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Introduction 
Despite the expected predictions that the 21st century will be the century of 

biology (by analogy with the 20th century of physics), it can definitely be 

considered the century of complexity, thanks to the genius British astrophysicist 

Stephen William Hawking (1942-2018). Indeed, it turned out that complex systems 

of different nature exhibit similar patterns of complexity and can be characterized 

by universal interdisciplinary quantitative methods and algorithms. This is 

ing contributions to our 

ese-

American climatologist Shukuro Manabe and German scientist Klaus Hasselmann 

s climate, quantifying variability, and reliably 

Although the definition of complex systems has historically been widely 

discussed, there is hardly any broad agreement on a single specific definition: a 

complex system is formed by many interacting elements that give rise to emergent 

phenomena [67]. However, some terms remain undefined. For example, how many 

elements are enough to reflect complex emergent phenomena? Interestingly, this 

number can be as large as the number of neurons and synapses in the human brain, 

but it can also be relatively small: a minimal cell is also formed by only a few 

hundred genes and is already alive. From these examples, it is clear that true 

complexity and new phenomena require a number of elements that can be very far 

from the large numbers typically considered in physics (the number of molecules 

in a mole of gas is defined by the Avogadro number, i.e., approximately .

It seems to be a very commonly accepted idea that complexity arises from the 

competition between randomness and order, and that the topology of a complex 

system is inherently related to a certain amount of randomness in the network of 



interactions between its elements (the so-called network approach) or by the sign 

of their interaction (the spin glass approach). 

A point of departure often cited in the context of collective effects of 

(1923-2020) [129], winner of the 1977 Nobel Prize in Physics. Complex systems 

science looks at the ways in which the constituent parts give rise to the collective 

behavior of the whole system. However, this interpretation has proven to be of 

limited utility because it covers too broad a set of circumstances. 

Historically, some time ago, another more useful step in defining complex 

systems appeared in physics: a system is complex if its behavior depends 

significantly on its details [176]. In this context, we mean such phenomena as 

deterministic chaos, quantum entanglement, protein folding, spin glasses, etc. 

Collective complex behavior can occur under the influence of frustration and 

structural disorder. As a result, it is difficult to reach a state of equilibrium, 

reactions to external perturbations are slow and very often random. Such different 

phenomena are studied in different areas of physics: dynamical systems, quantum 

mechanics, and statistical physics. What they have in common is that infinitesimal 

changes in initial conditions (albeit of a very different nature) lead to radically 

different scenarios of the time evolution of these systems. 

There is a second component that is important for defining complex systems. 

On the one hand, the interactions between the constituent parts lead to collective 

behavior and determine the macro state, but on the other hand, the interactions 

change during the evolution of the system and are influenced by the macro state. In 

other words, the macrostate and microstates dynamically update each other. The 

analysis of such effects has led to the creation of methods and the development of 

concepts that have been successfully applied to describe formally similar 

phenomena occurring in chemical, biological, social, and other systems formed by 

agents of non-physical origin. 



Despite the impressive progress of complexity science over the past 50 

years, we are still far from fully understanding complexity because we have not yet 

identified the necessary conditions for a system to reflect complex emergent 

phenomena. For example, we are far from fully understanding how the brain 

works. As a result, the field may appear fragmented compared to other more 

traditional scientific fields, such as physics. To solve the problem of complexity, 

we really need to investigate different aspects of complex systems, and we need to 

adopt an open viewpoint that is able to describe and predict data from complex 

systems, avoiding top-down predefined dogmas. 

Complexity science is also key to understanding and predicting the evolution 

of major pandemics and to informing policy makers and the general public about 

the risks of epidemic spread. Indeed, the networked scientific community was 

already aware of the dangers of global pandemics that take advantage of scale-free 

global transportation systems long before COVID. Unfortunately, the pandemic 

took most countries by surprise, as contingency plans were not really prepared for 

an epidemic of the scale of COVID-19. To monitor the evolution of this pandemic 

and any future pandemic, scientists will likely combine large amounts of social 

mobility data with predictive models, which are key to monitoring the pandemic 

and informing policy makers, despite many uncertainties about the biological 

evolution of viruses. 

In the future, progress at the intersection between complexity and biology 

will be key to achieving much-needed advances in precision medicine. This large, 

complex problem will require a truly interdisciplinary approach that combines 

network science, machine learning, and artificial intelligence with molecular 

biology and neuroscience. Indeed, while biology in recent decades has widely 

adopted a single-molecule approach or relied heavily on the central dogma of 

molecular biology, it is now well recognized that most diseases are complex, and 

to understand these diseases it is important to embrace the complexity and 



complexity will be key to laying the foundation for the quantum Internet, which 

will require combining advances in quantum information with our understanding 

of classical complex communication systems such as the current Internet. 

Another important challenge regarding network robustness is brain research, 

as the brain is undoubtedly a robust complex system, but it is very important to 

understand how its function is affected by diseases. To answer this question, I 

believe we need to accept the stochastic nature of brain activity and gain further 

insight into the interplay between brain functions and brain network topology. 

Thanks to fundamental advances in network science, we already know that the 

resilience of networks to random damage is highly dependent on the statistical 

properties of the network. Indeed, the scale-free degree distribution of networks 

dramatically alters the phase diagram of percolation, exhibiting critical behavior 

that is dramatically different from percolation on regular lattices or on random 

graphs. These results were key to understanding the interaction between the 

underlying network structure of complex systems and their dynamics. 

Predicting complex systems is a challenging task and, of course, is limited 

by the pervasive nonlinearity of their dynamics. However, important progress has 

been made in forecasting complex systems over the past twenty years (e.g., 

unprecedented progress in predicting the spread of an epidemic). Improvements in 

the power of predicting complex systems are largely due to the abundance of data 

available to modelers and the important advances that can be made by complexity 

science combined with data science and artificial intelligence (AI). This is 

evidenced by revolutionary developments in materials science [11] or finance 

[177]. 

