations) determine the dynamics of the system. If this indicator is zero, then

both highly singular and low-singular elements contribute equally to the system

dynamics.

Turning to thermodynamics, we can recall that is the entropy of a

system. Then it becomes clear that the variability of the multifractal spectrum

allows us to determine the degree of contribution of highly concentrated and low-

concentrated elements to minimizing the entropy of the system. The left-handed

asymmetry of the multifractal spectrum tells us that highly concentrated

elements of the phase space make the greatest contribution to the minimum

thermodynamic entropy. In other words, these elements are the engine of

-hand side

asymmetry of the multifractal spectrum indicates the minimization of

entropy due to low-concentrated elements. The symmetry of the ends of the

spectrum indicates an equal contribution of high-density and sparse regions to

entropy minimization. As already mentioned, there are cases when the multifractal

spectrum practically converges to a singularity (one point). In this case, we are

dealing with a simple monofractal system, which in our case was characterized by

independent and normally distributed random variables. For such a spectrum, both

 and will tend to zero. For such a time series, there is no longer a set of

fractal dimensions, but only one fractal index, . This is exactly

the region where the system reaches its thermodynamic equilibrium the

maximum entropy. In turn, can be characterized as the difference of entropies

at the maximum and minimum internal energy of the system.

Width of the left and right tails of the multifractal

spectrum

In addition, we can examine the degree of complexity of the dynamics of

high-density regions (with large fluctuations) and low-density regions (with small

fluctuations) separately. To do this, we measure the width of the left and right

tails separately. The width of the left tail is defined as

and the width of the right tail as

In turn, the width of the left tail measures the degree of complexity of

fluctuations with a large amplitude, and the width of the right tail measures the

degree of complexity of small fluctuations. An increase in the width of each of the

tails will reflect an increase in the degree of correlation between the elements.
fig, ax = plt.subplots(1, 1)

ax2 = ax.twinx()
ax3 = ax.twinx()

ax2.spines.right.set_position(("axes", 1.03))
ax3.spines.right.set_position(("axes", 1.12))

p1, = ax.plot(time_ser.index[window:length:tstep], time_ser.values[window:len
gth:tstep],
"b-", label=fr"{ylabel}")
p2, = ax2.plot(time_ser.index[window:length:tstep], delta_alph_left, color="r

", label=r"$\Delta\alpha_{L}$")
p3, = ax3.plot(time_ser.index[window:length:tstep], delta_alph_right, color="
g", label=r"$\Delta\alpha_{R}$")

ax.set_xlabel(xlabel)
ax.set_ylabel(f"{ylabel}")

ax.yaxis.label.set_color(p1.get_color())
ax2.yaxis.label.set_color(p2.get_color())
ax3.yaxis.label.set_color(p3.get_color())

tkw = dict(size=4, width=1.5)
ax.tick_params(axis='y', colors=p1.get_color(), **tkw)
ax2.tick_params(axis='y', colors=p2.get_color(), **tkw)
ax3.tick_params(axis='y', colors=p3.get_color(), **tkw)
ax.tick_params(axis='x', rotation=45, **tkw)

ax3.legend(handles=[p1, p2, p3])

plt.savefig(f"mfdfa_delta_alpha_left_right_name={symbol}_ret={ret_type}_order
={order}_qmin={q_min}_qmax={q_max}_qinc={q_step}_wind={window}_step={tstep}_w
indbeg={win_beg}_winden={win_end}.jpg")
plt.show();

Fig. 4.44 demonstrates the comparative dynamics of S&P 500, Hang Seng

index, DAX, BSE Sensex, and their width of the left and right tails of the

multifractal spectrum.

(a) (b)

 (c) (d)

Fig. 4.44: Width of the left and right tails of the multifractal spectrum for the time series of S&P
500 (a), Hang Seng index (b), DAX (c), and BSE Sensex (d)

Fig. 4.44 shows that the studied indicators react in a characteristic way to

crisis events. The width of the left side of the multifractality spectrum increases

during 1992, 1996-2000, 2008, 2016, and the coronavirus pandemic. This indicates

the dominance of highly concentrated fluctuations (with a large amplitude of

fluctuations). In addition, the increase in the width of the left tail indicates that

fluctuations with a large amplitude of fluctuations are characterized by an increase

in the degree of correlation during crisis events, which in turn can serve as an

indicator of the growth of self-organization processes.

Although smaller, the dynamics of the width of the right tail of the

multifractal spectrum is no less remarkable. This indicator works almost similarly

to the width of the left tail, but characterizes the dynamics of low-concentrated

values fluctuations with a small amplitude of oscillations. Almost synchronous

dynamics of both indicators indicates an increase in the influence of fluctuations of

both large-amplitude fluctuations and small-amplitude fluctuations. In other words,

these two types of fluctuations are the source of the growth of nonlinear

correlations during crisis events.

 Singularity exponent and its variants

Possible indicators of system complexity include , , , and

, which respectively characterize the minimum singularity strength,

maximum, average, and singularity under the condition of equilibrium

consideration of both large fluctuations and small ones.
fig, ax = plt.subplots(1, 1)

ax2 = ax.twinx()
ax3 = ax.twinx()
ax4 = ax.twinx()
ax5 = ax.twinx()

ax3.spines.right.set_position(("axes", 1.08))
ax4.spines.right.set_position(("axes", 1.18))
ax5.spines.right.set_position(("axes", 1.27))

p1, = ax.plot(time_ser.index[window:length:tstep], time_ser[window:length:tst
ep], "b-", label=fr"{ylabel}")
p2, = ax2.plot(time_ser.index[window:length:tstep], max_alph, "r-", label=r"$
\alpha_{max}$")
p3, = ax3.plot(time_ser.index[window:length:tstep], min_alph, "g-", label=r"$
\alpha_{min}$")
p4, = ax4.plot(time_ser.index[window:length:tstep], mean_alph, "c-", label=r"
α_{mean}")
p5, = ax5.plot(time_ser.index[window:length:tstep], alpha_zero, "m-", label=r
"α_{0}")

ax.set_xlabel(xlabel)
ax.set_ylabel(fr"{ylabel}")

ax.yaxis.label.set_color(p1.get_color())
ax2.yaxis.label.set_color(p2.get_color())
ax3.yaxis.label.set_color(p3.get_color())
ax4.yaxis.label.set_color(p4.get_color())
ax5.yaxis.label.set_color(p5.get_color())

tkw = dict(size=4, width=1.5)
ax.tick_params(axis='y', colors=p1.get_color(), **tkw)
ax2.tick_params(axis='y', colors=p2.get_color(), **tkw)
ax3.tick_params(axis='y', colors=p3.get_color(), **tkw)
ax4.tick_params(axis='y', colors=p4.get_color(), **tkw)
ax5.tick_params(axis='y', colors=p5.get_color(), **tkw)
ax.tick_params(axis='x', **tkw, pad=10, rotation=45)

ax5.legend(handles=[p1, p2, p3, p4, p5])

plt.savefig(f"mfdfa_alpha_min_max_mean_zero_name={symbol}_ret={ret_type}_orde
r={order}_qmin={q_min}_qmax={q_max}_qinc={q_step}_ \
 wind={window}_step={tstep}_windbeg={win_beg}_winden={win_end}.jpg
", bbox_inches="tight")

Fig. 4.45 demonstrates the comparative dynamics of S&P 500, Hang Seng

index, DAX, BSE Sensex, and their singularity indicators.

 (a) (b)

 (c) (d)

Fig. 4.45: Singularity indicators for the time series of S&P 500 (a), Hang Seng index (b), DAX
(c), and BSE Sensex (d)

As can be seen from Fig. 4.45, all singularity indicators increase in the

financial phase transition from a state of stability to a state of crisis. This indicates

an increase in the complexity of the system: a sharp increase in the number of

agents involved in the self-organized development of the system under study. From

the point of view of thermodynamics, it could be said that the internal energy of

the system increases during financial collapse events.

Type of the long tail of the multifractal spectrum

In addition to such a measure as , other measures of multifractal spectrum

asymmetry can be presented. For example, we can determine the type of long tail

of the multifractal spectrum using the measure [56]:

If , the multifractal spectrum has a long left tail, which indicates the

sensitivity of the time series to local fluctuations with a large amplitude. If ,

the multifractal spectrum has a long right tail, which indicates the sensitivity of the

signal structure to local fluctuations with a small amplitude. In cases where the

high- and low-frequency components of the signal are comparable, the singularity

spectrum will be approximately symmetrical and .
measure_label = r'ΔS'
file_name = f"mfdfa_delta_s_name={symbol}_ret={ret_type}_order={order}_qmin={
q_min}_qmax={q_max}_qinc={q_step}_ \
 wind={window}_step={tstep}_windbeg={win_beg}_winden={win_end}"

plot_pair(time_ser.index[window:length:tstep],
 time_ser.values[window:length:tstep],
 delta_s,
 ylabel,
 measure_label,
 xlabel,
 file_name,
 clr='darkorange')

Fig. 4.46 demonstrates the comparative dynamics of S&P 500, Hang Seng

index, DAX, BSE Sensex, and their indicator.

 (a) (b)

 (c) (d)

Fig. 4.46: Multifractal spectrum tail type indicator for the time series of S&P 500 (a), Hang
Seng index (b), DAX (c), and BSE Sensex (d)

Fig. 4.46 shows that , which indicates that the most crashing parts of

the stock indices are caused by fluctuations with a large amplitude of fluctuations.

Asymmetry index

Next, we can define the following asymmetry index [128, 144, 145]:

The asymmetry parameter is associated with the predominant type of

oscillation in the system under study. If (), the system dynamics

is represented by a symmetrical spectrum. If (), the multifractal

spectrum has a right-handed asymmetry, which emphasizes the stronger influence

of small fluctuations on multifractality. Conversely, when (),

then we are dealing with a left-handed spectrum, which denotes greater

heterogeneity for large fluctuations and indicates that the time series is dominated

by the multifractal nature of high-density heterogeneities. Since the asymmetry is

detected by the sign of , which is equivalent to the sign of , then, based on the

sign of , we can draw conclusions about both the type of long tail and the sign

of the multifractal spectrum indicator , i.e., the insensitivity and type of dominant

fluctuations of the multifractal nature of the time series.
measure_label = r'A'
file_name = f"mfdfa_A_name={symbol}_ret={ret_type}_order={order}_qmin={q_min}

_qmax={q_max}_qinc={q_step}_ \
 wind={window}_step={tstep}_windbeg={win_beg}_winden={win_end}"

plot_pair(time_ser.index[window:length:tstep],
 time_ser.values[window:length:tstep],
 assym,
 ylabel,
 measure_label,
 xlabel,
 file_name,
 clr='darkviolet')

Fig. 4.47 illustrates the comparative dynamics of S&P 500, Hang Seng

index, DAX, BSE Sensex, and their asymmetry index.

(a) (b)

 (c) (d)

Fig. 4.47: Multifractal spectrum asymmetry index for the time series of S&P 500 (a), Hang
Seng index (b), DAX (c), and BSE Sensex (d)

Fig. 4.47 shows that, as a rule, the asymmetry index increases during crashes

and indicates the dominance of the left-hand side spectrum (highly concentrated

fluctuations with large amplitudes). It is difficult to associate small and large

fluctuations with specific market sentiment or behavioral patterns. At this point, we

can only note that these events represented the richest variation in both short-term

and long-term correlations.

-fluctuation index

The fluctuation can be analyzed using the second derivative of the

generalized Hurst exponent. Note that the amplitude of the second derivative in the

case of multifractal signals is greater than for monofractal signals. To obtain the

necessary information from , the -fluctuation index was proposed

[19], which is defined as the power of the second derivative of :

The higher the value of this indicator, the higher the self-organization of the

system.
measure_label = r'hFI'
file_name = f"mfdfa_hFI_name={symbol}_ret={ret_type}_order={order}_qmin={q_mi
n}_qmax={q_max}_qinc={q_step}_ \
 wind={window}_step={tstep}_windbeg={win_beg}_winden={win_end}"

plot_pair(time_ser.index[window:length:tstep],
 time_ser.values[window:length:tstep],
 hFI,
 ylabel,
 measure_label,
 xlabel,
 file_name,
 clr='green')

Fig. 4.48 illustrates the comparative dynamics of S&P 500, Hang Seng

index, DAX, BSE Sensex, and their -fluctuation index.

 (a) (b)

 (c) (d)

Fig. 4.48: The -fluctuation index for the time series of S&P 500 (a), Hang Seng index (b),
DAX (c), and BSE Sensex (d)

It can be seen that according to , the highest degree of multifractality is

manifested precisely for the crises of 1987, 1997, 2008, and 2020. These collapse

events include the largest number of different factors that influenced the dynamics

of the system under study. This is especially noticeable for the coronavirus

pandemic.

Cumulative index of increments of generalized Hurst exponents

The cumulative square function of increments [6] of generalized

Hurst exponents between successive moment orders is a more reliable measure of

the distribution of generalized Hurst exponents.
measure_label = r'αCF'
file_name = f"mfdfa_alphaCF_name={symbol}_ret={ret_type}_order={order}_qmin={

q_min}_qmax={q_max}_qinc={q_step}_ \
 wind={window}_step={tstep}_windbeg={win_beg}_winden={win_end}"

plot_pair(time_ser.index[window:length:tstep],
 time_ser.values[window:length:tstep],
 alphaCF,
 ylabel,
 measure_label,
 xlabel,
 file_name,
 clr='crimson')

In Fig. 4.49 is presented the comparative dynamics of S&P 500, Hang Seng

index, DAX, BSE Sensex, and their index.

(a) (b)

(c) (d)

Fig. 4.49: Cumulative index of increments of generalized Hurst exponents for the time
series of S&P 500 (a), Hang Seng index (b), DAX (c), and BSE Sensex (d)

The cumulative index presented here is slightly different from the , but

logically it is approximately the same: events with the highest degree of

multifractality are characterized by a higher amplitude of . The presented

index highlights the same crises as the previous one, but the dynamics of this index

is more pronounced, which makes it more reliable for identifying periods of system

self-organization.

 Integral multifractal heat capacity

The total degree of multifractality, the integral multifractal specific heat

capacity , can be expressed in the following form:

measure_label = r'C_{area}'
file_name = f"mfdfa_C_q_area_name={symbol}_ret={ret_type}_order={order}_qmin=
{q_min}_qmax={q_max}_qinc={q_step}_ \
 wind={window}_step={tstep}_windbeg={win_beg}_winden={win_end}"

plot_pair(time_ser.index[window:length:tstep],
 time_ser.values[window:length:tstep],
 C_q_area_wind,
 ylabel,
 measure_label,
 xlabel,
 file_name,
 clr='darkslateblue')

In Fig. 4.50 is presented the comparative dynamics of S&P 500, Hang Seng

index, DAX, BSE Sensex, and their integral multifractal heat capacity index.

(a) (b)

 (c) (d)

Fig. 4.50: Integral multifractal heat capacity for the time series of S&P 500 (a), Hang Seng
index (b), DAX (c), and BSE Sensex (d)

The figure shows that the dynamics of the integral heat capacity is very

similar to the width of the multifractality spectrum. In other words, is a

complexity indicator that indicates the degree of self-organization of the financial

phase transition. It can be seen that financial crashes represent a fairly trend-stable

dynamic, which is the result of purposeful and collective actions of traders in the

market.

Hausdorff dimension

As already noted, represents the upper limit of the dimensional changes

of the fractal subsets of the attractor system. It does not contain information about

the statistical properties of the system and is not of particular value.
measure_label = r'D_{0}'
file_name = f"mfdfa_D_0_area_name={symbol}_ret={ret_type}_order={order}_qmin=
{q_min}_qmax={q_max}_qinc={q_step}_ \
 wind={window}_step={tstep}_windbeg={win_beg}_winden={win_end}"

plot_pair(time_ser.index[window:length:tstep],
 time_ser.values[window:length:tstep],
 D_0,
 ylabel,
 measure_label,
 xlabel,
 file_name,
 clr='darkred')

Fig. 4.51 shows the comparative dynamics of S&P 500, Hang Seng index,

DAX, BSE Sensex, and their Hausdorff dimension.

 (a) (b)

(c) (d)

Fig. 4.51: Hausdorff dimension for the time series of S&P 500 (a), Hang Seng index (b), DAX
(c), and BSE Sensex (d)

Information dimension

The information dimension is closely related to the Shannon information

entropy. The higher the value of , the faster the entropy increases, which is an

indicator of how little we know about the current state of the system. As

decreases, the entropy decreases, which in turn indicates an increase in asymmetry

in space, a decrease in complexity, and an increase in our understanding of the

current state of the system. It also means that we need less information to describe

possible system configurations.
measure_label = r'D_{1}'
file_name = f"mfdfa_D_1_area_name={symbol}_ret={ret_type}_order={order}_qmin=

{q_min}_qmax={q_max}_qinc={q_step}_ \
 wind={window}_step={tstep}_windbeg={win_beg}_winden={win_end}"

plot_pair(time_ser.index[window:length:tstep],
 time_ser.values[window:length:tstep],
 D_1,
 ylabel,
 measure_label,
 xlabel,
 file_name,
 clr='darkred')

Fig. 4.52 shows the comparative dynamics of S&P 500, Hang Seng index,

DAX, BSE Sensex, and their information dimension.

 (a) (b)

 (c) (d)

Fig. 4.52: Information dimension for the time series of S&P 500 (a), Hang Seng index (b), DAX
(c), and BSE Sensex (d)

Fig. 4.52 shows that the information dimension is characterized by a decline

during crash events. This indicates an increase in the degree of orderliness of the

system and the collective attraction of market agents to a specific area of the phase

space of the system under study.

Correlation dimension

The correlation dimension, analogous to the information dimension, can be

represented as the tangent of the slope angle of the regression line plotted on a

logarithmic scale with respect to the dependence of the correlation integral on

. Similar to , the correlation dimension also determines how quickly the value

of the correlation integral changes.
measure_label = r'D_{2}'
file_name = f"mfdfa_D_2_area_name={symbol}_ret={ret_type}_order={order}_qmin=
{q_min}_qmax={q_max}_qinc={q_step}_\
 wind={window}_step={tstep}_windbeg={win_beg}_winden={win_end}"

plot_pair(time_ser.index[window:length:tstep],
 time_ser.values[window:length:tstep],
 D_2,
 ylabel,
 measure_label,
 xlabel,
 file_name,
 clr='darkred')

Fig. 4.53 shows the comparative dynamics of S&P 500, Hang Seng index,

DAX, BSE Sensex, and their correlation dimension.

(a) (b)

 (c) (d)

Fig. 4.53: Correlation dimension for the time series of S&P 500 (a), Hang Seng index (b), DAX
(c), and BSE Sensex (d)

The correlation dimension in Fig. 4.53 is characterized by an increase in the

pre-crisis period and a decrease during the crisis. This suggests that most market

agents are beginning to focus on one particular vector of system development.

Curvature of the left and right tails of the distribution

of generalized fractal dimensions

The degree of this complexity can be characterized by the curvature of the

right and left tails of the generalized fractal dimensions. The right side can

be defined as

And the higher the value of this measure, the stronger will be the degree of

influence of the elements with the highest concentration (density, amplitude of

fluctuations) on the overall complexity of the system.

Curvature of the left tail of the curve of generalized fractal dimensions

:

This indicator will tell us how strong the influence of the least concentrated

elements is on the complexity of the system.
fig, ax = plt.subplots(1, 1)

ax2 = ax.twinx()
ax3 = ax.twinx()

ax2.spines.right.set_position(("axes", 1.03))
ax3.spines.right.set_position(("axes", 1.12))

p1, = ax.plot(time_ser.index[window:length:tstep], time_ser.values[window:len
gth:tstep], "b-", label=fr"{ylabel}")
p2, = ax2.plot(time_ser.index[window:length:tstep], D_left, color="g", label=
r"ΔD_{L}")
p3, = ax3.plot(time_ser.index[window:length:tstep], D_right, color="r", label
=r"ΔD_{R}")

ax.set_xlabel(xlabel)
ax.set_ylabel(f"{ylabel}")

ax.yaxis.label.set_color(p1.get_color())
ax2.yaxis.label.set_color(p2.get_color())
ax3.yaxis.label.set_color(p3.get_color())

tkw = dict(size=4, width=1.5)
ax.tick_params(axis='y', colors=p1.get_color(), **tkw)
ax2.tick_params(axis='y', colors=p2.get_color(), **tkw)
ax3.tick_params(axis='y', colors=p3.get_color(), **tkw)
ax.tick_params(axis='x', rotation=45, **tkw)

ax3.legend(handles=[p1, p2, p3])

plt.savefig(f"mfdfa_delta_D_left_right_name={symbol}_ret={ret_type}_order={or
der}_qmin={q_min}_qmax={q_max}_qinc={q_step}_wind={window}_step={tstep}_windb
eg={win_beg}_winden={win_end}.jpg")
plt.show();

Fig. 4.54 demonstrates calculated curvature of the left and right tails of the

generalized fractal dimensions spectrum for the time series of S&P 500, Hang

Seng index, DAX, and BSE Sensex.

 (a) (b)

 (c) (d)

Fig. 4.54: Curvature of the left and right tails of the generalized fractal dimensions spectrum for
the time series of S&P 500 (a), Hang Seng index (b), DAX (c), and BSE Sensex (d)

Two- and three-dimensional visualization of multifractality

indicators

Previously, we analyzed the dependencies , , , , and

for the entire time series. Now, using the sliding window procedure, we can look at

First of all, l -dimensional

graphs:
def plot_2d(X, Y, Z, subtitle_jpg, subtitle_fig, ylabel, barlabel, cmap, lims
):

 fig, ax = plt.subplots(1, 1, figsize=(10, 5))

 cp = ax.contourf(X, Y, Z, alpha=0.8, cmap=cmap)
 plt.colorbar(cp, ax=ax, extend='both', label=barlabel)

 ax.set_xlim((time_ser.index[window:length:tstep][0],
 time_ser.index[window:length:tstep][-1]))
 ax.set_ylim((np.min(lims), np.max(lims)))

 ax.set_xlabel(xlabel)
 ax.set_ylabel(ylabel)

 ax.set_title(subtitle_fig, pad=10)

 ax.tick_params(axis='both', which='major', pad=10)

 fig.tight_layout()

 plt.savefig(f"mfdfa_{subtitle_jpg}_name={symbol}_ret={ret_type}_order={or

der}_ \
 qmin={q_min}_qmax={q_max}_qinc={q_step}_windbeg={win_beg}_win
den={win_end}.jpg",
 bbox_inches="tight")
 plt.show();

and three-dimensional:
def plot_3d(X, Y, Z, subtitle_jpg, ylabel, zlabel, cmap):

 fig, ax = plt.subplots(subplot_kw={"projection": "3d"})

 surf = ax.plot_surface(X, Y, Z, cmap=cmap, rstride=2, cstride=2, linewidt
h=0)

 ax.set_xlabel(xlabel, labelpad=15)
 ax.set_ylabel(ylabel, labelpad=15)
 ax.set_zlabel(zlabel, labelpad=15)
 ax.tick_params(axis='both', which='major', pad=5)

 fig.colorbar(surf, shrink=0.5, aspect=10, location='right', pad=0.1)

 fig.tight_layout()

 plt.savefig(f"mfdfa_{subtitle_jpg}_name={symbol}_ret={ret_type}_order={or
der}_ \
 qmin={q_min}_qmax={q_max}_qinc={q_step}_windbeg={win_beg}_ \
 winden={win_end}.jpg", bbox_inches="tight")

 plt.show();

After declaring the required functions, you can start visualizing.
X, Y = np.meshgrid(time_ser.index[window:length:tstep], nq)
Z = np.array(h_q).T

plot_2d(X, Y, Z,
 subtitle_jpg='contour_h(q)',
 subtitle_fig=fr"Heat chart $h(q)$",
 ylabel=r"q",
 barlabel=r"$h(q)$",
 cmap='jet',
 lims=nq)

Figs. 4.55 and 4.56 will show the dynamics of the generalized Hurst

exponent changing over time for the time series of S&P 500, Hang Seng

index, DAX, and BSE Sensex within two- and three-dimensional representations.

 (a) (b)

 (c) (d)

Fig. 4.55: Two-dimensional contour diagram of the dynamics of the generalized Hurst exponent
 changing over time for the time series of S&P 500 (a), Hang Seng index (b), DAX (c), and

BSE Sensex (d)

X, Y = np.meshgrid(np.arange(window, length, tstep), nq)
Z = np.array(h_q).T

plot_3d(X, Y, Z,
 subtitle_jpg='3d_h(q)',
 ylabel=r"q",
 zlabel=r"$h(q)$",
 cmap='jet')

 (a) (b)

 (c) (d)

Fig. 4.56: Three-dimensional diagram of the dynamics of the generalized Hurst exponent
changing over time for the time series of S&P 500 (a), Hang Seng index (b), DAX (c), and BSE
Sensex (d)

Fig. 4.55 and Fig. 4.56 show that the generalized Hurst exponent is

characterized by a significant increase during crises. The is especially high

for , which indicates a significant persistence of small fluctuations during

periods of turbulence. In this case, the highest degree of nonlinearity is represented

by the crises of 1987, 1997, 2008, and 2020-2021, which is confirmed by the

previous indicators.

Dynamics of over time in two- and three-dimensional spaces

X, Y = np.meshgrid(time_ser.index[window:length:tstep], nq)
Z = np.array(tau_q).T

plot_2d(X, Y, Z,
 subtitle_jpg='contour_tau(q)',
 subtitle_fig=fr" $\tau(q)$",
 ylabel=r"q",
 barlabel=r"$\tau(q)$",
 cmap='viridis',
 lims=nq)

Figs. 4.57 and 4.58 will demonstrate the dynamics of the indicator

changing over time for the time series of S&P 500, Hang Seng index, DAX, and

BSE Sensex within two- and three-dimensional representations.

 (a) (b)

 (c) (d)

Fig. 4.57: Two-dimensional contour diagram of the dynamics of the indicator changing

over time for the time series of S&P 500 (a), Hang Seng index (b), DAX (c), and BSE Sensex (d)

X, Y = np.meshgrid(np.arange(window, length, tstep), nq)
Z = np.array(tau_q).T

plot_3d(X, Y, Z,
 subtitle_jpg='3d_tau(q)',
 ylabel=r"q",
 zlabel=r"$\tau(q)$",
 cmap='viridis')

 (a) (b)

 (c) (d)

Fig. 4.58: Three-dimensional diagram of the dynamics of the indicator changing over time
for the time series of S&P 500 (a), Hang Seng index (b), DAX (c), and BSE Sensex (d)

As can be seen from the figures (Fig. 4.57 and Fig. 4.58), becomes

more nonlinear for all values of . Significant troughs can be seen at the ends of

the tails of this indicator, which can serve as indicators of crash events, but

compared to the same Hurst exponent, this indicator is less expressive.

Dynamics of over time in two- and three-dimensional spaces

X, Y = np.meshgrid(time_ser.index[window:length:tstep], nq)
Z = np.array(D_q).T

plot_2d(X, Y, Z,
 subtitle_jpg='contour_D(q)',
 subtitle_fig=fr"Heat chart $D(q)$",
 ylabel=r"q",
 barlabel=r"$D(q)$",
 cmap='magma',
 lims=nq)

Figs. 4.59 and 4.60 will illustrate the dynamics of the generalized fractal

dimension changing over time for the time series of S&P 500, Hang Seng

index, DAX, and BSE Sensex within two- and three-dimensional representations.

 (a) (b)

 (c) (d)

Fig. 4.59: Two-dimensional contour diagram of the dynamics of the generalized fractal
dimension changing over time for the time series of S&P 500 (a), Hang Seng index (b),
DAX (c), and BSE Sensex (d)

X, Y = np.meshgrid(np.arange(window, length, tstep), nq)
Z = np.array(D_q).T

plot_3d(X, Y, Z,
 subtitle_jpg='3d_D(q)',
 ylabel=r"q",
 zlabel=r"$D(q)$",
 cmap='magma')

 (a) (b)

 (c) (d)

Fig. 4.60: Three-dimensional diagram of the dynamics of the generalized fractal dimension
changing over time for the time series of S&P 500 (a), Hang Seng index (b), DAX (c), and BSE
Sensex (d)

The two- and three-dimensional representations of the generalized fractal

dimension show that increases during crisis events. The generalized fractal

dimension also presents the most indicative dynamics for negative values of ,

although there are also slight fluctuations for positive .

Dynamics of in two- and three-dimensional spaces

X, Y = np.meshgrid(time_ser.index[window:length:tstep], nq)
Z = np.array(C_q).T

plot_2d(X, Y, Z,
 subtitle_jpg='contour_C(q)',
 subtitle_fig=fr"Heat chart $C(q)$",
 ylabel=r"q",
 barlabel=r"$C(q)$",
 cmap='hot',
 lims=nq)

Figs. 4.61 and 4.62 will demonstrate the dynamics of the multifractal heat

capacity changing over time for the time series of S&P 500, Hang Seng

index, DAX, and BSE Sensex within two- and three-dimensional representations.

 (a) (b)

 (c) (d)

Fig. 4.61: Two-dimensional contour diagram of the dynamics of the multifractal heat capacity
 changing with time for the time series of S&P 500 (a), Hang Seng index (b), DAX (c), and

BSE Sensex (d)

X, Y = np.meshgrid(np.arange(window, length, tstep), nq)
Z = np.array(C_q).T

plot_3d(X, Y, Z,
 subtitle_jpg='3d_C(q)',
 ylabel=r"q",
 zlabel=r"$C(q)$",
 cmap='hot')

 (a) (b)

 (c) (d)

Fig. 4.62: Three-dimensional contour diagram of the dynamics of the multifractal heat capacity
 changing with time for the time series of S&P 500 (a), Hang Seng index (b), DAX (c), and

BSE Sensex (d)

In these figures (Fig. 4.61 and Fig. 4.62), jumps in multifractal heat capacity

are observed during crisis events, which indicates the analogy between physical

phase transitions and crisis events. It can be seen that under different market

regimes, can be symmetrical, demonstrating an equal impact on market

dynamics of both highly concentrated and low-concentrated elements. Also,

can shift to the left as well as to the right, which indicates the variability of the

market and the influence of different initial conditions on its structuring.

Dynamics of over time in two- and three-dimensional spaces

X = time_ser.index[window:length:tstep].values
X = np.expand_dims(X, axis=1)
X = np.repeat(a=X, repeats=nq.shape[0], axis=1)

Y = np.array(alpha)
Z = np.array(mfSpect)

plot_2d(X, Y, Z,
 subtitle_jpg='contour_f(alpha)',
 subtitle_fig=fr"Heat chart $f(\alpha)$",
 ylabel=r"α",
 barlabel=r"$f(\alpha)$",
 cmap='hsv',
 lims=alpha)

Figs. 4.63 and 4.64 will show the dynamics of the multifractal spectrum

 changing over time for the time series of S&P 500, Hang Seng index, DAX,

and BSE Sensex within two- and three-dimensional representations.

 (a) (b)

 (c) (d)

Fig. 4.63: Two-dimensional contour diagram of the dynamics of the multifractal spectrum
changing with time for the time series of S&P 500 (a), Hang Seng index (b), DAX (c), and BSE
Sensex (d)

X = np.arange(window, length, tstep)
X = np.expand_dims(X, axis=1)
X = np.repeat(a=X, repeats=nq.shape[0], axis=1)

Y = np.array(alpha)
Z = np.array(mfSpect)

plot_3d(X, Y, Z, subtitle_jpg='3d_f(alpha)',
 ylabel=r"α",
 zlabel=r"$f(\alpha)$",
 cmap='hsv')

 (a) (b)

 (c) (d)

Fig. 4.64: Three-dimensional diagram of the dynamics of the multifractal spectrum
changing over time for the time series of S&P 500 (a), Hang Seng index (b), DAX (c), and BSE
Sensex (d)

As can be seen from the last figures (Fig. 4.63 and Fig. 4.64), the width of

the multifractality spectrum changes in shape over time, and becomes wider during

crisis events, as evidenced by such an indicator as . It can be seen that in the

pre-crisis periods, the left-handed asymmetry increases, which characterizes

fluctuations of a significant amplitude. The crises themselves represent a shift of

 to the right, indicating the dominance of fluctuations with small amplitudes.

In any case, an increase in the width of the spectrum is an indicator of an increase

in the degree of self-organization of the elements involved in the system under

study. In other words, both and the previous indicators can be recommended

as indicators or precursors of crisis events. Further, it will be interesting to consider

varieties of MF-DFA that, for example, take into account multifractal cross-

correlations [5].

4.11 Conclusions on multifractal analysis

In this chapter, we analyzed price fluctuations of the stock indices using a

spectrum of monofractal indicators. It has been shown that these methods are quite

resistant to non-stationarity of the signal being analyzed. The stock market is

characterized by rises and falls in fractal dimension, which indicates a variation in

the efficiency of its development at different points in time. As already mentioned,

a decline in the fractal dimension in a crisis or pre-crisis state of the market may

indicate an increase in the degree of periodization (orderliness) of the system. An

increase in the fractal dimension may be an indicator of increasing disorder.

Moreover, a spectrum of multifractal indicators was presented as indicators

(precursor indicators) of crash events. It has been shown that the relevant

indicators behave in a characteristic way (increase or decrease) in crisis and pre-

crisis periods in the stock market. It can be seen that the stock indices are

characterized by variability in the degree of multifractality, which indicates a

change in the correlations of both small fluctuations and large ones on different

spatial and temporal scales. Further research could be aimed at exploring the

possibility of determining thresholds for the degree of multifractality that could be

used to determine the degree of development of financial markets. Some emerging

markets may be more developed than others because they are dynamic and

growing, and therefore their range of multifractality may be the widest. Thus, in

this case, it is possible to identify different stages of market development and

model variables in the dynamics of complex systems as a function of the degree of

multifractality.

5 Chaos-dynamic measures of complexity
Seemingly random fluctuations in complex systems often exhibit varying

levels of complexity and chaos. Given limited data, it becomes difficult to

determine the limits of their predictability. The analysis of such systems, the

processes that determine their dynamics, and the theory of chaos have been

considered in various fields, such as economics, finance, physics, etc. When it

comes to analyzing, for example, DAX dynamics, knowledge of its completely

random and, at the same time, deterministic processes can potentially explain time

series fluctuations of various nature. Over the years, chaos theory has provided

approaches to studying some interesting properties of time series. The most

common ones are: correlation dimension, BDS test, Kolmogorov entropy,

Lyapunov exponents, etc.

We will demonstrate how Lyapunov exponents make it possible to study the

modes of chaotic and deterministic behavior.

5.1 Lyapunov exponents and sensitivity to initial conditions

The evolution of the system demonstrates sensitivity to initial conditions.

This means that initially close trajectories that develop can quickly deviate from

each other and have completely different outcomes. Accordingly, with small

uncertainties that intensify extremely rapidly, long-term forecasts are impossible.

On the other hand, in a system with points of attraction or stable points, the

distance between them asymptotically decreases with time or with the number of

points that tend to converge [38].

To represent the idea more accurately, consider two successive trajectories,

 and the nearest neighbor of this trajectory with a slight displacement,

, where represents a small deviation in time , as shown in Fig. 5.1.

Fig. 5.1: Divergence of two initially close trajectories [21]

When the dynamics of two initially close trajectories are disrupted by a

particular event, the distance between them can increase exponentially [166]:

where denotes the Lyapunov exponent (LE); is the distance between

the point under consideration and its nearest neighbor after iterations; is the

initial distance between the point under consideration and its nearest neighbor at

the initial time .

The LE is a measure of the rate of exponential divergence of trajectories

close to each other in the phase space of a dynamic system. In other words, the LE

shows how quickly trajectories that start close to each other converge or diverge,

measuring the degree of chaos in the system.