Improving our ability to predict complex systems, which will eventually 

combine network science, data science, and artificial intelligence algorithms, is 

indeed key for a variety of applications, including providing possible climate 

change scenarios. However, the power of simple models to understand complex 

systems is crucial for interpreting results: simple models may not capture all the 



details of complex systems, but they allow us to understand and tame complexity, 

which can be crucial in developing better AI algorithms. Spin glass theory teaches 

us that a model that is actually quite simple (just adding a random mixture of 

positive and negative interactions to an Ising model in a fully connected network) 

can already be very complex. 

Methods of modeling complex systems are the subject of our previous 

monographs and textbooks focused on the Matlab computer mathematics system 

[1, 55, 169, 170]. Taking into account the dominance of Python in applied research 

opinion. This monograph will be based on a Ukrainian-language guide to modeling 

complex systems in the Python programming language [168]. 

The selection of specific stock indices for constructing indicators-precursors 

of crash phenomena in stock markets is critical due to their role as benchmarks 

representing the overall health and dynamics of financial markets in different 

regions. The chosen indices S&P 500 for the United States, Hang Seng Index

for China (Hong Kong), DAX (Deutscher Aktienindex) for Europe, and BSE 

SENSEX for India  are particularly suitable for this purpose, each offering unique 

advantages and relevance. Each of these indices is a leading benchmark in its 

respective region, representing the core economic and financial activities: 

The S&P 500 reflects the performance of 500 major companies across 

diverse sectors in the United States, making it a globally recognized 

indicator of economic health. 

The Hang Seng Index (HSI) represents the largest and most influential 

companies traded in Hong Kong, serving as a bridge between the Chinese 

economy and global markets. 

The DAX (Deutscher Aktienindex) tracks the performance of 40 major 

German companies, acting as a barometer for the largest economy in the 

Eurozone. 



The BSE SENSEX captures the performance of 30 large and established 

-growing economies. 

Fig. 1 illustrates the historical trends of the aforementioned major global 

stock market indices. 

(a) (b) 

   (c)       (d) 

Fig. 1: Historical trends of major global stock market indices: S&P 500 (^GSPC) (a), Hang Seng 
Index (^HSI) (b), DAX (^GDAXI) (c), and BSE SENSEX (^BSESN) (d) 

These indices are supported by extensive historical and real-time data, which 

are essential for constructing and validating indicators of crash phenomena. The 

availability of robust datasets enables detailed analysis of patterns, anomalies, and 

early warning signs that often precede market crashes. 

Each index reflects distinct economic, political, and regulatory 

environments: (1) the S&P 500 is influenced by U.S. monetary policy, global trade 



dynamics, and technological innovation, making it a key driver of global markets; 

(2) the Hang Seng Index

domestic and international factors; (3) the DAX is shaped by -

driven economy, European Union policies, and its role as a leader in industrial 

innovation; (4) the BSE SENSEX

industrialization, and market reforms, while being sensitive to global commodity 

prices and domestic policy changes. 

These indices are highly responsive to economic shocks, systemic risks, and 

speculative bubbles. Their historical performance includes well-documented 

instances of market downturns, making them ideal for analyzing crash precursors 

such as: rising market volatility; abnormal trading volumes; divergences between 

market prices and fundamental indicators; changes in cross-market correlations and 

capital flows. 

By focusing on these indices, researchers can uncover early warning signals 

that indicate heightened risk of market instability across different regions. 

Therefore, the entire monograph will be devoted to the analysis of 

complexity indicators derived from the above indices. 

It should be noted that the selection of stock indices from developed 

countries with disparate stock market models is a consequence of the devastation 

inflicted on the national economy by Russia's military aggression against Ukraine. 

In light of the above, it is evident that the stock market is not a reliable indicator of 

the state of the national economy. However, it is possible to anticipate the recovery 

of economic development by constructing and subsequently adapting effective 

stock market indicators, utilising sophisticated economic signals such as the stock 

indices of the United States, Germany, China and India. 



1 Complexity. Quantitative measures of complexity. 

Information methods of complexity assessment 

studied by physicists, biologists, mathematicians, and computer 

scientists, although with current advances in understanding the world around us, 

there is no unambiguous answer to this question. 

For this reason, in accordance with the idea of I. Prigogine, we will study the 

manifestations of system complexity, using modern methods of quantitative 

complexity analysis [112]. 

Among these methods, the following deserve attention: 

information and entropy; 

based on chaos theory; 

multifractal. 

Of course, based on the different nature of the methods underlying the 

formation of the complexity measure, they place certain requirements on the time 

series that serve as input data. For example, the first two groups of methods require 

stationarity of the input data. At the same time, they have different sensitivities to 

such characteristics as determinism, stochasticity, causality, and correlation. 

Therefore, in the future, when comparing the effectiveness of various complexity 

indicators, we will pay attention to these circumstances, emphasizing the specific 

applicability of a particular indicator for characterizing different aspects of the 

complexity of the systems under study. 

We will begin our consideration of the first group of methods with the well-

known measure of complexity proposed by A. Kolmogorov [12]. 



1.1 Kolmogorov complexity 

The notion of Kolmogorov complexity (or, as it is also called, algorithmic 

entropy) appeared in the 1960s at the intersection of algorithm theory, information 

theory, and probability theory. 

individual finite objects (and not in random variables, as in Shannon information 

theory). It turned out that this was possible (although only up to a limited limit). 

Kolmogorov proposed to measure the amount of information in finite objects using 

the theory of algorithms, defining the complexity of an object as the minimum 

length of the program that generates that object. This definition became the basis 

of algorithmic information theory and algorithmic probability theory: an object is 

considered random if its complexity is close to the maximum. 

So what is Kolmogorov complexity and how can it be measured? In practice, 

we often come across programs that compress files (to save space in the archive). 

The most common are zip, gzip, compress, rar, arj, and others. By applying such a 

program to a file (with text, data, or a program), we get its compressed version 

(which is usually shorter than the original file). This version can be used to restore 

the original file using a paired program  first 

approximation, the Kolmogorov complexity of a file can be described as the length 

of its compressed version. Thus, a file that has a regular structure and is well 

compressed has a small Kolmogorov complexity (compared to its length). On the 

contrary, a poorly compressible file has a complexity close to its length. 