In cases where our system is -dimensional, we have the same number of

subjected to perturbations along different axes. By defining the magnitude of the

perturbation along the -axis as , we obtain Lyapunov exponents:

 for

To determine whether the motion is periodic or chaotic, especially for large

, it is recommended to consider the contribution of the system to the largest

Lyapunov exponent (LLE), since the diameter of the -dimensional ellipsoid

begins to depend on it [21]. It is the LLE that is used to quantify the predictability

of systems, since exponential divergence means that in a system where the initial

perturbation was infinitesimal, the loss of predictability begins. However, it should

be noted that other indicators also contain important information about the stability

of the system, including the direction of convergence and divergence of trajectories

[53].

The existence of at least one positive LE is usually considered a strong

indicator of chaos. A positive LE means that initially close trajectories in phase

space are sensitive to initial conditions and diverge exponentially fast. Negative LE

corresponds to cases where trajectories remain close to each other, but this does

not necessarily mean stability, and we should investigate our system in more detail.

Zero or very close to zero values indicate that disturbances have little or no effect

on the evolution of the trajectories of a dynamic system.

Due to the great interest in LE, more and more calculation tools are being

developed. Unfortunately, there is still no generally accepted and universal method

for estimating the entire spectrum of Lyapunov exponents from time series values.

Some of the most common and popular algorithms were applied by Wolf et al.

[24], Sano and Sawada [114], and later improved by Eckmann [94], Rosenstein

[115], Parlitz [160], Balcerak, and others [102].

5.2 Methodology for calculating Lyapunov exponents using the

Ekman method

First, according to the approach of Eckmann et al. [94], we have to

reconstruct the attractor dynamics from the time series with the

embedding dimension , and then construct a -dimensional orbit representing

the time evolution

for

Next, we need to determine the trajectories closest to :

We sort so that and store the

permutation and its inverse . Next, we try to find the neighbors of by

looking at and scan at and

 until the condition is satisfied. For the chosen embedding

dimension , we choose the value of under the condition

After the systems are reconstructed to dimension , it is necessary to

determine the matrix of dimension , which describes the temporal

evolution of vectors from the environment of the trajectory and how they map

to the state . The matrix is obtained by searching for neighbors

The vectors may not cover . In this case, such uncertainty

can lead to false indicators that can lead to spurious analysis. To overcome such

obstacles, the projection of trajectories is defined on a subspace of dimension

. Thus, the space on which the dynamics takes place corresponds to the

local dimension , and should be slightly larger than to avoid the presence

of false neighbors [73, 77]. It follows that the trajectory is associated with a

-dimensional vector

where . When , condition (5.4) is replaced by

the following expression:

The matrix is determined by the least squares method. The last step is the

QR decomposition to find the orthogonal matrices and the upper triangular

matrices for which

As proposed by Eckmann [92, 94], knowing the number of points on the

attractor, the diagonal eigenvalues of the matrix , and the sampling step , the

following equation can be used to find the -th LE:

5.3 Application of the Rosenstein method to calculate the Lyapunov

exponent

115] uses a time-delayed embedding reconstruction

method that transfers the most important features of a multidimensional attractor

into a single one-dimensional time series of some finite size . For the time series,

each vector will be represented similarly to the vector (5.5) with the

dimension of the embedding and the time delay . Then, on the recovered

trajectory, we initialize the search in the state space for the nearest neighbor

for the trajectory :

mean period

where is the Euclidean norm, is the nearest neighboring trajectory,

and is the trajectory under consideration.

From (5.1), we already know that the distance between states and

grows with time according to a power law, where is a good approximation of the

LLE. For further estimates, let us consider the logarithm of the distance on the

trajectory , where is the distance between the -th

pair of nearest neighbors defined by Eq. (5.6) after time steps, is the initial

distance between them, and is the time interval between measurements (time

series sampling period).

The subsequent result of this algorithm is a function of time:

where is the size of the reconstructed time series, and

 is the -th line whose slope is approximately equal to the LLE. Then it is

proposed to calculate the LLE as the slope of the most linear section. Finding such

a section turns out to be a non-

method is simple to implement and compute.

5.4 Practical calculations of LLE and LEs

e approaches can be used to calculate the corresponding

chaos-
import matplotlib.pyplot as plt
import numpy as np
import neurokit2 as nk
import yfinance as yf
import pandas as pd
import scienceplots
from tqdm import tqdm

%matplotlib inline

plt.style.use(['science', 'notebook', 'grid'])

size = 22
params = {
'figure.figsize': (8, 6),
'font.size': size,
'lines.linewidth': 2,
'axes.titlesize': 'small',
'axes.labelsize': size,
'legend.fontsize': size,
'xtick.labelsize': size,
'ytick.labelsize': size,
"font.family": "Serif",
"font.serif": ["Times New Roman"],
'savefig.dpi': 300,
'axes.grid': False
}

plt.rcParams.update(params)

transformation() function to perform the

transformation of a series to yields or standardized values:
def transformation(signal, ret_type):

 for_rec = signal.copy()

 if ret_type == 1:
 pass
 elif ret_type == 2:
 for_rec = for_rec.diff()
 elif ret_type == 3:
 for_rec = for_rec.pct_change()
 elif ret_type == 4:
 for_rec = for_rec.pct_change()
 for_rec -= for_rec.mean()
 for_rec /= for_rec.std()
 elif ret_type == 5:
 for_rec = for_rec.pct_change()
 for_rec -= for_rec.mean()
 for_rec /= for_rec.std()
 for_rec = for_rec.abs()
 elif ret_type == 6:
 for_rec -= for_rec.mean()
 for_rec /= for_rec.std()

 for_rec = for_rec.dropna().values

 return for_rec

define a function for plotting pairwise graphs:
def plot_pair(x_values,
 y1_values,
 y2_values,
 y1_label,
 y2_label,
 x_label,
 file_name, clr="magenta"):

 fig, ax = plt.subplots()

 ax2 = ax.twinx()

 ax2.spines.right.set_position(("axes", 1.03))

 p1, = ax.plot(x_values,
 y1_values,
"b-", label=fr"{y1_label}")
 p2, = ax2.plot(x_values,
 y2_values,
 color=clr,
 label=y2_label)

 ax.set_xlabel(x_label)

 ax.set_ylabel(f"{y1_label}")

 ax.yaxis.label.set_color(p1.get_color())
 ax2.yaxis.label.set_color(p2.get_color())

 tkw = dict(size=4, width=1.5)
 ax.tick_params(rotation=45, axis='x', **tkw)
 ax.tick_params(axis='y', colors=p1.get_color(), **tkw)
 ax2.tick_params(axis='y', colors=p2.get_color(), **tkw)

 ax2.legend(handles=[p1, p2])

 plt.savefig(file_name +".jpg")

 plt.show();

Calculations of Lyapunov exponents using the sliding window

procedure

For further calculations, we will use the neurokit2 library. The key

function for obtaining the relevant indicators is complexity_lyapunov(). It

provides access to calculations according to the following algorithms:

.

Makowski

KDTree for more efficient nearest neighbors computation.

Additionally, the LLE is computed as the slope up to the changepoint

of divergence rate (the point where it flattens out), making it more

robust to the length trajectory parameter.

Eckmann et al. (1986).

complexity_lyapunov(signal, delay=1, dimension=2,
method='rosenstein1993', separation='auto', **kwargs)

Parameters:

signal (Union[list, np.array, pd.Series]) the signal (i.e., a time

series) in the form of a vector of values;

delay (int) time delay (often denoted Tau , sometimes referred to

as lag) in samples;

dimension (int) embedding dimension (, sometimes referred to

as d or order). if method is s for

dimension are recommended;

method (str) the method that defines the algorithm for computing

LE. Can be one of

or

len_trajectory (int) applies when method is

number of data points in which neighboring trajectories are followed;

matrix_dim (int) applies when method is

Corresponds to the number of LEs to return;

min_neighbors (int, str) applies when method is

Minimum number of neighbors.

If min(2 * matrix_dim, matrix_dim + 4) is used;

**kwargs (optional) other arguments to be passed

to signal_psd() for calculating the minimum temporal separation of

two neighbors.

Returns:

lle (float) an estimate of the largest Lyapunov exponent (LLE) if

method is n array of LEs if

info (dict) a dictionary containing additional information regarding

the parameters used to compute LLE.

neurokit2 library:
!pip install --upgrade neurokit2

5.4.1.1 Calculation of the LLE based on the Rosenstein method

signal = time_ser.copy()
ret_type = 1 # type of a series:
 # 1 - initial
 # 2 - detrending (difference between present and previous values
)
 # 3 – initial returns
 # 4 – standardized returns

 # 5 – absolute values (volatility)
 # 6 – standardized series

time_ser_ret = transformation(signal, ret_type)

d_E = 3 # embedding dimension
tau = 10 # time delay
approach_lyap = "makowski" # method for LLE
max_len = "auto" # set the maximum trajectory length to 10 times th
e delay
sep = "auto" # estimation of the average period as the inverse
of the average frequency of the power spectrum

and visualize the trajectory divergence of the reconstructed phase space of

S&P 500, Hang Seng index, DAX, BSE Sensex, representing the calculated LLEs

(see Fig. 5.3):
lle, _ = nk.complexity_lyapunov(signal=time_ser_ret,
 method=approach_lyap,
 dimension=d_E,
 delay=tau,
 max_length=max_len,
 separation=sep,
 show=True)

 (a) (b)

 (c) (d)

Fig. 5.3: Diagram of trajectory divergence of the reconstructed phase space of S&P 500 (a),
Hang Seng index (b), DAX (c), BSE Sensex (d), representing the calculated LLEs

Fig. 5.3 shows a typical plot (solid curve) of the average trajectory

divergence versus time ; the orange line has a slope equal to the theoretical value

of . The short blue section before the red dashed line is used to extract the

largest Lyapunov exponent. As we can see, the curve changes at longer time

periods because the system is limited in phase space and the average divergence

stock indices are on the borderline between chaos and stability, i.e., the divergence

index of the series dynamics is balanced by convergence.

As we have already seen, complex systems are volatile, and the system can

show either convergence or divergence or complete immutability over time.

the sliding window procedure. Let us define the following parameters:
window = 500
tstep = 1
length = len(time_ser)
ret_type = 1 # type of a series:
 # 1 - initial,
 # 2 - detrending (difference between present and previous values
)
 # 3 – initial returns,
 # 4 – standardized returns,
 # 5 – absolute values (volatility)
 # 6 – standardized series

d_E = 3 # embedding dimension

tau = 1 # time delay
approach_lyap = "makowski" # method for LLE: rosenstein1993, makowski
max_len = "auto" # set the maximum trajectory length to 10 times the delay: a
uto
sep = "auto" # estimation of the average period as the inverse of the average
 frequency of the power spectrum

LLE = [] # array to save LLE

Now you can start the sliding window procedure:
for i in tqdm(range(0, length-window, tstep)):

 fragm = time_ser.iloc[i:i+window].copy()
 fragm = transformation(fragm, ret_type)
 lle, _ = nk.complexity_lyapunov(signal=fragm,
 method=approach_lyap,
 dimension=d_E,
 delay=tau,
 max_length=max_len,
 separation=sep,
 show=False)

 LLE.append(lle)

Save the results to a text file:
name = f"LLE_name={symbol}_window={window}_step={tstep}_rettype={ret_type}_\
 d_E={d_E}_tau={tau}_approach={approach_lyap}_max_len={max_len}_separation
={sep}.txt"

np.savetxt(name, LLE)

Define the parameters for further figures:
notation of the Lyapunov exponent in the figure legend
label_lyap = r'λ_{max}'

title of the figure
file_name = f"LLE_name={symbol}_window={window}_step={tstep}_rettype={ret_typ
e}_\
 d_E={d_E}_tau={tau}_approach={approach_lyap}_max_len={max_len}_separation
={sep}"

the color of an indicator
color ='red'

and plot the dynamics of S&P 500, Hang Seng index, DAX, BSE Sensex,

and their LLEs according to Rosenstein method (see Fig. 5.4):
plot_pair(time_ser.index[window:length:tstep],
 time_ser.values[window:length:tstep],
 LLE,
 ylabel,
 label_lyap,

 xlabel,
 file_name,
 color)

 (a) (b)

 (c) (d)

Fig. 5.4: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their
LLEs according to Rosenstein method

In Fig. 5.4 we can see that the LLEs begin to decline in crisis and pre-crisis

states, indicating an increase in the correlation of the dynamics under study. At the

time of the crisis, the LLE begins to rise, indicating an increase in divergence

during crisis periods.

5.4.1.2 Calculation of Lyapunov exponents based on the Eckmann method

window = 500
tstep = 1
length = len(time_ser)
ret_type = 1
d_E = 4 # dimensionality of the original space (number of exponents)

d_M = 3 # dimension of the subspace embedding

approach_lyap = "eckmann1986" # method for LLE calculations
sep = "auto" # estimation of the average period as the inverse of the average
 frequency of the power spectrum
min_neighb = "default" # min(2 * matrix_dim, matrix_dim + 4)

LE = [] # array for saving LE

for i in tqdm(range(0, length-window, tstep)):

 fragm = time_ser.iloc[i:i+window].copy()
 fragm = transformation(fragm, ret_type)
 le, _ = nk.complexity_lyapunov(signal=fragm,
 method=approach_lyap,
 dimension=d_E,
 matrix_dim=d_M,
 min_neighbors=min_neighb,
 separation=sep,
 show=False)

 LE.append(le)

Save the results to text files:
LE = np.array(LE)

for i in range(d_E):
 np.savetxt(f"LE number={i+1}_name={symbol}_window={window}_step={tstep}_r
ettype={ret_type}_\
 d_E={d_E}_d_M={d_M}_approach={approach_lyap}_min_neighbors={min_neighb}_s
eparation={sep}.txt", LE[i])

dynamics of S&P 500, Hang Seng index, DAX, BSE

Sensex, and their spectrum of LEs according to Eckmann method (see Fig. 5.5):
fig, ax = plt.subplots(LE.shape[1]+1, 1, sharex=True)

ax[0].plot(time_ser.index[window:length:tstep], time_ser.values[window:length
:tstep], label=symbol)
ax[0].set_ylabel(symbol)
ax[0].legend()

for i in range(1, LE.shape[1]+1):
 ax[i].plot(time_ser.index[window:length:tstep], LE[:, i-1], color='red',
label=fr'λ_{i}')
 ax[i].set_ylabel(fr"λ_{i}")
 ax[i].legend()

ax[-1].set_xlabel(xlabel)
fig.subplots_adjust(hspace=0)

plt.savefig(f"LE name={symbol}_window={window}_step={tstep}_rettype={ret_type

}_\
 #d_E={d_E}_d_M={d_M}_approach={approach_lyap}_min_neighbors={min_neighb}_
separation={sep}.jpg")
plt.show();

 (a) (b)

 (c) (d)

Fig. 5.5: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their
spectrum of LEs according to Eckmann method

As shown in Fig. 5.5, the range of LEs reacts in a special way to stock

market crises. It can be seen that, first, decreases in the pre-crisis periods and

increases during the crisis. This dynamics is especially characteristic of the crises

of 1997, 2001, 2008, 2011, 2015, and 2020. In the pre-crisis periods, there is a

convergence of trajectories in the phase space of the system, which indicates an

increase in its orderliness. The crisis and post-crisis periods themselves are

characterized by divergence

it is clear that as we go down from the 1st to the 4th LE, we gradually lose

information about the dynamics of the system. That is, the first largest indicators

seem to be the most informative in this case. Perhaps, in this case, it makes sense

to consider only the largest LE.

Save the indicator in a text file:
name = f"LE Eckman name={symbol}_window={window}_step={tstep}_rettype={ret_ty
pe}_\
 #d_E={d_E}_d_M={d_M}_approach={approach_lyap}_min_neighbors={min_neighb}_
separation={sep}.txt"

np.savetxt(name, LE[:, 0])

Define the parameters for saving figures:
labeling of the Lyapunov exponent in the figure legend
label_lyap = r'λ_{max}'

figure title
file_name = f"LE Eckmann name={symbol}_window={window}_step={tstep}_rettype={
ret_type}_\
 #d_E={d_E}_d_M={d_M}_approach={approach_lyap}_min_neighbors={min_neighb}_
separation={sep}"

color of an indicator
color ='red'

plot_pair(time_ser.index[window:length:tstep], time_ser.values[window:length:
tstep], LE[:, 0], ylabel, label_lyap, xlabel, file_name, color)

Fig. 5.6 shows the comparative dynamics of S&P 500, Hang Seng index,

DAX, BSE Sensex, and the LLE based on the Eckmann method.

 (a) (b)

 (c) (d)

Fig. 5.6: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their
LLEs according to the Eckmann method

5.5 Conclusions on Lyapunov exponents

Chaos theory and its tools remain a huge challenge for researchers in various

fields of science. In the world of LEs, there is a growing interest in their definition,

numerical methods, and application to various complex systems. To summarize,

the LLE allows us to establish:

the region of sensitivity to initial conditions;

the region of chaos;

the region of stability.

6 Network analysis of crisis phenomena
In this section, we will demonstrate modern methods for converting time

series into a network (graph) with further investigation of the corresponding

spectral and topological measures of complexity. We will also show that these

measures can be compared with the dynamics of the initial time series (hence

graphodynamics) and if they are informative about possible changes in the series

itself, then they can be used to build indicators of the characteristic dynamics of

complex systems.

Most complex systems inform their structural and dynamic nature by

generating a sequence of certain characteristics that can be represented by time

series. In recent years, interesting algorithms for converting time series into a

network have been developed, which allows expanding the range of known

characteristics of time series even to network ones [9, 13, 17]. Recently, several

approaches to converting time sequences into complex network-like mappings

have been proposed. These methods can be roughly divided into three classes

[141

time series and is called the Visibility Graph (VG) [99, 141].

The second analyzes the mutual approximation of different segments of the

time sequence and uses the technique of recurrence analysis [141]. A recurrence

diagram displays the existing recurrence of phase trajectories in the form of a

binary matrix, the elements of which are ones or zeros, depending on whether the

selected points of the phase space of a dynamical system are close (recurrent) with

a given precision or not. A recurrence diagram is easily transformed into an

adjacency matrix, according to which the spectral and topological characteristics of

the graph are calculated [15].