Suppose we have a fixed way of describing (decompressor) . For a given 

word x, let us consider all its descriptions, i.e., all words  for which  is 

defined and equal to . The length of the shortest of them, , is called the 

Kolmogorov complexity of word  for a given description method :

min

where  denotes the length of the word . The subscript  emphasizes 

that the definition depends on the choice of the way  is represented. 



It can be shown that there are optimal ways to describe. A way of describing 

is better the shorter it is. Therefore, it is natural to give the following definition: 

method  is not worse than method  if  for some  and 

all .

Therefore, according to Kolmogorov, the complexity of an object (for 

example, a text  a sequence of characters) is the length of the minimal program 

that outputs this text, and the entropy is the complexity divided by the length of the 

text. You can also think of algorithmic complexity as the minimum time (or other 

computational resources) required to perform this task on a computer. And we can 

also talk about the communication complexity of tasks that involve more than one 

processor: this is the number of bits that need to be transmitted when solving this 

task [50, 100]. Unfortunately, this definition is purely speculative. There is no 

reliable way to unambiguously define this program. However, there are algorithms 

that actually try to calculate the Kolmogorov complexity of a text [110] and 

entropy [35]. 

1.2 Lempel-Ziv complexity 

A universal (in the sense of applicability to different language systems) 

measure of the complexity of a finite symbolic sequence was proposed by Lempel 

and Ziv (LZ) [10]. The Lempel-Ziv complexity (LZC) is a classical measure that 

links the concepts of complexity (in the Kolmogorov-Chaitin sense) and entropy 

rate for ergodic sources [91, 153]. For an ergodic dynamic process, the amount of 

new information received per unit time (entropy rate) can be estimated by 

measuring the ability of this source to generate new patterns. Due to the simplicity 

of the LZC method, the entropy rate can be estimated from a single discrete 

measurement sequence with low computational cost [58]. In their approach, the 

complexity of the sequence is estimated by the number of steps of the process that 

generates it. Acceptable (editorial) operations in this case are: 



1. Character generation (required at least for the synthesis of alphabet 

elements). 

2. - gment from the background (i.e., from an 

already synthesized part of the text). 

Let  be a finite alphabet,  be a text (a sequence of characters) composed of 

elements of ;  be the -th character of the text;  be a fragment of the text 

from the -th to the -th character inclusive ( );  be the length of the 

text . Then the sequence synthesis scheme can be represented as a concatenation 

where  is the fragment of  generated at the -th step, and 

 is the number of steps of the process. Of all the possible schemes for 

generating , the one with the minimum number of steps is chosen. Thus, the 

complexity of the sequence  in terms of LZ 

The minimum number of steps is ensured by choosing the longest prototype 

from the prehistory to copy at each step. If we denote by  the number of the 

position from which copying begins at the -th step, then the length of the copy 

fragment 

and the -th component of the complex decomposition (1.1) can be written 

in the form 

The case  corresponds to the situation when the position 

contains a character that has not been encountered before. In this case, we use the 

symbol generation operation. 

We will find the LZ complexity for a time series that represents, for 

example, daily values of a financial index. To study the dynamics of LZ and 



compare it with other complex systems, we will find this complexity measure for a 

fixed-length subset (window). To do this, we will calculate the logarithmic returns 

and convert them into a sequence of bits. In doing so, you can specify the number 

of states to be differentiated (the number system). For example, for two different 

states, we have 0, 1, for three states, 0, 1, 2, etc. For a binary encoding system, the 

threshold will be set by the average value and the states, for example, of returns 

(ret) will be encoded as follows [41, 137, 138]: 

It is also possible to define the so-called permutation LZC 103, 

175]. In this case, we will rely on the phase space reconstruction procedure that 

will be mention in the next section. According to the permutation procedure, we 

will take a fragment of the series of length , which serves as the dimension of the 

reconstructed attractor, and replace each value of the series with its ordinal index. 

Fig. 1.1 shows the time series and its possible ordinal patterns: 

Fig. 1.1: A fragment of the time series (a) and 6 possible ordinal patterns that can occur in this 
signal (b) [29] 

The LZ algorithm performs two operations: (1) adds a new bit to an existing 

sequence; (2) copies an already formed sequence. The algorithmic complexity is 

the number of such operations required to generate a given sequence. 



For a random sequence of length , the algorithmic complexity is calculated 

by the expression . Then the relative algorithmic complexity is 

the ratio of the resulting complexity to the complexity of the random sequence: 

.

Let us consider the possibility of using the LZC index as an indicator of 

catastrophic events.  

For further work on modeling complex systems, we will use the yfinance

library as a basis, which allows working with financial market data using the 

Python programming language. 

  Note 

Yahoo!, Y!Finance, and Yahoo! finance are registered trademarks of 

Yahoo, Inc.

yfinance is not affiliated with, endorsed by, or verified by Yahoo, Inc. It is 

an open source tool that uses publicly available Yahoo APIs and is intended for 

research and educational purposes.

You should refer to Yahoo!'s terms of use for detailed information about 

your rights to use the actual data you download. Remember the Yahoo! Financial 

API is for your personal use only.

To install the yfinance library, you can use the following command: 
!pip install yfinance --upgrade --no-cache-dir

The GitHub repository (https://github.com/ranaroussi/yfinance) contains 

more information about the library itself, errors that may occur, and potential 

solutions. 