Finally, if we base the formation of connections of the elements of the graph

on the correlation relations between them, then we get a correlation graph [141].

To construct and analyze the properties of a correlation graph, it is necessary to

form an adjacency matrix from the correlation matrix. To do this, it is necessary to

enter a value that for the correlation field will serve as the distance between the

correlated agents. Such a distance can be represented as , where is

the correlation coefficient between the two assets. Thus, if the correlation

coefficient between two assets is significant, then the distance between them is

small, and starting from a certain critical value of , the assets can be considered

related on the graph. For the adjacency matrix, this means that they are adjacent on

the graph. Otherwise, the assets are not contiguous. In this case, the coherence

condition of the graph is mandatory condition.

The main goal of such methods is to accurately reproduce the information

stored in time series in an alternative mathematical structure, so that powerful

graph theory tools can later be used to characterize time series from a different

perspective in order to bridge the gap between nonlinear analysis of time series,

dynamical systems, and graph theory.

In this chapter, we will consider only the algorithm of the VG.

6.1 Methods for converting time series into visibility graphs

Visibility graphs (VG) are based on the simple mapping of time series to a

network domain, where each observation is a vertex in a complex network. Two

vertices and are connected by an edge if the following condition applies to them

[98]:

where presents a certain obstacle that should not be present for the two

vertices to be linked by a path.

The adjacency matrix of the represented non-directional and

unweighted VG can be represented as

where is the Heaviside function.

The Horizontal visibility graph (HVG) is a simplified version of this

algorithm [30]. For the time series under study, the sets of vertices VG and HVG

are the same, while the set of edges of the HVG displays the mutual horizontal

visibility of the two observations and . That is, it is possible to construct an

edge if for all at so that

VG and HVG capture essentially the same properties of the system under

study, since HVG is a subgraph of VG with the same set of vertices, but possesses

only a subset of VG edges. Note that VG is invariant with respect to the

superposition of linear trends, while HVG is not.

Library ts2vg

To further construct the classic Visibility Graph (VG) or its horizontal

counterpart, we will use the ts2vg library. The ts2vg package provides a high-

performance implementation of algorithms for constructing visibility graphs from

time series data, first introduced by Lucas Lacassa et al. [99].

Visibility graphs and some of their properties (e.g., power distributions) are

computed quickly and efficiently, even for time series with millions of

observations. An efficient divide-and-conquer algorithm is used to calculate graphs

whenever possible [173].

6.1.1.1 ts2vg installation

The latest released version of ts2vg is available on PyPI and can be easily

installed by running the following command:
!pip install ts2vg

6.1.1.2 Supported graph types

6.1.1.2.1 Main types

Natural visibility graph [99] (ts2vg.NaturalVG);

Horizontal visibility graph [30] (ts2vg.HorizontalVG).

6.1.1.2.2 Available variations

Weighted visibility graph (via the parameter weighted);

Directional visibility graph (via the parameter directed);

Parametric visibility graph [83] (via the parameters min_weight and

max_weight);

Limited Penetrable Visibility Graphs [131, 159] (via the parameter

penetrable_limit).

Please note that several graph options can be combined and used at the same

time. More detailed documentation can be found on the website of the ts2vg

library.

6.1.1.2.3 Compatibility with other libraries

The resulting graphs can be easily converted to graph objects from other

common Python graph libraries such as igraph, NetworkX, and SNAP for further

analysis.

For this, the following methods are provided:

as_igraph();
as_network();
as_snap().

6.2 Network measures estimation

First, import the necessary modules for further work:
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
import numpy as np
import neurokit2 as nk
import yfinance as yf
import pandas as pd
import networkx as nx
import scienceplots

from sklearn import preprocessing
from tqdm import tqdm

from ts2vg import NaturalVG, HorizontalVG
from scipy.spatial import distance

%matplotlib inline

And we will configure the figures for the output:
plt.style.use(['science', 'notebook', 'grid'])

size = 22
params = {
'figure.figsize': (8, 6),
'font.size': size,
'lines.linewidth': 2,
'axes.titlesize': 'small',
'axes.labelsize': size,
'legend.fontsize': size,
'xtick.labelsize': size,
'ytick.labelsize': size,
"font.family": "Serif",
"font.serif": ["Times New Roman"],
'savefig.dpi': 300,
'axes.grid': False
}

plt.rcParams.update(params)

Let us consider the possibility of using graphodynamic indicators as

indicators or indicators-harbingers of crisis phenomena.

standardization or finding profitability). To do this, declare the

transformation() function, which will take a time signal, a series type, as

input and return its transformation.

the original representation of the time series provides the most informative

representation for graph construction. Nevertheless, we assume that, for example,

the profitability of a physical signal may have a better graph representation, which

is why we define this function in this chapter.
def transformation(signal, ret_type):

 for_graph = signal.copy()

 if ret_type == 1:
 pass
 elif ret_type == 2:
 for_graph = for_graph.diff()
 elif ret_type == 3:

 for_graph = for_graph.pct_change()
 elif ret_type == 4:
 for_graph = for_graph.pct_change()
 for_graph -= for_graph.mean()
 for_graph /= for_graph.std()
 elif ret_type == 5:
 for_graph = for_graph.pct_change()
 for_graph -= for_graph.mean()
 for_graph /= for_graph.std()
 for_graph = for_graph.abs()
 elif ret_type == 6:
 for_graph -= for_graph.mean()
 for_graph /= for_graph.std()

 for_graph = for_graph.dropna().values

 return for_graph

We return the same output signal. Next, set the parameters of the graph

under study. For further calculations, we will use the same values of the time

window, step, and series type.
signal = time_ser.copy()
ret_type = 1 # type of a series:
1 – initial
2 - detrending (difference between present and previous values)
3 – initial returns
4 – standardized returns
5 – absolute values (volatility)
6 – standardized series

for_graph = transformation(signal, ret_type) # series transformation

window = 500 # sliding window width
tstep = 5 # sliding window time step
graph_type = 'classic' # graph type: classic, horizontal

length = len(time_ser)

Graph construction

Since constructing a graph for the entire time series can take quite a long

period of time, we will only plot a visibility graph for its fragment. To do this, we

will determine the parameters of index_begin and index_end that will indicate

the beginning of the construction and the ending. For the classic VG we have the

following visibility connections (see Fig. 6.1):
index_begin = 3700
index_end = 5700

date = date_in_num[index_begin:index_end]

if graph_type == 'classic':
 g = NaturalVG(directed=None).build(for_graph[index_begin:index_end], xs=d
ate)
 pos1 = g.node_positions()
 nxg = g.as_networkx()
if graph_type == 'horizontal':
 g = HorizontalVG(directed=None).build(for_graph[index_begin:index_end], x
s=date)
 pos1 = g.node_positions()
 nxg = g.as_networkx()

graph_plot_options = {
'with_labels': False,
'node_size': 0,
'node_color': [(0, 0, 0, 1)],
'edge_color': [(0, 0, 0, 0.15)],
}

fig, ax = plt.subplots(1, 2, figsize=(15, 8))

nx.draw_networkx(nxg, ax=ax[0], pos=pos1, **graph_plot_options)
ax[0].tick_params(bottom=True, labelbottom=True)
ax[0].plot(time_ser.index[index_begin:index_end], for_graph[index_begin:index
_end], label=fr"{ylabel}")
ax[0].set_title(f'Visibility connections of {ylabel}', pad=10)
ax[0].set_xlabel(xlabel)
ax[0].set_ylabel(f"{ylabel}")
ax[0].legend(loc='upper right')
ax[0].tick_params(axis='x', labelrotation=45)

ax[1].set_title(f'Graph representation of {symbol}', pad=10)

determine the position of the nodes on the graph
pos2 = nx.spring_layout(nxg, k=0.15, iterations=100)

calculate degree centrality
degCent = nx.degree_centrality(nxg)

create a list of vertex sizes based on degree centrality
node_sizes = [v*100 for v in degCent.values()]

colors of nodes based on their degree of centrality
node_colors = [v for v in degCent.values()]

build a graph
nx.draw_networkx(nxg, ax=ax[1], pos=pos2,
 node_size=node_sizes,
 node_color=node_colors,
 with_labels=False,
 cmap=plt.get_cmap('plasma'))

assign a minimum and maximum value
of degree centrality to build the heat scale
vmin = np.asarray(list(degCent.values())).min()
vmax = np.asarray(list(degCent.values())).max()

sm = plt.cm.ScalarMappable(cmap=plt.get_cmap('plasma'),
 norm=plt.Normalize(vmin=vmin, vmax=vmax))
cb = plt.colorbar(sm, ax=ax[1])
cb.set_label('Degree centrality')

plt.savefig(f"Time_ser_connections_symbol={symbol}_idx_beg={index_begin}_\
 idx_end={index_end}_sertype={ret_type}_network_type={graph_type}.
jpg", bbox_inches="tight", dpi=1000)

Fig. 6.1: A natural visibility graph before the crash of 2001 in the S&P 500 market and a
network representation of this fragment

As we can see from the figure, the pre-crisis period of 2001 is characterized

by a significant degree of visibility. The figure on the right shows that a cluster

characterized by a high degree of centrality begins to form in the stock market

network, which can serve as a harbinger of a crash.

Sliding window procedure for network analysis

Next, we will observe how the properties of the network change over time.

To do this, we will use the well-known procedure of a moving window. As part of

this procedure, we will investigate the graphodynamics of both spectral and

topological indicators.

To construct the pairwise dynamics of a particular indicator and the series

under study, we determine the function plot_pair:
def plot_pair(x_values, y1_values, y2_values, y1_label, y2_label, x_label, fi
le_name, clr="magenta"):

 fig, ax = plt.subplots()

 ax2 = ax.twinx()
 ax2.spines.right.set_position(("axes", 1.03))

 p1, = ax.plot(x_values,
 y1_values,
"b-", label=fr"{y1_label}")
 p2, = ax2.plot(x_values,
 y2_values,
 color=clr,
 label=y2_label)

 ax.set_xlabel(x_label)
 ax.set_ylabel(f"{y1_label}")
 ax.yaxis.label.set_color(p1.get_color())
 ax2.yaxis.label.set_color(p2.get_color())

 tkw = dict(size=2, width=1.5)

 ax.tick_params(axis='x', rotation=35, **tkw)
 ax.tick_params(axis='y', colors=p1.get_color(), **tkw)
 ax2.tick_params(axis='y', colors=p2.get_color(), **tkw)
 ax2.legend(handles=[p1, p2])

 plt.savefig(file_name +".jpg")
 plt.show();

Spectral characteristics

Spectral graph theory is based on the study of the properties of graphs

through eigenvalues or eigenvectors of the adjacency matrix or the Laplace

matrix (Laplacian matrix) [65].

Recall that the standard Laplace matrix for the graph is defined as

where is the diagonal matrix , where the -th diagonal element is the

degree of vertex in [117], and is the adjacency matrix . In this chapter, we

present the spectral characteristics for the normalized Laplace matrix [143], which

is defined as

If is the eigenvalue of , then [65]; that is, by normalizing the

Laplace matrix, we normalize the eigenvalues.
AlgebraicCon = []
GraphEnergy = []
SpecMoment_3 = []
SpecRadius = []
SpecGap = []
NaturalConnectivity = []

for i in tqdm(range(0, length-window, tstep)):

 fragm = time_ser.iloc[i:i+window].copy()
 fragm = transformation(fragm, ret_type)

 if graph_type == 'classic':
 g = NaturalVG(directed=None).build(fragm)
 pos = g.node_positions()
 nxg = g.as_networkx()
 if graph_type == 'horizontal':
 g = HorizontalVG(directed=None).build(fragm)
 pos = g.node_positions()
 nxg = g.as_networkx()

spectrum of eigenvalues of the adjacency matrix
 adj_spectrum = nx.adjacency_spectrum(nxg).real

sort eigenvalues in ascending order
 sorted_adj_spectrum = np.sort(adj_spectrum)

calculate algebraic connectivity
 alg_con = nx.algebraic_connectivity(nxg, normalized=True, method='tracemi
n_lu')

calculate the energy of the graph
 graph_en = np.sum(np.abs(adj_spectrum))

calculate the spectral gap
 spec_gap = sorted_adj_spectrum[-1] - sorted_adj_spectrum[-2]

calculate the spectral radius
 spec_rad = np.max(np.abs(adj_spectrum))

calculate the spectral moment
 spec_mom_3 = np.mean(adj_spectrum **3)

calculate natural connectivity
 nat_con = np.log(np.mean(np.exp(adj_spectrum)))

 AlgebraicCon.append(alg_con)
 GraphEnergy.append(graph_en)
 SpecRadius.append(spec_rad)
 SpecGap.append(spec_gap)
 SpecMoment_3.append(spec_mom_3)
 NaturalConnectivity.append(nat_con)

Save initial values to a text document. We also prepare labels for figures and

names of saved measures:
ind_names = ['algebraic_conn', 'graph_energy', 'spectral_radius',
'spectral_grap', 'spectral_moment_3', 'natural_connectivity']

indicators = [AlgebraicCon, GraphEnergy, SpecRadius,
 SpecGap, SpecMoment_3, NaturalConnectivity]

measure_labels = [r'λ_2', r'E', r'R', r'δ', r'm_3', r'$N
_c$']

file_names = []

for i in range(len(ind_names)):
 name = f"{ind_names[i]}_symbol={symbol}_wind={window}_step={tstep}_series
type={ret_type}_graph_type={graph_type}"
 np.savetxt(name +".txt", indicators[i])
 file_names.append(name)

6.2.3.1 Algebraic connectivity

Regarding the eigenvalues of the Laplace matrix, one of the main

characteristics we can obtain is the algebraic connectivity of the graph, which

corresponds to the second smallest eigenvalue of the matrix. This indicator reflects

the number of disconnected components. For an unconnected graph, will be

zero, and for a graph with a higher density of connections, will be higher. Using

this indicator, it is possible to determine the fault tolerance and synchronization of

the system under study.
plot_pair(time_ser.index[window:length:tstep], time_ser.values[window:length:
tstep], indicators[0], ylabel, measure_labels[0], xlabel, file_names[0], clr=
"magenta")

In Fig. 6.2 is illustrated the comparative dynamics of S&P 500, Hang Seng

index, DAX, BSE Sensex, and their algebraic connectivity.

 (a) (b)

 (c) (d)

Fig. 6.2: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their
algebraic connectivity

Fig. 6.2 shows that increases in the pre-crisis periods, which indicates an

increase in the degree of synchronization between market traders in these periods.

The stock market network is becoming more and more correlated and stable. Such

dynamics may indicate an increase in coherence between major market players

regarding their further actions on stock market.

6.2.3.2 Graph energy

From the eigenvalues of the adjacency matrix from , one can determine a

measure such as the graph energy [68, 80]:

Similar to , we have a completely disconnected graph when .

For each , there are many edges that determine the high and effective

connectivity of .
plot_pair(time_ser.index[window:length:tstep],
 time_ser.values[window:length:tstep],
 indicators[1],
 ylabel,
 measure_labels[1],
 xlabel,
 file_names[1],
 clr="crimson")

In Fig. 6.3 is shown the comparative dynamics of S&P 500, Hang Seng

index, DAX, BSE Sensex, and their graph energy.

 (a) (b)

 (c) (d)

Fig. 6.3: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their
graph energy

Fig. 6.3 shows that during periods of relative stability, remains at a rather

low level, indicating that market traders are disconnected during such periods.

Both buyers and sellers act rather uncorrelated. In pre-crisis periods, energy begins

to increase, indicating an increase in the efficiency of work between market players

and their connectivity.

6.2.3.3 Spectral radius

In addition to the above measures, you can define such measures as the

spectral radius, which is the largest absolute eigenvalue of the matrix :

plot_pair(time_ser.index[window:length:tstep],
 time_ser.values[window:length:tstep],
 indicators[2],
 ylabel,
 measure_labels[2],
 xlabel,
 file_names[2],
 clr="orange")

In Fig. 6.4 is shown the comparative dynamics of S&P 500, Hang Seng

index, DAX, BSE Sensex, and their spectral radius.

 (a) (b)

 (c) (d)

Fig. 6.4: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their
spectral radius

Fig. 6.4 shows that the spectral radius increases during crisis and pre-crisis

periods, indicating that the correlation of the stock market graph is growing and

that traders are synchronizing their actions.

6.2.3.4 Spectral gap

By ranking the eigenvalues of the adjacency matrix in non-decreasing

order, i.e., , we can define a measure called the spectral gap:

for which for which is the first largest eigenvalue of and is the

second largest eigenvalue. The spectral gap shows the synchronization rate in the

studied network. The larger it is, the more interconnected the nodes are and the

more complex the graph is.
plot_pair(time_ser.index[window:length:tstep],
 time_ser.values[window:length:tstep],
 indicators[3],
 ylabel,
 measure_labels[3],
 xlabel,
 file_names[3],
 clr="darkgreen")

In Fig. 6.5 is presented the comparative dynamics of S&P 500, Hang Seng

index, DAX, BSE Sensex, and their spectral gap.

 (a) (b)

 (c) (d)

Fig. 6.5: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their
spectral gap

Fig. 6.5 demonstrates that the spectral gap is also an indicator of market

synchronization in pre-crisis periods. However, the dynamics of this indicator

suggests that in times of crisis, the largest eigenvalue of the Laplace matrix begins

to carry the most information. It can be assumed that the second and third can also

serve as indicators of crash events, but the largest eigenvalue in this case seems to

be the best solution.

6.2.3.5 Spectral moment

A spectral measure of complexity that we would also like to introduce is the

-th spectral moment. For a nonnegative integer , the -th spectral moment is

defined as

where is the number of closed loops of length [52]. The number of

closed traversals is an important indicator for measuring the complexity of a

system. As shown in the work of Wu et al. [90], using the number of closed

traversals of the entire length, we can measure the complexity of the graph and the

redundancy of alternative shortest paths. Thus, higher values of correspond to

higher network complexity. For further calculations, we chose .
plot_pair(time_ser.index[window:length:tstep],
 time_ser.values[window:length:tstep],
 indicators[4],
 ylabel,
 measure_labels[4],
 xlabel,
 file_names[4],
 clr="chocolate")

In Fig. 6.6 is illustrated the comparative dynamics of S&P 500, Hang Seng

index, DAX, BSE Sensex, and their spectral momentum indicator.

 (a) (b)

 (c) (d)

Fig. 6.6: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their
spectral momentum indicator

The dynamics of shows that the most significant degree of

synchronization was characterized by the pre-crisis dynamics. During these

periods, we had the largest number of fairly high eigenvalues of the Laplace

matrix, and thus a fairly high degree of market synchronization in these periods.

6.2.3.6 Spectral natural connectivity

Yun et al. [172

adjacency spectrum of a graph . It was proposed to call this indicator the natural

connectivity or natural eigenvalue:

Estrada [59], Wu et al. [90] have shown that is a sensitive and reliable

measure of network resilience.
plot_pair(time_ser.index[window:length:tstep],
 time_ser.values[window:length:tstep],
 indicators[5],
 ylabel,
 measure_labels[5],
 xlabel,
 file_names[5],
 clr="black")

In Fig. 6.7 is illustrated the comparative dynamics of S&P 500, Hang Seng

index, DAX, BSE Sensex, and their spectral natural connectivity indicator.

 (a) (b)

 (c) (d)

Fig. 6.7: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their
spectral natural connectivity

Fig. 6.7 shows that the natural connectivity index increases in pre-crisis

periods. That is, this indicator can be used as an indicator or precursor of crash

events in the stock market. Particularly characteristic is the increase in the degree

of market synchronization on the eve of 1997 or 2021, which may indicate the

initial stages of strengthening the stability of the stock market network.

Topological measures of centrality

There are many ways to quantify the importance of a vertex or an edge in

terms of a particular network attribute, thus reflecting the topology of a complex

network.
DegreeMax = []
GlobalEigenvectorCentrality = []
GlobalClosenessCentrality = []
GlobalInformationCentrality = []
GlobalBetweennessCentrality = []
GlobalHarmonicCentrality = []

for i in tqdm(range(0,length-window,tstep)):

 fragm = time_ser.iloc[i:i+window].copy()
 fragm = transformation(fragm, ret_type)

 if graph_type == 'classic':
 g = NaturalVG(directed=None).build(fragm)
 pos = g.node_positions()
 nxg = g.as_networkx()

 if graph_type == 'horizontal':
 g = HorizontalVG(directed=None).build(fragm)
 pos = g.node_positions()
 nxg = g.as_networkx()

maximum vertex degree
 deg_max = max(dict(nxg.degree()).values())

global eigenvector centrality
 glob_eigenvector_centrality = np.mean(list(nx.eigenvector_centrality_nump
y(nxg).values()))

global closeness centrality
 glob_closeness_centrality = np.mean(list(nx.closeness_centrality(nxg).val
ues()))

global information centrality
 glob_information_centrality = np.mean(list(nx.information_centrality(nxg)
.values()))

global betweenness centrality
 glob_betweenness_centrality = np.max(list(nx.betweenness_centrality(nxg).
values()))

global harmonic centrality
 glob_harm_centrality = np.mean(list(nx.harmonic_centrality(nxg).values())
)

 DegreeMax.append(deg_max)
 GlobalEigenvectorCentrality.append(glob_eigenvector_centrality)
 GlobalClosenessCentrality.append(glob_closeness_centrality)
 GlobalInformationCentrality.append(glob_information_centrality)
 GlobalBetweennessCentrality.append(glob_betweenness_centrality)
 GlobalHarmonicCentrality.append(glob_harm_centrality)

Save the initial values to a text document. We also prepare labels for the

figures and titles for the saved ones:
ind_names = ['DegreeMax', 'GlobalEigenvectorCentrality', 'GlobalClosenessCent
rality',
'GlobalInformationCentrality', 'GlobalBetweennessCentrality', 'GlobalHarmonic
Centrality']

indicators = [DegreeMax, GlobalEigenvectorCentrality, GlobalClosenessCentrali
ty,
 GlobalInformationCentrality, GlobalBetweennessCentrality, Globa
lHarmonicCentrality]

measure_labels = [r'D_{max}', r'X', r'C', r'I', r'B', r'GHc']

file_names = []

for i in range(len(ind_names)):

 name = f"{ind_names[i]}_symbol={symbol}_wind={window}_step={tstep}_series
type={ret_type}_graph_type={graph_type}"
 np.savetxt(name +".txt", indicators[i])
 file_names.append(name)

6.2.4.1 Maximum vertex degree

The node degree or degree centrality is conceptually the simplest metric

for describing the connectivity characteristics of a single node in a complex

network. It can be represented as

where counts the number of -th edges incident to vertex .

In addition to the degree of a particular vertex, we can identify the vertex

with the largest number of incident edges. We can denote the number of such

vertices as :

plot_pair(time_ser.index[window:length:tstep],
 time_ser.values[window:length:tstep],
 indicators[0],
 ylabel,
 measure_labels[0],
 xlabel,
 file_names[0],
 clr="magenta")

Fig. 6.8 represents the comparative dynamics of S&P 500, Hang Seng index,

DAX, BSE Sensex, and their maximum degree indicator.

 (a) (b)

 (c) (d)

Fig. 6.8: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their
maximum vertex degree

Fig. 6.8 shows that the maximum degree of the peak begins to increase

during crisis and pre-crisis periods, indicating that the centrality of one or more

nodes is increasing. It can be assumed that one or more market traders begin to

concentrate the attention of all other actors involved in the stock market.

6.2.4.2 Mean eigenvector centrality

The eigenvector centrality calculates the importance of a node by adding

the influences of its neighbors. The centrality for node is the -th element of the

eigenvector associated with the eigenvalue of the maximum modulus, which is

positive. Such an eigenvector is determined to the nearest multiplicative constant

by the equation

where is the adjacency matrix of graph . The above equation is

equivalent to the following:

That is, adding the eigenvector centralities of the predecessors of node

gives the degree of influence of multiplied by . In the case of undirected graphs,

 also solves the familiar equation .

According to the Perron-Frobenius theorem [3], if is strongly connected,

then there exists a single eigenvector , and all its elements are strictly positive.

If is not highly connected, then there may be several left eigenvectors

associated with , and some of their elements may be zero.

 Note

The degree of influence or eigenvector centrality was introduced by Landau

[81] for chess tournaments. Later, it was rediscovered by Wei [156] and then

popularized by Kendall [108] in the context of sports rankings. Berge introduced a

general definition for graphs based on social ties [34]. Bonacic [120] reintroduced

eigenvector centrality and made it popular in linkage analysis.

This function computes the left dominant eigenvector corresponding to the

addition of the influence of predecessors: this is a common approach. To add the

centrality of successors, first flip the graph with G.reverse().

This implementation uses the SciPy sparse eigenvalue solver (ARPACK) to

find the largest eigenvalue/eigenvector pair using Arnoldi iterations.

plot_pair(time_ser.index[window:length:tstep],
 time_ser.values[window:length:tstep],
 indicators[1],
 ylabel,
 measure_labels[1],
 xlabel,
 file_names[1],
 clr="crimson")

Fig. 6.9 represents the comparative dynamics of S&P 500, Hang Seng index,

DAX, BSE Sensex, and their global eigenvector centrality.

(a) (b)

 (c) (d)

Fig. 6.9: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their
global eigenvector centrality

6.2.4.3 Global closeness centrality

In a network, the distance between node and node denotes the number

of edges that connect the shortest path between these two nodes. Based on the

notion of the length of the shortest path between two nodes, we can provide

various measures that characterize the connectivity of the entire network. One such

measure is the closeness centrality between node and all other nodes

providing the inverse average of all shortest paths from to all nodes .

The arithmetic mean of the closeness degree for each -th node gives us the

global (average) closeness centrality:

plot_pair(time_ser.index[window:length:tstep],
 time_ser.values[window:length:tstep],
 indicators[2],
 ylabel,
 measure_labels[2],
 xlabel,
 file_names[2],
 clr="orange")

Fig. 6.10 represents the comparative dynamics of S&P 500, Hang Seng

index, DAX, BSE Sensex, and their global closeness centrality.

 (a) (b)

 (c) (d)

Fig. 6.10: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their
global closeness centrality

As can be seen from the figure (Fig. 6.10), the global closeness centrality

increases during crisis and pre-crisis periods, indicating a decline in the length of

the shortest paths in the stock market market visibility graph. This indicates that

the degree of synchronization between traders increases before and during the

crash phenomena.

6.2.4.4 Global information centrality

To determine the centrality of any node , it is proposed to first determine its

information connectivity with other nodes, i.e. . The average

harmonic value of information about the path from node to other nodes will be

used to determine the degree of information centrality of node . In particular, if

 is related to the centrality or information content of node , then

According to Stevenson and Zeleny [240], the degree of information can be

calculated by inverting a simple matrix. First of all, we define the matrix

, where

and , where is the degree of vertex .

Next, by defining the matrix , we can calculate

according to the following equation:

The element in Eq. (6.2) can be rewritten as follows:

where and .

Therefore, information centrality of node can be presented as

Similarly, to measure the global information centrality, we consider the

arithmetic mean of the local information centrality:

plot_pair(time_ser.index[window:length:tstep],
 time_ser.values[window:length:tstep],
 indicators[3],
 ylabel,
 measure_labels[3],
 xlabel,
 file_names[3],
 clr="darkgreen")

Fig. 6.11 shows the comparative dynamics of S&P 500, Hang Seng index,

DAX, BSE Sensex, and their global information centrality.

 (a) (b)

 (c) (d)

Fig. 6.11: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their
global information centrality

Fig. 6.11 shows that the global information centrality is increasing in the

pre-crisis periods, which is an indicator of the growing efficiency of information

transfer between market traders and the growing determinism of market dynamics.

6.2.4.5 Maximum betweenness centrality

Another commonly studied path-based characteristic of nodes is the

betweenness centrality, which measures the fraction of all shortest paths in the

network that go from to through node . For the total number of shortest paths

between nodes and , denoted as , and the shortest paths passing through a

given node , the degree of intermediation can be defined as

To find the largest amount of information passing through a particular -th

node, we measure the maximum betweenness centrality by considering each -th

node:

plot_pair(time_ser.index[window:length:tstep],
 time_ser.values[window:length:tstep],
 indicators[4],
 ylabel,
 measure_labels[4],
 xlabel,
 file_names[4],
 clr="chocolate")

Fig. 6.12 demonstrates the comparative dynamics of S&P 500, Hang Seng

index, DAX, BSE Sensex, and their maximum betweenness centrality.

 (a) (b)

 (c) (d)

Fig. 6.12: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their
maximum betweenness centrality

As you can see, the maximum betweenness centrality decreases in the pre-

crisis periods, which indicates a decline in the number of intermediaries through

which information about the future dynamics of the studied stock indices can pass.

This suggests that there are one or more traders in the market who are the focus of

almost all other traders, and all traders can be connected to the most influential

ones through one or more shortest paths.

6.2.4.6 Global harmonic centrality

Marchiori and Latora [161] proposed a measure similar to (6.1), called the

harmonic centrality. For a given node , it can be defined as

where if there is no path between nodes and . The global

harmonic centrality is determined by the arithmetic mean of local harmonic

centralites.
plot_pair(time_ser.index[window:length:tstep],
 time_ser.values[window:length:tstep],
 indicators[5],
 ylabel,
 measure_labels[5],
 xlabel,
 file_names[5],
 clr="black")

In Fig. 6.13 is shown the comparative dynamics of S&P 500, Hang Seng

index, DAX, BSE Sensex, and their global harmonic centrality.

 (a) (b)

 (c) (d)

Fig. 6.13: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their
global harmonic centrality

6.2.4.7 Assortativity

Assortativity refers to the tendency of a network to connect nodes with

similar properties, while disassortativity is manifested in the connection of nodes

with dissimilar properties. Real-world networks can exhibit different levels of

assortativity. Social networks, such as interactions between scientists or corporate

directors, usually have positive assortativity. On the other hand, technological and

biological networks, such as power grids, the Internet, protein interactions, neural

networks, and food webs, usually exhibit negative assortativity.

In the following, we will present several indicators of assortativity for the

early identification of stock market crises.
Assortativity = []
AvgDegreeConnectivity = []

for i in tqdm(range(0, length-window, tstep)):

 fragm = time_ser.iloc[i:i+window].copy()
 fragm = transformation(fragm, ret_type)

 if graph_type == 'classic':
 g = NaturalVG(directed='left_to_right').build(fragm)
 pos = g.node_positions()
 nxg_dir = g.as_networkx()
 if graph_type == 'horizontal':
 g = HorizontalVG(directed='left_to_right').build(fragm)
 pos = g.node_positions()
 nxg_dir = g.as_networkx()

calculation of assortativity
 assort = nx.degree_pearson_correlation_coefficient(nxg_dir)

average degree connectivity
 avg_deg_con = np.mean(list(nx.average_degree_connectivity(nxg_dir, source
="in", target="in").values()))

 Assortativity.append(assort)
 AvgDegreeConnectivity.append(avg_deg_con)

ind_names = ['Assortativity', 'AvgDegreeConnectivity']

indicators = [Assortativity, AvgDegreeConnectivity]

measure_labels = [r'r', r'$\langle d_{nn}^{w} \rangle$']

file_names = []

for i in range(len(ind_names)):
 name = f"{ind_names[i]}_symbol={symbol}_wind={window}_step={tstep}_series
type={ret_type}_graph_type={graph_type}"
 np.savetxt(name +".txt", indicators[i])
 file_names.append(name)

6.2.4.7.1 Average degree connectivity

The average degree connectivity for nodes with degree is another

measure used to study the structure of networks [139]. Since it can be expressed as

, where is the conditional probability that a given

vertex with degree d is connected to a vertex with degree . This value expresses

the correlation between the degrees of connected vertices [150]. In the absence of

correlations between degrees, does not depend on , nor on the average

degree of its nearest neighbors, i.e., [139]. In the presence of

correlations, the behavior of defines two general classes of networks. If

 is an increasing function of , then nodes with a high (low) degree are

more likely to be connected to nodes with a higher (lower) degree. This property is

called assortative mixing in various fields of science [107]. On the contrary, the

descending behavior of defines disassortative mixing, in the sense that

nodes with high (low) degree have most neighbors with low (high) degree.

The measure of such assortativity or disassortativity for the neighbors of a

certain vertex can be defined as the average degree connectivity (weighted

average degree of the nearest neighbor):

where -th node; is an element

of the adjacency matrix ; is the weight of the edge (in our case, it is equal

to 1); represents the vertex degree of the -th neighbor.

In general, this equation measures the degree of attraction of neighbors with

high or low vertex degree to each other relative to the magnitude of actual

interactions.

plot_pair(time_ser.index[window:length:tstep],
 time_ser.values[window:length:tstep],
 indicators[1],
 ylabel,
 measure_labels[1],
 xlabel,
 file_names[1],
 clr="darkorange")

Fig. 6.14 represents the comparative dynamics of S&P 500, Hang Seng

index, DAX, BSE Sensex, and their average degree connectivity.

 (a) (b)

 (c) (d)

Fig. 6.14: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their
average degree connectivity

As can be seen from this figure (Fig. 6.14), the average degree connectivity

increases in the pre-crisis periods, indicating a gradual increase in the degree of

attraction of nodes with high degree centrality to nodes with even higher centrality.

6.2.4.7.2 Degree of assortativity

Another form of assortative mixing depends on one or more scalar properties

of the network vertices. To calculate it, we define a matrix that satisfies the

addition rules: , , , where and are the

shares of edges that start and end at vertices and

correlation coefficient, one can determine the degree of assortativity [107]. Thus,

this assortativity coefficient is calculated as

and and define the standard deviations of the distributions and ;

, where indicates higher disassortativity, demonstrates

higher assortativity, and indicates no assortativity between nodes.
plot_pair(time_ser.index[window:length:tstep],
 time_ser.values[window:length:tstep],
 indicators[0],
 ylabel,
 measure_labels[0],
 xlabel,
 file_names[0],
 clr="darkgreen")

Fig. 6.15 represents the comparative dynamics of S&P 500, Hang Seng

index, DAX, BSE Sensex, and their average degree of assortativity.

 (a) (b)

 (c) (d)

Fig. 6.15: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their
average degree of assortativity

Fig. 6.15 shows that the assortativity coefficient decreases in the pre-crisis

periods, indicating disassortative market behavior at these points in time: nodes

with a low degree of connectivity and centralization gravitate toward nodes

characterized by a high degree of mediation, harmony, information, proximity, etc.

As already mentioned, the disassortment inherent in the pre-crisis periods of the

stock indices is also characteristic of both real social and complex biological

networks.

6.2.4.8 Clustering

In graph theory, the clustering coefficient indicates the degree to which

nodes in a graph tend to cluster. Studies show that in most real-world networks,

including social media, nodes usually form compact groups with a high number of

connections between them.

and quadratic clustering.
Transitivity = []
AvgClustering = []
AvgSquareClustering = []

for i in tqdm(range(0, length-window, tstep)):

 fragm = time_ser.iloc[i:i+window].copy()
 fragm = transformation(fragm, ret_type)

 if graph_type == 'classic':
 g = NaturalVG(directed=None).build(fragm)
 pos = g.node_positions()
 nxg = g.as_networkx()
 if graph_type == 'horizontal':
 g = HorizontalVG(directed=None).build(fragm)
 pos = g.node_positions()
 nxg = g.as_networkx()

transitivity
 trans = nx.transitivity(nxg)

global clustering coefficient
 avg_clust = nx.average_clustering(nxg)

global square clustering coefficient
 avg_sqr_clust = np.mean(list(nx.square_clustering(nxg).values()))

 Transitivity.append(trans)
 AvgClustering.append(avg_clust)
 AvgSquareClustering.append(avg_sqr_clust)

ind_names = ['AvgClustering', 'Transitivity', 'AvgSquareClustering']

indicators = [AvgClustering, Transitivity, AvgSquareClustering]

measure_labels = [r'$\langle C_3 \rangle$', r'T', r'$\langle C_4 \rangle$']

file_names = []

for i in range(len(ind_names)):
 name = f"{ind_names[i]}_symbol={symbol}_wind={window}_step={tstep}_series
type={ret_type}_graph_type={graph_type}"
 np.savetxt(name +".txt", indicators[i])
 file_names.append(name)

6.2.4.8.1 Global clustering coefficient

In order to characterize the density of connections between the neighbors of

vertex , we can use the local clustering coefficient:

where the numerator denotes the number of closed triangles containing

vertex .