First, we import the necessary modules for further work: 
import matplotlib.pyplot as plt 
import numpy as np
import neurokit2 as nk
import yfinance as yf
import pandas as pd
import scienceplots
from tqdm import tqdm



 
%matplotlib inline

plt.style.use(['science', 'notebook', 'grid'])  
 

size = 22 
params = { 
'figure.figsize': (8, 6),            # set the default width and height of th
e figures 
'font.size': size,                   # the size of fonts 
'lines.linewidth': 2,                # line width 
'axes.titlesize': 'small',           # size of titles above figures 
'axes.labelsize': size,              # size of labels on the axes 
'legend.fontsize': size,             # font size of legend 
'xtick.labelsize': size,             # the size of the labeling on the  axi
s 
'ytick.labelsize': size,             # the size of the labeling on the y axi
s 
"font.family": "Serif",              # font family  
"font.serif": ["Times New Roman"],   # font style 
'savefig.dpi': 300,                  # dots per inch 
'axes.grid': False                   # creating a grid on the figure itself 
} 
 
plt.rcParams.update(params)          # update the style according to the sett
ings 

indices S&P 500 for the USA, Hang Seng Index for China (Hong Kong), DAX

(Deutscher Aktienindex) for Europe, and BSE SENSEX for India  are 

particularly suitable for the purpose of the indicators-precursors construction.  

Using the functionality of the yfinance

historical values of these indices for the period from January 1, 1980 to November 

20, 2024. Obviously, not all indices will have the values of the specified starting 

period. Some of them will start to exist a little later. Nevertheless, the yfinance

library will take this into account and automatically pull up the values for the 

available period:  
symbol = '^GSPC'                         # index symbol
start = " 1980-01-01"                     # data reading start date
end = " 2024-11-20"                       # end date of data reading

data = yf.download(symbol, start, end)  # download data
time_ser = data['Adj Close'].copy()     # saving only adjusted closing prices



xlabel ='time, days'                    # caption on the x-axis 
ylabel = symbol                         # caption along the y-axis

To bring the series to a standardized initial series or standardized returns, we 

define the transformation() function: 
def transformation(signal, ret_type): 
 
    for_rec = signal.copy() 
 
    if ret_type == 1:       # given the type of series, we perform 
# necessary transformations 
        pass 
    elif ret_type == 2: 
        for_rec = for_rec.diff() 
    elif ret_type == 3: 
        for_rec = for_rec.pct_change() 
    elif ret_type == 4: 
        for_rec = for_rec.pct_change() 
        for_rec -= for_rec.mean() 
        for_rec /= for_rec.std() 
    elif ret_type == 5:  
        for_rec = for_rec.pct_change() 
        for_rec -= for_rec.mean() 
        for_rec /= for_rec.std() 
        for_rec = for_rec.abs() 
    elif ret_type == 6: 
        for_rec -= for_rec.mean() 
        for_rec /= for_rec.std() 
 
    for_rec = for_rec.dropna().values 
 
    return for_rec 

To plot a pair of time series, we define the plot_pair() function: 
def plot_pair(x_values,  
              y1_values, 
              y2_values,   
              y1_label,  
              y2_label, 
              x_label,  
              file_name, clr="magenta"): 
 
    fig, ax = plt.subplots() 
 
    ax2 = ax.twinx() 
    ax2.spines.right.set_position(("axes", 1.03)) 
 
    p1, = ax.plot(x_values,  
                  y1_values,  
"b-", label=fr"{y1_label}") 
    p2, = ax2.plot(x_values, 
                   y2_values,  
                   color=clr,  



                   label=y2_label) 
 
    ax.set_xlabel(x_label) 
    ax.set_ylabel(f"{y1_label}") 
    ax.yaxis.label.set_color(p1.get_color()) 
    ax2.yaxis.label.set_color(p2.get_color()) 
 
    tkw = dict(size=2, width=1.5) 
 
    ax.tick_params(axis='x', rotation=35, **tkw) 
    ax.tick_params(axis='y', colors=p1.get_color(), **tkw) 
    ax2.tick_params(axis='y', colors=p2.get_color(), **tkw) 
    ax2.legend(handles=[p1, p2]) 
 
    plt.savefig(file_name +".jpg") 
 
    plt.show(); 

calculations: 
ret_type = 1                           # type of a series:  
# 1 – initial 
# 2 - detrending (difference between present and previous values) 
# 3 – initial returns  
# 4 – standardized returns  
# 5 – absolute values (volatility) 
# 6 – standardized series 
 
window = 500                           # sliding window length 
tstep = 1                              # time step  
length = len(time_ser_1.values)        # lenth of a series 
m = 4                                  # embedding dimension  
tau = 1                                # time delay 
 
LZC = []                               # classical Lempel-Ziv complexity 
PLZC = []                              # permutation Lempel-Ziv complexity 

for i in tqdm(range(0, length-window, tstep)): # fragments of window length w
ith a step “tstep” 
 
# choose a fragment 
    fragm = time_ser_1.iloc[i:i+window].copy()    
 
# perform a series transformation procedure 
    fragm = transformation(fragm, ret_type) 
 
# calculate the classical Lempel-Ziv complexity 
    lzc, _ = nk.complexity_lempelziv(fragm) 
 
# and the permutation Lempel-Ziv complexity 
    plzc, _ = nk.complexity_lempelziv(fragm,  
                                      delay=tau,  
                                      dimension=m,  
                                      permutation=True) 



 
# and add the results to the array of values 
    LZC.append(lzc) 
    PLZC.append(plzc) 

Saving the results to the text files: 
np.savetxt(f"lzc_name={symbol_1}_window={window}_step={tstep}_rettype={ret_ty
pe}.txt" , LZC) 
np.savetxt(f"plzc_name={symbol_1}_window={window}_step={tstep}_ \ 
    rettype={ret_type}_m={m}_tau={tau}.txt" , PLZC) 

And visualizing them:  
fig, ax = plt.subplots(1, 1) 
 
ax2 = ax.twinx() 
ax3 = ax.twinx() 
ax2.spines.right.set_position(("axes", 1.03)) 
ax3.spines.right.set_position(("axes", 1.12)) 
 
p1, = ax.plot(time_ser_1.index[window:length:tstep],  
                time_ser_1.values[window:length:tstep],  
"b-",  
                label=fr"{symbol_1}") 
p2, = ax2.plot(time_ser_1.index[window:length:tstep], 
                LZC, 
'gold',  
                label=fr"$LZC$") 
p3, = ax3.plot(time_ser_1.index[window:length:tstep], 
                PLZC, 
'red',  
                label=fr"$PLZC$")                
 
 
ax.set_xlabel(xlabel) 
ax.set_ylabel(f"{symbol_1}") 
ax.yaxis.label.set_color(p1.get_color()) 
ax2.yaxis.label.set_color(p2.get_color()) 
ax3.yaxis.label.set_color(p3.get_color()) 
 
tkw = dict(size=3, width=1.5) 
 
ax.tick_params(axis='x', rotation=45, **tkw) 
ax.tick_params(axis='y', colors=p1.get_color(), **tkw) 
ax2.tick_params(axis='y', colors=p2.get_color(), **tkw) 
ax3.tick_params(axis='y', colors=p3.get_color(), **tkw) 
ax3.legend(handles=[p1, p2, p3]) 
 
plt.savefig(f"plzc_lzc_name={symbol_1}_ \ 
    window={window}_step={tstep}_ \ 
    rettype={ret_type}_m={m}_tau={tau}.jpg") 
 
plt.show(); 



Fig. 1.2 shows the comparative dynamics of the S&P 500 (a), the Hang Seng 

Index (b), the DAX (c), the BSE Sensex (d) and their classical monoscale LZ 

complexity and its permutation version. 

        (a) (b) 

 (c) (d) 

Fig. 1.2: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), their 
classical monoscale LZ complexity, and its permutation version 

This figure shows that the 2 measures behave chaotically. In general, both of 

them decline before crisis events in stock market indices. It is worth investigating 

the multiscale dynamics of LZ measure for more meaningful conclusions. 

However, even this approach may not be enough. The fact is that complex 

signals exhibit their inherent complexity on different spatial and temporal scales, 

i.e., they have scale invariant properties. In particular, they are manifested through 

power laws of distribution. Therefore, mono-scale calculations of algorithmic 

complexity may be unacceptable and lead to erroneous conclusions. 

To overcome such difficulties, multiscale methods are used, and we will 

now consider them. 



1.3 A granularity procedure for multiscale time series analysis. 

Multiscale measures of complexity 

The idea of this group of methods includes two sequential procedures: 

 averaging 

data on non-overlapping segments, the size of which (the averaging 

window) will increase by one when moving to the next largest scale; 

calculation of a certain (still mono-scale) complexity indicator at each of 

the scales. 

-

successive counts of a series within non-overlapping windows, the size of which 

increases when moving from scale to scale. Each element of the 

series  is determined according to the expression [104]: 

where  characterizes the scaling factor. 

depends on the window size and is equal to . For a scale equal to 1, the 

Fig. 1.3: Schematic illustration of the process of coarse-graining  of the original 
time series for scales 2 and 3 



Let us calculate the window dynamics of the multiscale LZ indicators. We 

return the total complexity of the LZ over all scales: 
ret_type = 4                      # type of a series:  
# 1 – initial 
# 2 - detrending (difference between present and previous values) 
# 3 – initial returns  
# 4 – standardized returns  
# 5 – absolute values (volatility) 
# 6 – standardized series 
 
window = 500                      # window length 
tstep = 1                         # time step of the sliding window 
length = len(time_ser_1.values)   # length of a series 
m = 3                             # embedding dimension  
tau = 1                           # time delay 
 
MSLZC = []                        # multiscale Lempel-Ziv complexity 
MSPLZC = []                       # multiscale permutation Lempel-Ziv complex
ity 

for i in tqdm(range(0, length-window, tstep)): # fragments of window length w
ith a step “tstep” 
 
# select a fragment 
    fragm = time_ser_1.iloc[i:i+window].copy()    
 
# perform the series transformation procedure 
    fragm = transformation(fragm, ret_type) 
 
# calculate the multiscale Lempel-Ziv complexity 
    mslzc, _ = nk.entropy_multiscale(fragm) 
 
# and the multiscale permutation Lempel-Ziv complexity 
    msplzc, _ = nk.entropy_multiscale(fragm,  
                                      delay=tau,  
                                      dimension=m,  
                                      permutation=True) 
 
 
# and add the results to the array of values 
    MSLZC.append(mslzc) 
    MSPLZC.append(msplzc) 

np.savetxt(f"mslzc_name={symbol_1}_window={window}_step={tstep}_ \ 
    rettype={ret_type}.txt" , MSLZC) 
np.savetxt(f"msplzc_name={symbol_1}_window={window}_step={tstep}_ \ 
    rettype={ret_type}_m={m}_tau={tau}.txt" , MSPLZC) 

fig, ax = plt.subplots(1, 1) 
 
ax2 = ax.twinx() 
ax3 = ax.twinx() 
ax2.spines.right.set_position(("axes", 1.03)) 
ax3.spines.right.set_position(("axes", 1.12)) 



 
p1, = ax.plot(time_ser_1.index[window:length:tstep],  
                time_ser_1.values[window:length:tstep],  
"b-",  
                label=fr"{symbol_1}") 
p2, = ax2.plot(time_ser_1.index[window:length:tstep], 
                MSLZC, 
'gold',  
                label=fr"$MSLZC$") 
p3, = ax3.plot(time_ser_1.index[window:length:tstep], 
                MSPLZC, 
'red',  
                label=fr"$MSPLZC$")                
 
ax.set_xlabel(xlabel) 
ax.set_ylabel(f"{symbol_1}") 
ax.yaxis.label.set_color(p1.get_color()) 
ax2.yaxis.label.set_color(p2.get_color()) 
ax3.yaxis.label.set_color(p3.get_color()) 
 
tkw = dict(size=3, width=1.5) 
 
ax.tick_params(axis='x', rotation=45, **tkw) 
ax.tick_params(axis='y', colors=p1.get_color(), **tkw) 
ax2.tick_params(axis='y', colors=p2.get_color(), **tkw) 
ax3.tick_params(axis='y', colors=p3.get_color(), **tkw) 
ax3.legend(handles=[p1, p2, p3]) 
 
plt.savefig(f"msplzc_mslzc_name={symbol_1}_ \ 
    window={window}_step={tstep}_ \ 
    rettype={ret_type}_m={m}_tau={tau}.jpg") 
 
plt.show(); 

In Fig. 1.4, the comparative dynamics of the S&P 500 (a), the Hang Seng 

Index (b), the DAX (c), the BSE Sensex (d) and their classical multiscale Lempel-

Ziv complexity and its permutation analog can be observed. 