We can consider the global clustering coefficient as the arithmetic mean of

the local triangle clustering coefficient [51]:

which measures the average tendency of the system to form triangular

clusters.
plot_pair(time_ser.index[window:length:tstep],
 time_ser.values[window:length:tstep],
 indicators[0],
 ylabel,
 measure_labels[0],
 xlabel,
 file_names[0],
 clr="magenta")

Fig. 6.16 shows the comparative dynamics of S&P 500, Hang Seng index,

DAX, BSE Sensex, and their global clustering coefficient.

 (a) (b)

 (c) (d)

Fig. 6.16: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their
global clustering coefficient

Fig. 6.16 shows that in absolute terms, the global triad clustering coefficient

remains at a fairly high level, which indicates a fairly high degree of clustering of

stock market traders. Locally, in the pre-crisis periods, it can be seen that

decreases, which indicates the localized destruction of clustered groups of traders

and their growing attraction to one or more market players.

6.2.4.8.2 Transitivity

In the case of very heterogeneous degrees, i.e., scale-free networks where

only a few nodes have high degrees and the rest have low degrees (), the

nodes with low degrees will participate mainly in the calculation of the local

clustering coefficient, which can lead to underestimation of triangular clusters in

the network. Barrat and Weigt [2] proposed an alternative approach to overcome

this problem, called transitivity [142]:

In real networks, we may encounter cases where connected neighbors in the

network can form different cliques (forms of clustering). The classical local

clustering coefficient, which measures the probability of finding triangles, usually

corresponds to one-way networks. However, it cannot be formed in bipartite

networks [126, 127]. The complex structures of one-way, two-way, and multi-way

networks in a real-world system can lead to the formation of clusters of a much

higher order.
plot_pair(time_ser.index[window:length:tstep],
 time_ser.values[window:length:tstep],
 indicators[1],
 ylabel,
 measure_labels[1],
 xlabel,
 file_names[1],
 clr="crimson")

Fig. 6.17 illustrates the comparative dynamics of S&P 500, Hang Seng

index, DAX, BSE Sensex, and their transitivity.

 (a) (b)

 (c) (d)

Fig. 6.17: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their
transitivity

The transitivity indicator works in a similar way to . However, unlike

, it provides much more signals of further crash behavior in the stock market.

It can be seen that the market retains a fairly high share of triangular clicks that

become incomplete in pre-crisis periods, as indicated by the decline in .

6.2.4.8.3 Square clustering coefficient

Similar to , which is the classical local clustering coefficient, it has been

proposed to quantify the clustering coefficient [121], which corresponds to the

. That is,

that two neighbors of node have a common neighbor other than . For each node

, it can be calculated as

where represents the number of observed quadratic clusters;

; if

 and are connected and 0 otherwise [130]. Similarly to (6.3), we can define the

global square clustering coefficient:

plot_pair(time_ser.index[window:length:tstep],
 time_ser.values[window:length:tstep],
 indicators[2],
 ylabel,
 measure_labels[2],
 xlabel,
 file_names[2],
 clr="orange")

Fig. 6.18 represents the comparative dynamics of S&P 500, Hang Seng

index, DAX, BSE Sensex, and their quadratic clustering coefficient.

 (a) (b)

 (c) (d)

Fig. 6.18: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their
quadratic clustering coefficient

Fig. 6.18 shows that globally, stock indices contain a much smaller share of

quadratic clusters compared to triadic clusters. Locally, we observe similar

dynamics to the previous indicators: decreases in the pre-crisis period and

gradually increases during the crisis and post-crisis periods. We can make the same

assumption as before: in pre-crisis periods, traders begin to gradually isolate

s analytics and focus their attention on the actions of

one or more of the most influential groups. Although their clustering decreases,

their actions remain coordinated according to the information they receive from the

outside.

6.2.4.9 Connectivity

In mathematics, a connected graph is a graph whose number of edges

approaches the maximum possible number (when each pair of vertices is connected

by a single edge). Conversely, a sparse graph contains only a small number of

edges. The exact definition of which graph is considered connected or sparse is

ambiguous. Thus, the definition of graph density may vary depending on the

context of the problem.
Density = []

for i in tqdm(range(0, length-window, tstep)):

 fragm = time_ser.iloc[i:i+window].copy()

 fragm = transformation(fragm, ret_type)

 if graph_type == 'classic':
 g = NaturalVG(directed=None).build(fragm)
 pos = g.node_positions()
 nxg = g.as_networkx()
 if graph_type == 'horizontal':
 g = HorizontalVG(directed=None).build(fragm)
 pos = g.node_positions()
 nxg = g.as_networkx()

calculate density
 dens = nx.density(nxg)

 Density.append(dens)

ind_names = ['Density']

indicators = [Density]

measure_labels = [r'ρ']

file_names = []

for i in range(len(ind_names)):
 name = f"{ind_names[i]}_symbol={symbol}_wind={window}_step={tstep}_series
type={ret_type}_graph_type={graph_type}"
 np.savetxt(name +".txt", indicators[i])
 file_names.append(name)

6.2.4.9.1 Density

The density of a graph can help determine how densely populated the graph

is with different edges. The higher it is, the greater the connectivity of the graph

under study. It can be calculated as

where is the number of edges in , and is the

maximum number of edges in a simple undirected graph.
plot_pair(time_ser.index[window:length:tstep],
 time_ser.values[window:length:tstep],
 indicators[0],
 ylabel,
 measure_labels[0],
 xlabel,
 file_names[0],
 clr="black")

In Fig. 6.19 is presented the comparative dynamics of S&P 500, Hang Seng

index, DAX, BSE Sensex, and their density indicator.

 (a) (b)

 (c) (d)

Fig. 6.19: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their
density indicator

The figure shows that the global market connectivity remains quite low

(), which indicates an insufficiently high level of connectivity between

current and past nodes of price fluctuations in the stock market. The windowed

dynamics of indicates that at the pre-crisis point in time, the degree of density of

6.2.4.10 Distance measures

indicators of its efficiency or the distance of its vertices from the center of

connectivity of the graph under study.

Diameter = []
Radius = []

for i in tqdm(range(0, length-window, tstep)):

 fragm = time_ser.iloc[i:i+window].copy()
 fragm = transformation(fragm, ret_type)

 if graph_type == 'classic':
 g = NaturalVG(directed=None).build(fragm)
 pos = g.node_positions()
 nxg = g.as_networkx()
 if graph_type == 'horizontal':
 g = HorizontalVG(directed=None).build(fragm)
 pos = g.node_positions()
 nxg = g.as_networkx()

calculate diameter
 diameter = nx.diameter(nxg)

radius
 rad = nx.radius(nxg)

 Diameter.append(diameter)
 Radius.append(rad)

ind_names = ['Diameter', 'Radius']

indicators = [Diameter, Radius]

measure_labels = [r'$diam$', r'rad']

file_names = []

for i in range(len(ind_names)):
 name = f"{ind_names[i]}_symbol={symbol}_wind={window}_step={tstep}_series
type={ret_type}_graph_type={graph_type}"
 np.savetxt(name +".txt", indicators[i])
 file_names.append(name)

6.2.4.10.1 Diameter

Note that the shortest path, which is a characteristic of the distance between

the studied nodes and , can be used to characterize the overall size of the

network. The value that determines the largest distance between vertex and any

other vertex is called eccentricity:

The size of the network can be characterized in terms of diameter and is

defined as

plot_pair(time_ser.index[window:length:tstep],
 time_ser.values[window:length:tstep],
 indicators[0],
 ylabel,
 measure_labels[0],
 xlabel,
 file_names[0],
 clr="magenta")

In Fig. 6.20 is presented the comparative dynamics of S&P 500, Hang Seng

index, DAX, BSE Sensex, and their network diameter indicator.

 (a) (b)

 (c) (d)

Fig. 6.20: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their
network diameter

Fig. 6.20 shows that the diameter of the graph decreases in the pre-crisis

period, which indicates that the upper boundary of the graph is approaching its

center. This means that information passing from one trader to another in the stock

market will take much fewer steps. In other words, in pre-crisis periods, traders

rely less and less on intermediaries from various news resources and spend more

time directly studying trading patterns in the stock market.

6.2.4.10.2 Radius

Thus, the diameter is the largest (maximum) path length in the network.

Therefore, we can determine the smallest eccentricity of the network under study,

which is called the radius:

plot_pair(time_ser.index[window:length:tstep],
 time_ser.values[window:length:tstep],
 indicators[1],
 ylabel,
 measure_labels[1],
 xlabel,
 file_names[1],
 clr="crimson")

Fig. 6.21 provides results on the comparative dynamics of S&P 500, Hang

Seng index, DAX, BSE Sensex, and their network radius.

 (a) (b)

 (c) (d)

Fig. 6.21: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their
network radius

Since the radius of the graph is the smallest eccentricity of the network, and

the diameter is the largest, a similar conclusion can be drawn. If you look closely,

you will notice that the radius represents about half the diameter, but the trend of

these two indicators is identical.

6.2.4.11 Network efficiency

In the field of network science, network efficiency, also called

communication efficiency, is a key metric. This concept is based on the

assumption that the farther apart two nodes in a network are, the less efficient their

communication becomes. Efficiency can be analyzed at both the local and global

levels of the network. At the global level, the overall exchange of information

throughout the network is evaluated, where information flows in parallel. At the

es on a smaller scale is measured. In

particular, the local efficiency of a node reflects how efficiently its neighbors

exchange information in its absence.
LocalEfficiency = []
GlobalEfficiency = []

for i in tqdm(range(0, length-window, tstep)):

 fragm = time_ser.iloc[i:i+window].copy()
 fragm = transformation(fragm, ret_type)

 if graph_type == 'classic':
 g = NaturalVG(directed=None).build(fragm)
 pos = g.node_positions()
 nxg = g.as_networkx()
 if graph_type == 'horizontal':
 g = HorizontalVG(directed=None).build(fragm)
 pos = g.node_positions()
 nxg = g.as_networkx()

calculate local efficiency
 local_eff = nx.local_efficiency(nxg)

calculate global efficiency
 glob_eff = nx.global_efficiency(nxg)

 LocalEfficiency.append(local_eff)
 GlobalEfficiency.append(glob_eff)

ind_names = ['LocalEfficiency', 'GlobalEfficiency']

indicators = [LocalEfficiency, GlobalEfficiency]

measure_labels = [r'E_{loc}', r'E_{glob}']

file_names = []

for i in range(len(ind_names)):
 name = f"{ind_names[i]}_symbol={symbol}_wind={window}_step={tstep}_series
type={ret_type}_graph_type={graph_type}"
 np.savetxt(name +".txt", indicators[i])
 file_names.append(name)

6.2.4.11.1 Global efficiency

The definition of small-world behavior according to [161] can be expressed

in terms of the efficiency of the network. The efficiency between nodes and

 is defined as . When and, consistently, when , and are

considered disconnected. According to the efficiency formalism, it can be

quantified for both global and local scales . Latorre and Marchiori emphasized

that and can be viewed as first approximations of global and local

 efficiency.

The average (global) efficiency of can be defined as

For the most efficient graph, where information is disseminated most

efficiently, takes on a maximum value, and otherwise it takes on a minimum

value.
plot_pair(time_ser.index[window:length:tstep],
 time_ser.values[window:length:tstep],
 indicators[1],
 ylabel,
 measure_labels[1],
 xlabel,
 file_names[1],
 clr="indigo")

Fig. 6.22 provides results on the comparative dynamics of S&P 500, Hang

Seng index, DAX, BSE Sensex, and their global network efficiency indicator.

 (a) (b)

 (c) (d)

Fig. 6.22: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their
global network efficiency

Fig. 6.22 shows that the degree of global network efficiency increases in the

pre-crisis periods, indicating an increase in the degree of information flow in the

network. From the point of view of the visibility graph, stock indices begin to act

in a more deterministic way, where the connectivity of its visibility graph becomes

close to the topology of an ideal graph, where all information is transmitted in the

most efficient way.

6.2.4.11.2 Local efficiency

Local efficiency plays a role similar to the global clustering coefficient.

Local efficiency can be quantified as

where is a local subgraph of , and characterizes the efficiency

of this particular subgraph. Similar to the global clustering coefficient,

determines how fault-tolerant the system under study is, i.e., how efficiently

information is transported between the first neighbors of the -th node when it is

removed.
plot_pair(time_ser.index[window:length:tstep],
 time_ser.values[window:length:tstep],
 indicators[0],
 ylabel,
 measure_labels[0],
 xlabel,
 file_names[0],
 clr="orange")

Fig. 6.23 illustrates the comparative dynamics of S&P 500, Hang Seng

index, DAX, BSE Sensex, and their local network efficiency indicator.

 (a) (b)

 (c) (d)

Fig. 6.23: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their
local network efficiency

Globally, for the stock market, which indicates the global

resilience of the stock market network to possible attacks and exclusion of market

traders from global trade. The windowed procedure shows that decreases in

the pre-crisis periods, indicating a decline in local network efficiency. As already

mentioned, since most attention is focused on one or more major market players,

their potential disconnection from global trading could destabilize the entire stock

market.

6.2.4.12 Shortest path

AvgPathLength = []

for i in tqdm(range(0, length-window, tstep)):

 fragm = time_ser.iloc[i:i+window].copy()
 fragm = transformation(fragm, ret_type)

 if graph_type == 'classic':
 g = NaturalVG(directed=None).build(fragm)
 pos = g.node_positions()
 nxg = g.as_networkx()
 if graph_type == 'horizontal':
 g = HorizontalVG(directed=None).build(fragm)
 pos = g.node_positions()
 nxg = g.as_networkx()

calculate the average shortest path length
 avg_path_len = nx.average_shortest_path_length(nxg)

 AvgPathLength.append(avg_path_len)

ind_names = ['AvgPathLength']

indicators = [AvgPathLength]

measure_labels = [r'$ApLen$']

file_names = []

for i in range(len(ind_names)):
 name = f"{ind_names[i]}_symbol={symbol}_wind={window}_step={tstep}_series
type={ret_type}_graph_type={graph_type}"
 np.savetxt(name +".txt", indicators[i])
 file_names.append(name)

6.2.4.12.1 Average shortest path length

Paying attention to the length of the shortest path between two vertices and

, we can define a measure called the average shortest path length:

plot_pair(time_ser.index[window:length:tstep],
 time_ser.values[window:length:tstep],
 indicators[0],
 ylabel,
 measure_labels[0],
 xlabel,
 file_names[0],
 clr="deeppink")

Fig. 6.24 provides the comparative dynamics of S&P 500, Hang Seng index,

DAX, BSE Sensex, and their average shortest path length indicator.

 (a) (b)

 (c) (d)

Fig. 6.24: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their
average shortest path length index

Fig. 6.24 shows that is characterized by a decline in pre-crisis

periods and an increase in crisis and post-crisis periods. Similar to the previous

indicators, which only relied on the length of the shortest path between pairs of

nodes, indicates an increase in the efficiency of information transfer

between market traders. It can also be said that on the built stock indices visibility

-crisis period.

6.3 Conclusions on network analysis

This chapter demonstrates the possibility of studying complex socio-

economic systems within the framework of the network paradigm of complexity.

The time series of stock indices were represented in an equivalent way by a

visibility network that has a wide range of characteristics: both spectral and

topological. Examples of stock indices crashes have shown that most network

indicators can serve as precursor indicators of crisis phenomena and can be used

for possible early warning of unwanted crises in stock market.

References
1. A. A. Ganchuk, V. N. Soloviev, D. Chabanenko, Forecasting Methods: A Study Guide

(Cherkasy: Brama-Ukraine, 2012).

2. A. Barrat and M. Weigt, On the Properties of Small-World Network Models, The European

Physical Journal B-Condensed Matter and Complex Systems 13, 547 (2000).

3. A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences

(Society for Industrial; Applied Mathematics, 1994).

4. A. Bielinskyi, S. Semerikov, O. Serdyuk, V. Solovieva, V. N. Soloviev, and L. Pichl,

Econophysics of Sustainability Indices, in Proceedings of the Selected Papers of the Special

Edition of International Conference on Monitoring, Modeling & Management of Emergent

Economy (M3E2-MLPEED 2020), Odessa, Ukraine, July 13-18, 2020, edited by A. Kiv,

Vol. 2713 (CEUR-WS.org, 2020), pp. 372 392.

5. A. Bielinskyi, V. Soloviev, V. Solovieva, A. Matviychuk, and S. Semerikov, The Analysis of

Multifractal Cross-Correlation Connectedness Between Bitcoin and the Stock Market, in

Information Technology for Education, Science, and Technics, edited by E. Faure, O.

Danchenko, M. Bondarenko, Y. Tryus, C. Bazilo, and G. Zaspa (Springer Nature

Switzerland, Cham, 2023), pp. 323 345.

6. A. Faini, G. Parati, and P. Castiglioni, Multiscale Assessment of the Degree of Multifractality

for Physiological Time Series, Philosophical Transactions of the Royal Society A:

Mathematical, Physical and Engineering Sciences 379, 20200254 (2021).

7. Extracting Complexity Waveforms from One-

Dimensional Signals, Nonlinear Biomedical Physics 3, 1 (2009).

8. Higher-Order Phase Transitions on

Financial Markets, The European Physical Journal B: Condensed Matter and Complex

Systems 76, 513 (2010).