 (a) (b) 



   (c)         (d) 

Fig. 1.4: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), their 
classical multiscale LZ complexity and its permutation analog 

Now the picture is more clear: both measures behave synchronously and 

decline in crisis and pre-crisis periods, indicating an increase in the degree of 

determinism and self-organization of the market. 

1.4 Informational measures of complexity 

Fisher information (FI) was introduced by R. A. Fisher in 1922 as a measure 

 of statistical estimation [132]. It is central to 

many statistical applications that go far beyond complexity theory. It measures the 

amount of information that an observed random variable carries about an unknown 

parameter. Complexity analysis measures the amount of information a system has 

phase space. The FI value is usually uncorrelated with other indicators of 

complexity (the more information a system hides about itself, the more predictable 

and, accordingly, the less complex it is). 

First of all, we set the parameters for calculations: 
ret_type = 6                      # type of a series:  
# 1 – initial 
# 2 - detrending (difference between present and previous values) 
# 3 – initial returns  
# 4 – standardized returns  
# 5 – absolute values (volatility) 



# 6 – standardized series 
 
window = 500                      # window length 
tstep = 1                         # time step of the sliding window 
length = len(time_ser_1.values)   # length of a series 
m = 3                             # embedding dimension  
tau = 1                           # time delay 
 
fisher = []                       # Fisher information 

for i in tqdm(range(0, length-window, tstep)):        

 
# select a fragment 
    fragm = time_ser_1.iloc[i:i+window].copy()    
 
# perform the series transformation procedure 
    fragm = transformation(fragm, ret_type) 
 
    fish_inf, _ = nk.fisher_information(signal=fragm, dimension=m, delay=tau) 
 
# and add the result to the array of values 
    fisher.append(fish_inf) 

np.savetxt(f"fisher_inf_name={symbol_1}_window={window}_step={tstep}_rettype=
{ret_type}_dimension={m}_delay={tau}.txt", fisher) 

values_plot = time_ser_1.values[window:length:tstep], fisher 
ylabels = ylabel_1, "FI" 
file_name = f"fisher_name={symbol_1}_window={window}_step={tstep}_rettype={re
t_type}_dimension={m}_delay={tau}" 

plot_pair(time_ser_1.index[window:length:tstep], values_plot, xlabel, ylabels
, file_name) 

In Fig. 1.5, the comparative dynamics of the S&P 500 (a), the Hang Seng 

Index (b), the DAX (c), the s information 

indicator can be observed. 

 (a) (b) 



              (c)                        (d) 

Fig. 1.5: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their 

Fig. 1.5 shows that the Fisher index decreases in crisis and pre-crisis periods, 

which indicates a decline in the amount of information needed to describe the self-

organized dynamics of financial crises and an increase in correlation between 

Hjor  parameters are statistical property measures that were originally 

introduced by Hjorth [28] to describe the general characteristics of 

electroencephalogram signals. The parameters are activity, mobility, and 

complexity: 

1. The  parameter is simply the variance of the signal, which 

corresponds to the average power of the signal (if its average value is 0): 

2. The  parameter is the average frequency or proportion of the 

standard deviation of the power spectrum. It is defined as the square root of 

the variance of the first derivative of the signal divided by the variance of 

the signal: 



3. The  parameter gives an estimate of the signal bandwidth, 

indicating the similarity of the waveform to a pure sine wave (for which the 

essive 

parameter is defined as the ratio of the mobility of the first derivative of the 

signal to the mobility of the signal itself: 

where  and  represent the first and second derivatives of the signal, 

respectively. 
ret_type = 1                      # type of a series:  
# 1 – initial 
# 2 - detrending (difference between present and previous values) 
# 3 – initial returns  
# 4 – standardized returns  
# 5 – absolute values (volatility) 
# 6 – standardized series 
 
window = 500                      # window length 
tstep = 1                         # time step of the sliding window 
length = len(time_ser_1.values)   # length of a series 
activity = []                      
mobility = []                      
complexity = []                    

for i in tqdm(range(0, length-window, tstep)): # fragment with the length win
dow and delay tstep  
 
# select a fragment 
    fragm = time_ser_1.iloc[i:i+window].copy()    
# perform the series transformation procedure 
    fragm = transformation(fragm, ret_type) 
# calculate the Hjorth's complexity indicators 
    cmpl, info = nk.complexity_hjorth(fragm)  
 
# and add the result to the array of values 
    activity.append(info['Activity']) 
    mobility.append(info['Mobility']) 
    complexity.append(cmpl) 

np.savetxt(f"activity_name={symbol_1}_window={window}_ \ 
    step={tstep}_rettype={ret_type}.txt", activity) 
np.savetxt(f"mobility_name={symbol_1}_window={window}_ \ 
    step={tstep}_rettype={ret_type}.txt", mobility) 
np.savetxt(f"complexity_name={symbol_1}_window={window}_ \ 
    step={tstep}_rettype={ret_type}.txt", complexity)     

fig, ax = plt.subplots(1, 1) 
 



ax2 = ax.twinx() 
ax3 = ax.twinx() 
ax4 = ax.twinx() 
 
ax2.spines.right.set_position(("axes", 1.03)) 
ax3.spines.right.set_position(("axes", 1.16)) 
ax4.spines.right.set_position(("axes", 1.24)) 
 
p1, = ax.plot(time_ser_1.index[window:length:tstep],  
              time_ser_1.values[window:length:tstep],  
"b-", label=fr"{ylabel_1}") 
p2, = ax2.plot(time_ser_1.index[window:length:tstep],  
               activity, "r--", label=r"$Act$") 
p3, = ax3.plot(time_ser_1.index[window:length:tstep],  
               mobility, "g-", label=r"$Mob$") 
p4, = ax4.plot(time_ser_1.index[window:length:tstep], 
               complexity, "m-", label=r"$Comp$") 
 
ax.set_xlabel(xlabel) 
ax.set_ylabel(f"{ylabel_1}") 
ax.yaxis.label.set_color(p1.get_color()) 
ax2.yaxis.label.set_color(p2.get_color()) 
ax3.yaxis.label.set_color(p3.get_color()) 
ax4.yaxis.label.set_color(p4.get_color()) 
 
tkw = dict(size=4, width=1.5) 
 
ax.tick_params(axis='y', colors=p1.get_color(), **tkw) 
ax.tick_params(axis='x', rotation=45, **tkw) 
ax2.tick_params(axis='y', colors=p2.get_color(), **tkw) 
ax3.tick_params(axis='y', colors=p3.get_color(), **tkw) 
ax4.tick_params(axis='y', colors=p4.get_color(), **tkw) 
ax4.legend(handles=[p1, p2, p3, p4]) 
 
plt.savefig(f"hjorth_name={symbol_1}_ret={ret_type}_wind={window}_step={tstep
}.jpg") 
plt.show(); 

Fig. 1.6 shows the comparative dynamics of S&P 500, Hang Seng index, 

DAX, BSE Sensex, and their 

complexity. 



 (a) (b) 

 (c) (d) 

Fig. 1.6: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their 

Obviously, the activity parameter ( ) seems to be the least informative, as 

it only indicates an increase in the total variance of the signal. The issue of 

premature identification of the growth of a crisis phenomenon is best solved by the 

Mobility indicator ( ). We can see that this indicator increased before the 

crashes of 1997, 2001, during 2008-2009, and COVID-

complexity measure ( ) reacts in an asymmetric way: while mobility 

increases, the complexity measure decreases, indicating that the system tends to be 

more periodic or correlated. 



Decorrelation time 

The decorrelation time (DT) is defined as the time (in samples) of the first 

zero crossing of the autocorrelation function. A shorter DT corresponds to a less 

correlated signal. For example, a decrease in DT in electroencephalogram signals 

is observed before seizures, which is associated with a decrease in low frequency 

power [64]. 
ret_type = 1                      # type of a series:  
# 1 – initial 
# 2 - detrending (difference between present and previous values) 
# 3 – initial returns  
# 4 – standardized returns  
# 5 – absolute values (volatility) 
# 6 – standardized series 
window = 500                      # window length 
tstep = 1                         # time step of the sliding window 
length = len(time_ser_1.values)   # length of a series 
 
decorrelation_time = []           # array for decorrelation time 

for i in tqdm(range(0, length-window, tstep)):        
 
    fragm = time_ser_1.iloc[i:i+window].copy()    
    fragm = transformation(fragm, ret_type) 
    dec_time, _ = nk.complexity_decorrelation(fragm)  
    decorrelation_time.append(dec_time) 

np.savetxt(f"dec_time_name={symbol_1}_window={window}_ \ 
    step={tstep}_rettype={ret_type}.txt", decorrelation_time) 

values_plot = time_ser_1.values[window:length:tstep], decorrelation_time 
ylabels = ylabel_1, "DT" 
file_name = f"dec_time_name={symbol_1}_window={window}_ \ 
    step={tstep}_rettype={ret_type}" 

plot_pair(time_ser_1.index[window:length:tstep], values_plot,  
            xlabel, ylabels, file_name) 

Fig. 1.7 demonstrates the comparative dynamics of S&P 500, Hang Seng 

index, DAX, BSE Sensex, and their decorrelation time. 



 (a) (b) 

   (c)       (d) 

Fig. 1.7: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their 
DT indicator 

The decorrelation time increases in the pre-crash period, indicating that the 

system is more correlated during this period. 

Relative roughness (irregularity, sharpness) 

Relative roughness (RR) is the ratio of local variance (autocovariance with 

lag 1) to global variance (autocovariance with lag 0), which can be used to classify 

fractal analysis [162]. 
ret_type = 1                      # type of a series:  
# 1 – initial 
# 2 - detrending (difference between present and previous values) 
# 3 – initial returns  
# 4 – standardized returns  
# 5 – absolute values (volatility) 



# 6 – standardized series 
window = 500                      # window length 
tstep = 1                         # time step of the sliding window 
length = len(time_ser_1.values)   # length of a series 
 
relative_roughness = []           # relative roughness 

for i in tqdm(range(0, length-window, tstep)): 
    fragm = time_ser_1.iloc[i:i+window].copy()    
    fragm = transformation(fragm, ret_type) 
    rr, _ = nk.complexity_relativeroughness(fragm)  
 
# and add the result to the array of values 
    relative_roughness.append(rr) 

np.savetxt(f"rel_rough_name={symbol_1}_window={window}_ \ 
    step={tstep}_rettype={ret_type}.txt", relative_roughness) 

values_plot = time_ser_1.values[window:length:tstep], relative_roughness 
ylabels = ylabel_1, "RR" 
file_name = f"rel_rough={symbol_1}_window={window}_ \ 
    step={tstep}_rettype={ret_type}" 

plot_pair(time_ser_1.index[window:length:tstep], values_plot,  
            xlabel, ylabels, file_name) 

Fig. 1.8 shows the comparative dynamics of S&P 500, Hang Seng index, 

DAX, BSE Sensex, and their relative roughness indicator. 

 (a) (b) 



               (c)            (d) 

Fig. 1.8: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their 
relative roughness indicator 

The relative roughness indicator shows that crash events are characterized 

by an increase in roughness. This kind of behavior is an indicator of increasing 

market noise activity: correlation characteristics and overall market variation. 

1.5 Entropy analysis of complex systems 

The issue of the dynamics of development and functioning of complex 

systems can be considered in two ways: 

as a study of noise activity; 

as a deterministic case with a certain degree of order. 