9. A. Kiv, A. Bryukhanov, V. Soloviev, A. Bielinskyi, T. Kavetskyy, D. Dyachok, I. Donchev,

and V. Lukashin, Complex Network Methods for Plastic Deformation Dynamics in Metals,

Dynamics 3, 34 (2023).

10. A. Lempel and J. Ziv, On the Complexity of Finite Sequences, IEEE Transactions on

Information Theory 22, 75 (1976).

11. A. Merchant et al. Scaling deep learning for materials discovery, Nature 624, 80-90 (2023).

12. A. N. Kolmogorov, Three Approaches to the Quantitative Definition of Information,

International Journal of Computer Mathematics 2, 157 (1968).

13. A. O. Bielinskyi and V. N. Soloviev, Complex Network Precursors of Crashes and Critical

Events in the Cryptocurrency Market, in Proceedings of St Student Workshop on Computer

Science and Software Engineering, CS and SE@SW 2018, Kryvyi Rih, Ukraine, November

30, 2018, edited by S. O. Semerikov, A. M. Striuk, V. N. Soloviev, and A. E. Kiv, Vol. 2292

(CEUR-WS.org, 2028), pp. 37 45.

14. A. O. Bielinskyi, A. V. Matviychuk, O. A. Serdyuk, S. O. Semerikov, V. V. Solovieva, and

V. N. Soloviev, Correlational and Non-Extensive Nature of Carbon Dioxide Pricing Market,

in ICTERI 2021 Workshops, edited by O. Ignatenko, V. Kharchenko, V. Kobets, H.

Kravtsov, Y. Tarasich, V. Ermolayev, D. Esteban, V. Yakovyna, and A. Spivakovsky, Vol.

1635 (Springer International Publishing, Cham, 2022), pp. 183 199.

15. A. O. Bielinskyi, O. A. Serdyuk, S. O. Semerikov, and V. N. Soloviev, Econophysics of

Cryptocurrency Crashes: A Systematic Review, in Proceedings of the Selected and Revised

Papers of 9th International Conference on Monitoring, Modeling & Management of

Emergent Economy (M3E2-MLPEED 2021), Odessa, Ukraine, May 26-28, 2021, edited by

A. E. Kiv, V. N. Soloviev, and S. O. Semerikov, Vol. 3048 (CEUR-WS.org, 2021), pp. 31

133.

16. A. O. Bielinskyi, V. N. Soloviev, S. O. Semerikov, and V. V. Solovieva, Identifying Stock

Market Crashes by Fuzzy Measures of Complexity, Neuro-Fuzzy Modeling Techniques in

Economics 10, 3 (2021).

17. A. O. Bielinskyi, V. N. Soloviev, S. V. Hushko, A. E. Kiv, and A. V. Matviychuk, High-

Order Network Analysis for Financial Crash Identification, in Proceedings of the Selected

and Revised Papers of 10th International Conference on Monitoring, Modeling &

Management of Emergent Economy (M3E2-MLPEED 2022), Virtual Event, Kryvyi Rih,

Ukraine, November 17-18, 2022, edited by H. B. Danylchuk and S. O. Semerikov, Vol. 3465

(CEUR-WS.org, 2022), pp. 132 149.

18. A. O. Bielinskyi, V. N. Soloviev, V. Solovieva, S. O. Semerikov, and M. A. Radin,

Recurrence Quantification Analysis of Energy Market Crises: A Nonlinear Approach to Risk

Management, in Proceedings of the Selected and Revised Papers of 10th International

Conference on Monitoring, Modeling & Management of Emergent Economy (M3E2-

MLPEED 2022), Virtual Event, Kryvyi Rih, Ukraine, November 17-18, 2022, edited by H. B.

Danylchuk and S. O. Semerikov, Vol. 3465 (CEUR-WS.org, 2022), pp. 110 131.

19. A. Orozco-Duque, D. Novak, V. Kremen, and J. Bustamante, Multifractal Analysis for

Grading Complex Fractionated Electrograms in Atrial Fibrillation, Physiological

Measurement 36, 2269 (2015).

20. A. Petrosian, Kolmogorov Complexity of Finite Sequences and Recognition of Different

Preictal EEG Patterns, in Proceedings Eighth IEEE Symposium on Computer-Based

Medical Systems (1995), pp. 212 217.

21. A. Prieto-Guerrero and G. Espinosa-Paredes, Dynamics of BWRs and Mathematical Models,

in Linear and Non-Linear Stability Analysis in Boiling Water Reactors, edited by A. Prieto-

Guerrero and G. Espinosa-Paredes (Woodhead Publishing, 2019), pp. 193 268.

22. A. Tomashin, G. Leonardi, and S. Wallot, Four Methods to Distinguish Between Fractal

Dimensions in Time Series Through Recurrence Quantification Analysis, Entropy 24, (2022).

23. A. Vulpiani, Lewis Fry Richardson: Scientist, Visionary and Pacifist, Lettera Matematica 2,

121 (2014).

24. A. Wolf, J. B. Swift, H. L. Swinney, and J. A. Vastano, Determining Lyapunov Exponents

from a Time Series, Physica D: Nonlinear Phenomena 16, 285 (1985).

25. B. B. Mandelbrot and J. A. Wheeler, The Fractal Geometry of Nature, American Journal of

Physics 51, 286 (1983).

26. B. B. Mandelbrot, C. J. G. Evertsz, and Y. Hayakawa, Exactly Self-Similar Left-Sided

Multifractal Measures, Phys. Rev. A 42, 4528 (1990).

27. B. Hayes, Computing Science: Statistics of Deadly Quarrels, American Scientist 90, 10

(2002).

28. B. Hjorth, EEG Analysis Based on Time Domain Properties, Electroencephalography and

Clinical Neurophysiology 29, 306 (1970).

29. B. K. Hillen, G. T. Yamaguchi, J. J. Abbas, and R. Jung, Joint-Specific Changes in

Locomotor Complexity in the Absence of Muscle Atrophy Following Incomplete Spinal Cord

Injury, Journal of NeuroEngineering and Rehabilitation 10, 1 (2013).

30. B. Luque, L. Lacasa, F. Ballesteros, and J. Luque, Horizontal Visibility Graphs: Exact

Results for Random Time Series, Phys. Rev. E 80, 046103 (2009).

31. B. Mandelbrot, How Long Is the Coast of Britain? Statistical Self-Similarity and Fractional

Dimension, Science 156, 636 (1967).

32. C. Anteneodo and C. Tsallis, Breakdown of Exponential Sensitivity to Initial Conditions:

Role of the Range of Interactions, Phys. Rev. Lett. 80, 5313 (1998).

33. C. Bandt and B. Pompe, Permutation Entropy: A Natural Complexity Measure for Time

Series, Phys. Rev. Lett. 88, 174102 (2002).

34. C. Berge, Théorie Des Graphes Et Ses Applications (Dunod, 1958).

35. C. E. Shannon, A Mathematical Theory of Communication, Bell System Technical Journal

27, 379 (1948).

36. C. F. Vega and J. Noel, Parameters Analyzed of Higuchi’s Fractal Dimension for EEG Brain

Signals, in 2015 Signal Processing Symposium (SPSympo) (2015), pp. 1 5.

37. C. Goh, B. Hamadicharef, G. T. Henderson, and E. C. Ifeachor, Comparison of Fractal

Dimension Algorithms for the Computation of EEG Biomarkers for Dementia, in 2nd

International Conference on Computational Intelligence in Medicine and Healthcare

(CIMED2005)

2005).

38. -Moreno and G. Espinosa-Paredes, Using Largest Lyapunov Exponent to

Confirm the Intrinsic Stability of Boiling Water Reactors, Nuclear Engineering and

Technology 48, 434 (2016).

39. C. L. Webber and J. P. Zbilut, Dynamical Assessment of Physiological Systems and States

Using Recurrence Plot Strategies, Journal of Applied Physiology 76, 965 (1994).

40. C. Sevcik, A Procedure to Estimate the Fractal Dimension of Waveforms, (2010).

41. C. Taufemback, R. Giglio, and S. D. Silva, Algorithmic complexity theory detects decreases

in the relative efficiency of stock markets in the aftermath of the 2008 financial crisis,

Economics Bulletin 31, 1631 (2011).

42. C. Tsallis, Beyond Boltzmann–Gibbs–Shannon in Physics and Elsewhere, Entropy 21,

(2019).

43. C. Tsallis, Dynamical Scenario for Nonextensive Statistical Mechanics, Physica A: Statistical

Mechanics and Its Applications 340, 1 (2004).

44. C. Tsallis, Economics and Finance: Q-Statistical Stylized Features Galore, Entropy 19,

(2017).

45. C. Tsallis, M. Gell-Mann, and Y. Sato, Asymptotically Scale-Invariant Occupancy of Phase

Space Makes the Entropy Extensive, Proceedings of the National Academy of Sciences

102, 15377 (2005).

46. C. Tsallis, Possible Generalization of Boltzmann-Gibbs Statistics, Journal of Statistical

Physics 52, 479 (1988).

47. C. Tsallis, Some Open Problems in Nonextensive Statistical Mechanics, International Journal

of Bifurcation and Chaos 22, 1230030 (2012).

48. C.-K. Peng, S. Havlin, H. E. Stanley, and A. L. Goldberger, Quantification of Scaling

Exponents and Crossover Phenomena in Nonstationary Heartbeat Time Series, Chaos: An

Interdisciplinary Journal of Nonlinear Science 5, 82 (1995).

49. C.-K. Peng, S. V. Buldyrev, S. Havlin, M. Simons, H. E. Stanley, and A. L. Goldberger,

Mosaic Organization of DNA Nucleotides, Phys. Rev. E 49, 1685 (1994).

50. D. G. Bonchev, Information Theoretic Complexity Measures, in Encyclopedia of Complexity

and Systems Science, edited by R. A. Meyers (Springer New York, New York, NY, 2009),

pp. 4820 4839.

51. D. J. Watts and S. H. Strogatz, Collective Dynamics of ’Small-World’ Networks, Nature 393,

440 (1998).

52. D. M. Cvetkovic, M. Doob, and H. Sachs, Spectra of Graphs. Theory and Application

(Academic Press, 1980).

53. D. Nychka, S. Ellner, A. R. Gallant, and D. McCaffrey, Finding Chaos in Noisy Systems,

Journal of the Royal Statistical Society. Series B (Methodological) 54, 399 (1992).

54. D. Stosic, D. Stosic, T. B. Ludermir, and T. Stosic, Nonextensive Triplets in Cryptocurrency

Exchanges, Physica A: Statistical Mechanics and Its Applications 505, 1069 (2018).

55. Derbentsev V. D., Serdyuk O. A., Soloviev V. N., Sharapov O. D., Synergetic and

econophysical methods of studying the dynamic and structural characteristics of economic

systems: a monograph (Cherkasy: Brama-Ukraine, 2010).

56. E. A. Ihlen, Introduction to Multifractal Detrended Fluctuation Analysis in Matlab, Frontiers

in Physiology 3, (2012).

57. E. Canessa, Multifractality in Time Series, Journal of Physics A: Mathematical and General

33, 3637 (2000).

58. E. Estevez- On the non-

randomness of maximum Lempel Ziv complexity sequences of finite size, Chaos: An

Interdisciplinary Journal of Nonlinear Science 23, 023118 (2013).

59. E. Estrada, Spectral Scaling and Good Expansion Properties in Complex Networks,

Europhysics Letters 73, 649 (2006).

60. E. G. Pavlos, O. E. Malandraki, O. V. Khabarova, L. P. Karakatsanis, G. P. Pavlos, and G.

Livadiotis, Non-Extensive Statistical Analysis of Energetic Particle Flux Enhancements

Caused by the Interplanetary Coronal Mass Ejection-Heliospheric Current Sheet

Interaction, Entropy 21, (2019).

61. E. Maiorino, L. Livi, A. Giuliani, A. Sadeghian, and A. Rizzi, Multifractal Characterization

of Protein Contact Networks, Physica A: Statistical Mechanics and Its Applications 428, 302

(2015).

62. F. Hasselman, When the Blind Curve Is Finite: Dimension Estimation and Model Inference

Based on Empirical Waveforms, Frontiers in Physiology 4, (2013).

63. F. Liao and Y.-K. Jan, Using Multifractal Detrended Fluctuation Analysis to Assess Sacral

Skin Blood Flow Oscillations in People with Spinal Cord Injury, The Journal of

Rehabilitation Research and Development 48, 787 (2011).

64. F. Mormann, T. Kreuz, C. Rieke, R. G. Andrzejak, A. Kraskov, P. David, C. E. Elger, and K.

Lehnertz, On the Predictability of Epileptic Seizures, Clinical Neurophysiology 116, 569

(2005).

65. F. R. K. Chung, Spectral Graph Theory (American Mathematical Society, 1997).

66. F. Takens, Detecting Strange Attractors in Turbulence, in Dynamical Systems and

Turbulence, Warwick 1980, edited by D. Rand and L.-S. Young (Springer Berlin Heidelberg,

Berlin, Heidelberg, 1981), pp. 366 381.

67. G. Bianconi et al., Complex systems in the spotlight: next steps after the 2021 Nobel Prize in

Physics, J. Phys. Complex. 4, 010201 (2023).

68. G. Bounova and O. de Weck, Overview of Metrics and Their Correlation Patterns for

Multiple-Metric Topology Analysis on Heterogeneous Graph Ensembles, Phys. Rev. E 85,

016117 (2012).

69. G. L. Ferri, M. F. Reynoso Savio, and A. Plastino, Tsallis’ q-Triplet and the Ozone Layer,

Physica A: Statistical Mechanics and Its Applications 389, 1829 (2010).

70. G. Nicolis, I. Prigogine, W. H. Freeman, and Company, Exploring Complexity: An

Introduction (W.H. Freeman, 1989).

71. G. Pavlos, A. Iliopoulos, L. Karakatsanis, M. Xenakis, and E. Pavlos, Complexity of

Economical Systems., Journal of Engineering Science & Technology Review 8, (2015).

72. G. R. Jafari, P. Pedram, and L. Hedayatifar, Erratum: Long-Range Correlation and

Multifractality in Bach’s Inventions Pitches, Journal of Statistical Mechanics: Theory and

Experiment 2012, E03001 (2012).

73. H. D. I. Abarbanel, R. Brown, J. J. Sidorowich, and L. Sh. Tsimring, The Analysis of

Observed Chaotic Data in Physical Systems, Rev. Mod. Phys. 65, 1331 (1993).

74. H. E. Hurst, A Suggested Statistical Model of Some Time Series Which Occur in Nature,

Nature 180, 494 (1957).

75. H. E. Hurst, Long-Term Storage Capacity of Reservoirs, Transactions of the American

Society of Civil Engineers 116, 770 (1951).

76. H. F. Jelinek, N. Elston, and B. Zietsch, Fractal Analysis: Pitfalls and Revelations in

Neuroscience, in Fractals in Biology and Medicine, edited by G. A. Losa, D. Merlini, T. F.

l, Basel, 2005), pp. 85 94.

77. H. Kantz and T. Schreiber, Nonlinear Time Series Analysis (Cambridge University Press,

2004).

78. H. Steinhaus, Length, Shape and Area, in Colloquium Mathematicum, Vol. 3 (Polska

Akademia Nauk. Instytut Matematyczny PAN, 1954), pp. 1 13.

79. H.-B. Xie, W.-X. He, and H. Liu, Measuring Time Series Regularity Using Nonlinear

Similarity-Based Sample Entropy, Physics Letters A 372, 7140 (2008).

80. I. Gutman, The Energy of a Graph, Ber. Math. Statist. Sekt. Forschungsz 103, 1-22.

(1978).

81. I. J. Schoenberg, Publications of Edmund Landau, in Number Theory and Analysis: A

Collection of Papers in Honor of Edmund Landau (1877–1938)

US, Boston, MA, 1969), pp. 335 355.

82. I. T. Pedron, Correlation and Multifractality in Climatological Time Series, Journal of

Physics: Conference Series 246, 012034 (2010).

83. I. V. Bezsudnov and A. A. Snarskii, From the Time Series to the Complex Networks: The

Parametric Natural Visibility Graph, Physica A: Statistical Mechanics and Its Applications

414, 53 (2014).

84. J. C. Crepeau and L. K. Isaacson, Spectral Entropy Measurements of Coherent Structures in

am Evolving Shear Layer, Journal of Non-Equilibrium Thermodynamics 16, 137 (1991).

85. J. P. Zbilut and C. L. Webber, Embeddings and Delays as Derived from Quantification of

Recurrence Plots, Physics Letters A 171, 199 (1992).

86. J. S. Richman and J. R. Moorman, Physiological Time-Series Analysis Using Approximate

Entropy and Sample Entropy, American Journal of Physiology-Heart and Circulatory

Physiology 278, H2039 (2000).

87. J. W. Kantelhardt, E. Koscielny-Bunde, H. H. A. Rego, S. Havlin, and A. Bunde, Detecting

Long-Range Correlations with Detrended Fluctuation Analysis, Physica A: Statistical

Mechanics and Its Applications 295, 441 (2001).

88. J. W. Kantelhardt, Fractal and Multifractal Time Series, in Mathematics of Complexity

and Dynamical Systems, edited by R. A. Meyers (Springer New York, New York, NY,

2011), pp. 463 487.

89. J. W. Kantelhardt, S. A. Zschiegner, E. Koscielny-Bunde, S. Havlin, A. Bunde, and H. E.

Stanley, Multifractal Detrended Fluctuation Analysis of Nonstationary Time Series, Physica

A: Statistical Mechanics and Its Applications 316, 87 (2002).

90. J. Wu, M. Barahona, Y.-J. Tan, and H.-Z. Deng, Spectral Measure of Structural Robustness

in Complex Networks, IEEE Transactions on Systems, Man, and Cybernetics - Part A:

Systems and Humans 41, 1244 (2011).

91. J.-L. Blanc, L. Pezard, and A. Lesne, Delay Independence of Mutual-Information Rate of

Two Symbolic Sequences, Phys. Rev. E 84, 036214 (2011).

92. J.-P. Eckmann and D. Ruelle, Ergodic Theory of Chaos and Strange Attractors, Rev. Mod.

Phys. 57, 617 (1985).

93. J.-P. Eckmann, S. O. Kamphorst, and D. Ruelle, Recurrence Plots of Dynamical Systems,

Europhysics Letters 4, 973 (1987).

94. J.-P. Eckmann, S. O. Kamphorst, D. Ruelle, and S. Ciliberto, Liapunov Exponents from Time

Series, Phys. Rev. A 34, 4971 (1986).

95. K. Falconer, Fractal Geometry: Mathematical Foundations and Applications (John Wiley &

Sons, 2003).

96. K. Shockley and M. Riley, In Recurrence Quantification Analysis: Theory and Best

Practices, 1st ed. (Springer, New York, 2015).

97. L. Boltzmann, Weitere Studien über Das wärmegleichgewicht Unter Gasmolekülen, in

Kinetische Theorie II: Irreversible Prozesse Einführung Und Originaltexte

(Vieweg+Teubner Verlag, Wiesbaden, 1970), pp. 115 225.

98. Time Series

Irreversibility: A Visibility Graph Approach, The European Physical Journal B 85, (2012).

99. From Time Series to Complex

Networks: The Visibility Graph, Proceedings of the National Academy of Sciences 105, 4972

(2008).

100. L. T. Lui, G. Terrazas, H. Zenil, C. Alexander, and N. Krasnogor, Complexity

Measurement Based on Information Theory and Kolmogorov Complexity, Artificial Life 21,

205 (2015).

101. L. Telesca, V. Lapenna, and M. Macchiato, Multifractal Fluctuations in Seismic

Interspike Series, Physica A: Statistical Mechanics and Its Applications 354, 629 (2005).

102. M. Balcerzak, D. Pikunov, and A. Dabrowski, The Fastest, Simplified Method of

Lyapunov Exponents Spectrum Estimation for Continuous-Time Dynamical Systems,

Nonlinear Dynamics 94, 3053 (2018).

103. M. Borowska, Multiscale Permutation Lempel–Ziv Complexity Measure for Biomedical

Signal Analysis: Interpretation and Application to Focal EEG Signals, Entropy 23, (2021).

104. M. D. Costa, C.-K. Peng, and A. L. Goldberger, Multiscale Analysis of Heart Rate

Dynamics: Entropy and Time Irreversibility Measures, Cardiovascular Engineering 8, 88

(2008).

105. M. Dai, C. Zhang, and D. Zhang, Multifractal and Singularity Analysis of Highway

Volume Data, Physica A: Statistical Mechanics and Its Applications 407, 332 (2014).

106. M. Dai, J. Hou, and D. Ye, Multifractal Detrended Fluctuation Analysis Based on

Fractal Fitting: The Long-Range Correlation Detection Method for Highway Volume Data,

Physica A: Statistical Mechanics and Its Applications 444, 722 (2016).

107. M. E. J. Newman, Assortative Mixing in Networks, Phys. Rev. Lett. 89, 208701 (2002).

108. M. G. Kendall, Further Contributions to the Theory of Paired Comparisons, Biometrics

11, 43 (1955).

109. M. J. Katz, Fractals and the Analysis of Waveforms, Computers in Biology and Medicine

18, 145 (1988).

110. Preliminaries, in An Introduction to Kolmogorov Complexity and

Its Applications (Springer New York, New York, NY, 2008), pp. 1 99.

111. M. Rostaghi and H. Azami, Dispersion Entropy: A Measure for Time-Series Analysis,

IEEE Signal Processing Letters 23, 610 (2016).

112. M. S. Kanwal, J. A. Grochow, and N. Ay, Comparing Information-Theoretic Measures of

Complexity in Boltzmann Machines, Entropy 19, (2017).

113. M. S. Movahed, F. Ghasemi, S. Rahvar, and M. R. R. Tabar, Long-Range Correlation in

Cosmic Microwave Background Radiation, Phys. Rev. E 84, 021103 (2011).

114. M. Sano and Y. Sawada, Measurement of the Lyapunov Spectrum from a Chaotic Time

Series, Phys. Rev. Lett. 55, 1082 (1985).

115. M. T. Rosenstein, J. J. Collins, and C. J. De Luca, A Practical Method for Calculating

Largest Lyapunov Exponents from Small Data Sets, Physica D: Nonlinear Phenomena 65,

117 (1993).

116.

Multiscale Characteristics of the Emerging Global Cryptocurrency Market, Physics Reports

901, 1 (2021).

117. N. Biggs, Spectral Graph Theory (CBMS Regional Conference Series in Mathematics

92), Bulletin of the London Mathematical Society 30, 197 (1998).

118. N. H. Packard, J. P. Crutchfield, J. D. Farmer, and R. S. Shaw, Geometry from a Time

Series, Phys. Rev. Lett. 45, 712 (1980).

119. N. Marwan, N. Wessel, U. Meyerfeldt, A. Schirdewan, and J. Kurths, Recurrence-Plot-

Based Measures of Complexity and Their Application to Heart-Rate-Variability Data, Phys.

Rev. E 66, 026702 (2002).

120. P. Bonacich, Technique for Analyzing Overlapping Memberships, Sociological

Methodology 4, 176 (1972).

121. Cycles and Clustering in Bipartite

Networks, Phys. Rev. E 72, 056127 (2005).

122. P. Grassberger and I. Procaccia, Characterization of Strange Attractors, Phys. Rev. Lett.

50, 346 (1983).

123. P. Grassberger and I. Procaccia, Measuring the Strangeness of Strange Attractors,

Physica D: Nonlinear Phenomena 9, 189 (1983).

124. P. Grassberger, Generalized Dimensions of Strange Attractors, Physics Letters A 97, 227

(1983).

125. Multifractal Analysis of

Polyalanines Time Series, Physica A: Statistical Mechanics and Its Applications 389, 2090

(2010).

126. P. Holme, C. R. Edling, and F. Liljeros, Structure and Time Evolution of an Internet

Dating Community, Social Networks 26, 155 (2004).

127. P. Holme, F. Liljeros, C. R. Edling, and B. J. Kim, Network Bipartivity, Phys. Rev. E 68,

056107 (2003).

128. Right-Side-Stretched Multifractal Spectra

Indicate Small-Worldness in Networks, Communications in Nonlinear Science and

Numerical Simulation 57, 231 (2018).

129. P. W. Anderson, More is different, New Series 77, 393-396 (1972).

130. P. Zhang, J. Wang, X. Li, M. Li, Z. Di, and Y. Fan, Clustering Coefficient and

Community Structure of Bipartite Networks, Physica A: Statistical Mechanics and Its

Applications 387, 6869 (2008).

131. Q. Xuan, J. Zhou, K. Qiu, D. Xu, S. Zheng, and X. Yang, CLPVG: Circular limited

penetrable visibility graph as a new network model for time series, Chaos: An

Interdisciplinary Journal of Nonlinear Science 32, 013130 (2022).

132. R. A. Fisher and E. J. Russell, On the Mathematical Foundations of Theoretical

Statistics, Philosophical Transactions of the Royal Society of London. Series A, Containing

Papers of a Mathematical or Physical Character 222, 309 (1922).

133. R. Clausius, T. A. Hirst, and J. Tyndall, The Mechanical Theory of Heat: With Its

Applications to the Steam-Engine and to the Physical Properties of Bodies (J. Van Voorst,

1867).

134. R. de Oliveira, S. Brito, L. da Silva, and C. Tsallis, Connecting Complex Networks to

Nonadditive Entropies, Scientific Reports 11, 1130 (2021).

135. R. Esteller, G. Vachtsevanos, J. Echauz, and B. Litt, A Comparison of Waveform Fractal

Dimension Algorithms, IEEE Transactions on Circuits and Systems I: Fundamental Theory

and Applications 48, 177 (2001).

136. R. F. Voss, Fractals in Nature: From Characterization to Simulation, in The Science of

Fractal Images, edited by H.-O. Peitgen and D. Saupe (Springer New York, New York, NY,

1988), pp. 21 70.

137. R. Giglio and S. Da Silva, Ranking the Stocks Listed on Bovespa According to Their

Relative Efficiency, MPRA Paper, University Library of Munich, Germany, 2009.

138. R. Giglio, R. Matsushita, A. Figueiredo, I. Gleria, and S. D. Silva, Algorithmic

Complexity Theory and the Relative Efficiency of Financial Markets, Europhysics Letters 84,

48005 (2008).

139. R. Pastor- Dynamical and Correlation

Properties of the Internet, Phys. Rev. Lett. 87, 258701 (2001).

140. Detrended Cross-Correlations

Between Returns, Volatility, Trading Activity, and Volume Traded for the Stock Market

Companies, Europhysics Letters 112, 48001 (2015).

141. R. V. Donner, M. Small, J. F. Donges, N. Marwan, Y. Zou, R. Xiang, and J. Kurths,

Recurrence-Based Time Series Analysis by Means of Complex Network Methods,

International Journal of Bifurcation and Chaos 21, 1019 (2011).

142. S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D.-U. Hwang, Complex Networks:

Structure and Dynamics, Physics Reports 424, 175 (2006).

143. S. Butler, Interlacing for Weighted Graphs Using the Normalized Laplacian, Electronic

Journal of Linear Algebra 16, 90 (2007).

144. Detecting and Interpreting Distortions in Hierarchical

Organization of Complex Time Series, Phys. Rev. E 91, 030902 (2015).

145. Dynamical Variety

of Shapes in Financial Multifractality, Complexity 2018, 1 (2018).

146. S. Dutta, Multifractal Properties of ECG Patterns of Patients Suffering from Congestive

Heart Failure, Journal of Statistical Mechanics: Theory and Experiment 2010, P12021

(2010).

147. S. J. Roberts, W. Penny, and I. Rezek, Temporal and Spatial Complexity Measures for

Electroencephalogram Based Brain-Computer Interfacing, Medical & Biological

Engineering & Computing 37, 93 (1999).

148. S. M. Pincus, Approximate Entropy as a Measure of System Complexity, Proceedings of

the National Academy of Sciences 88, 2297 (1991).

149. S. M. Pincus, I. M. Gladstone, and R. A. Ehrenkranz, A Regularity Statistic for Medical

Data Analysis, Journal of Clinical Monitoring 7, 335 (1991).

150. S. Maslov and K. Sneppen, Specificity and Stability in Topology of Protein Networks,

Science 296, 910 (2002).

151. S. Umarov, C. Tsallis, and S. Steinberg, On Aq-Central Limit Theorem Consistent with

Nonextensive Statistical Mechanics, Milan Journal of Mathematics 76, 307 (2008).

152. S. V. Bozhokin and D. A. Parshin, Fractals and Multifractals: Textbook (Scientific;

Publishing Center Regular; Chaotic Dynamics , 2001).

153. S. Zozor, P. Ravier, and O. Buttelli, On Lempel–Ziv Complexity for Multidimensional

Data Analysis, Physica A: Statistical Mechanics and Its Applications 345, 285 (2005).

154. T. C. Halsey, M. H. Jensen, L. P. Kadanoff, I. Procaccia, and B. I. Shraiman, Fractal

Measures and Their Singularities: The Characterization of Strange Sets, Nuclear Physics B -

Proceedings Supplements 2, 501 (1987).

155. Estimators of Fractal Dimension:

Assessing the Roughness of Time Series and Spatial Data, Statistical Science 27, 247 (2012).

156. T. H. Wei, The Algebraic Foundations of Ranking Theory (University of Cambridge,

1952).

157. T. Higuchi, Approach to an Irregular Time Series on the Basis of the Fractal Theory,

Physica D: Nonlinear Phenomena 31, 277 (1988).

158. T. Rawald, Scalable and Efficient Analysis of Large High-Dimensional Data Sets in the

Context of Recurrence Analysis, PhD thesis, Humboldt- -

159. T. T. Zhou, N. D. Jin, Z. K. Gao, and Y. B. Luo, Limited Penetrable Visibility Graph for

Establishing Complex Network from Time Series, Acta Physica Sinica 61, 2012-3-030506

(2012).

160. U. Parlitz, Identification of True and Spurious Lyapunov Exponents from Time Series,

International Journal of Bifurcation and Chaos 02, 155 (1992).

161. V. Latora and M. Marchiori, Efficient Behavior of Small-World Networks, Phys. Rev.

Lett. 87, 198701 (2001).

162. V. Marmelat, K. Torre, and D. Delignieres, Relative Roughness: An Index for Testing the

Suitability of the Monofractal Model, Frontiers in Physiology 3, (2012).

163. V. N. Soloviev and A. Belinskiy, Complex Systems Theory and Crashes of

Cryptocurrency Market, in Information and Communication Technologies in Education,

Research, and Industrial Applications -Figueroa, V.

Yakovyna, H. C. Mayr, M. Nikitchenko, and A. Spivakovsky (Springer International

Publishing, Cham, 2019), pp. 276 297.

164. V. N. Soloviev and A. Belinskyi, Methods of Nonlinear Dynamics and the Construction

of Cryptocurrency Crisis Phenomena Precursors, in Proceedings of the 14th International

Conference on ICT in Education, Research and Industrial Applications. Integration,

Harmonization and Knowledge Transfer. Volume II: Workshops, Kyiv, Ukraine, May 14-17,

2018 -Figueroa, V. Yakovyna, V. S. Kharchenko, V.

Kobets, H. Kravtsov, V. S. Peschanenko, Y. Prytula, M. S. Nikitchenko, and A.

Spivakovsky, Vol. 2104 (CEUR-WS.org, 2018), pp. 116 127.

165. V. N. Soloviev, A. Bielinskyi, and V. Solovieva, Entropy Analysis of Crisis Phenomena

for DJIA Index, in Proceedings of the 15th International Conference on ICT in Education,

Research and Industrial Applications. Integration, Harmonization and Knowledge Transfer.

Volume II: Workshops, Kherson, Ukraine, June 12-15, 2019, edited by V. Ermolayev, F.

Mallet, V. Yakovyna, V. S. Kharchenko, V. Kobets, A. Kornilowicz, H. Kravtsov, M. S.

Nikitchenko, S. Semerikov, and A. Spivakovsky, Vol. 2393 (CEUR-WS.org, 2019), pp. 434

449.

166. V. N. Soloviev, A. Bielinskyi, O. Serdyuk, V. Solovieva, and S. Semerikov, Lyapunov

Exponents as Indicators of the Stock Market Crashes, in Proceedings of the 16th

International Conference on ICT in Education, Research and Industrial Applications.

Integration, Harmonization and Knowledge Transfer. Volume II: Workshops, Kharkiv,

Ukraine, October 06-10, 2020, edited by O. Sokolov, G. Zholtkevych, V. Yakovyna, Y.

Tarasich, V. Kharchenko, V. Kobets, O. Burov, S. Semerikov, and H. Kravtsov, Vol. 2732

(CEUR-WS.org, 2020), pp. 455 470.

167. V. N. Soloviev, A. O. Bielinskyi, and N. A. Kharadzjan, Coverage of the Coronavirus

Pandemic Through Entropy Measures, in 3rd Workshop for Young Scientists in Computer

Science and Software Engineering (CS and SE and SW 2020), Kryvyi Rih, Ukraine,

November 27, 2020, edited by A. E. Kiv, S. O. Semerikov, V. N. Soloviev, and A. M. Striuk,

Vol. 2832 (CEUR-WS.org, 2021), pp. 24 42.

168. V. N. Soloviev, A. O. Bielinskyi, Complex Systems Modeling in Python: A manual for

self-study of the discipline (Cherkasy: O.M. Tretyakov, 2024).

169. V. N. Soloviev, Mathematical economics: a study guide for self-study (B. Khmelnytsky

ChNU Publishing House, 2008).

170. V. N. Soloviev, O. A. Serdyuk, H. B. Danilchuk, Modeling of Complex Systems: A Study

Guide for Independent Study of the Discipline (Cherkasy: Vovchok Publishing House, 2016).

171. W. Chen, Z. Wang, H. Xie, and W. Yu, Characterization of Surface EMG Signal Based

on Fuzzy Entropy, IEEE Transactions on Neural Systems and Rehabilitation Engineering 15,

266 (2007).

172. W. Jun, M. Barahona, T. Yue-Jin, and D. Hong-Zhong, Natural Connectivity of Complex

Networks, Chinese Physics Letters 27, 078902 (2010).

173. X. Lan, H. Mo, S. Chen, Q. Liu, and Y. Deng, Fast transformation from time series to

visibility graphs, Chaos: An Interdisciplinary Journal of Nonlinear Science 25, 083105

(2015).

174. X. Sun, H. Chen, Z. Wu, and Y. Yuan, Multifractal Analysis of Hang Seng Index in Hong

Kong Stock Market, Physica A: Statistical Mechanics and Its Applications 291, 553 (2001).

175. Y. Bai, Z. Liang, and X. Li, A Permutation Lempel-Ziv Complexity Measure for EEG

Analysis, Biomedical Signal Processing and Control 19, 102 (2015).

176. Y. Holovatch, R. Kenna, S. Thurner, Complex systems: physics beyond physics, Eur. J.

Phys. 38, 023002 (2017).

177. Z. Chu, H. Guo, X. Zhou, Y. Wang, F. Yu, H. Chen, W. Xu, X. Lu, Q. Cui, L. Li, J.

Zhou, Data-centric financial large language models. arXiv preprint arXiv:2310.17784

(2023).

178. Z.-Q. Jiang, W.-J. Xie, and W.-X. Zhou, Testing the Weak-Form Efficiency of the WTI

Crude Oil Futures Market, Physica A: Statistical Mechanics and Its Applications 405, 235

(2014).

179. Z.-Q. Jiang, W.-J. Xie, W.-X. Zhou, and D. Sornette, Multifractal Analysis of Financial

Markets: A Review, Reports on Progress in Physics 82, 125901 (2019).

-

5.11 60×84/16.
- 22,44. 19,9.

100 24-24.

.

No

-mail: book_brama@ukr.net