In recent years, several approaches have been used to identify the 

mechanisms underlying the evolution of complex systems. Particularly useful 

results have been obtained by studying them using the methods of random matrix 

theory, mono- and multifractal analysis, chaos theory with reconstruction of the 

system trajectory in phase space, recurrence analysis, etc. We have reviewed these 

methods in previous papers. However, the use of some of these methods imposes 

requirements for the stationarity of the data under study, requires long time series, 

and complex calculation of several parameters. 

Another well-known approach to modeling the characteristics of complex 

systems is to calculate the characteristics of different types of entropy. 



The concept of thermodynamic entropy as a measure of system chaos is well 

known in physics, but in recent years the concept of entropy has been applied to 

complex systems of other objects (biological, economic, social, etc.). For example, 

one of the most commonly used methods for determining entropy is based on the 

calculation of the Fourier power spectrum and is used to study time series of 

various nature. However, using the discrete Fourier transform to analyze time 

series has its drawbacks, in particular, the results are affected by the non-

stationarity of the series, the variation of their length from hundreds to hundreds of 

thousands, and the limitations of the method itself (the invariance of the frequency-

raises the question of calculating entropy values using other methods. 

The thermodynamic entropy , often simply referred to as entropy, in 

chemistry and thermodynamics is a measure of the amount of energy in a physical 

system that cannot be used to do work. It is also a measure of the disorder present 

in the system. 

The concept of entropy was first introduced in 1865 by Rudolf Clausius 

[133]. He defined the change in entropy of a thermodynamic system during a 

reversible process as the ratio of the change in the total amount of heat  to the 

absolute temperature :

Rudolf Clausius gave the value 

Greek word transformation). 

In 1877, Ludwig Boltzmann [97] realized that the entropy of a system can 

ent with 

their thermodynamic properties. Consider, for example, an ideal gas in a vessel. A 

microstate is defined as the positions and momenta of each atom that makes up the 

system. Connectivity requires us to consider only those microstates for which: (i) 

the location of all parts is limited by the boundaries of the vessel, (ii) the kinetic 



energies of the atoms are summed to obtain the total energy of the gas. Boltzmann 

postulated that 

where the constant  is now known as the Boltzmann 

constant, and  is the number of microstates that are possible in the existing 

evaluated as the beginning of statistical mechanics, which describes 

th

principle relates the microscopic properties of a system ( ) to one of its 

thermodynamic properties ( ).

ate. 

Moreover, since ( ) can only be a positive integer, the entropy must be positive, 

based on the properties of the logarithm. 

In the case of discrete states of quantum mechanics, the number of states is 

counted in the usual way. In classical mechanics, the microscopic state of a system 

is described by the coordinates  and momenta  of individual particles, which 

take continuous values. In this case 

where  is the number of independent coordinates,  is the reduced Planck 

constant, and integration is performed over a region of phase space corresponding 

to a certain macroscopic state. 

Claude Shannon [35] proposed a formula for estimating the uncertainty of 

coded information in communication channels, called Shannon entropy: 

where  is the probability that character  occurs in a code containing 

characters, and  is a dimensional factor. 

We will calculate it using a sliding window procedure: 



ret_type = 1                       
window = 500                       
tstep = 1                          
length = len(time_ser_1.values)    
log_base = np.exp(1)       
 
shannon = []                            # array for Shannon entropy values 

for i in tqdm(range(0, length-window, tstep)):        
 
    fragm = time_ser_1.iloc[i:i+window].copy()    
    fragm = transformation(fragm, ret_type) 
 
# calculate Shannon entropy 
    p, be = np.histogram(fragm,         # calculate the probability density f
unction 
                        bins='auto',  
                        density=True)   
    r = be[1:] - be[:-1]                # find dx 
    P = p * r                           # represent probability as f(x)*dx 
    P = P[P!=0]                         # filter by all non-zero probabilitie
s 
 
    sh_ent, _ = nk.entropy_shannon(freq=P, base=log_base) # calculate entropy
  
    sh_ent /= np.log(len(P))                              # and normalize 
 
# and add the result to the array of values 
    shannon.append(sh_ent) 

np.savetxt(f"shannon_ent_name={symbol_1}_window={window}_ \ 
    step={tstep}_rettype={ret_type}.txt" , shannon) 

values_plot = time_ser_1.values[window:length:tstep], shannon 
ylabels = ylabel_1, "ShEn" 
file_name = f"shannon_ent_name={symbol_1}_window={window}_ \ 
    step={tstep}_rettype={ret_type}" 

plot_pair(time_ser_1.index[window:length:tstep],  
            values_plot, xlabel, ylabels, file_name) 

In Fig. 1.9 is presented the comparative dynamics of S&P 500, Hang Seng 

index, DAX, BSE Sensex, and their Shannon entropy. 



 (a) (b) 

   (c)           (d) 

Fig. 1.9: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their 
ShEn

As we can see from the figure above, ShEn responds with a decline to crisis 

periods of the stock indices, which indicates an increase in the degree of 

correlation of the system, its determinism. 

The connection between entropy and information can be seen in the 

that we have complete information about the coordinates and momentum of each 

 assume that the momenta of all particles are zero. In 

this case, the thermodynamic probability is one and the entropy is zero. At finite 

temperatures, the entropy in equilibrium reaches a maximum. We can measure all 

the macro parameters that characterize this macro state. However, we know 

virtually nothing about the microstate of the system. To be more precise, we know 



that a given macro state can be realized with the help of a very large number of 

micro states. Thus, zero entropy corresponds to complete information (the degree 

of ignorance is zero), and maximum entropy corresponds to complete ignorance of 

microstates (the degree of ignorance is maximum). 

In information theory, entropy is defined as the amount of information. Let 

 be the a priori probability of an event (the probability before the experiment), 

and  be the probability of this event after the experiment. For simplicity, we 

assume that . According to Shannon, the amount of information  that gives 

an accurate answer (after the experiment) is 

By definition, this amount of information is equal to one bit. 

The physical meaning of  represents a measure of our ignorance. In other 

words,  is the information we can get by solving a problem. In the example (a 

body at absolute zero temperature) discussed above, the measure of our ignorance 

is zero, since . After the experiment, we get zero information , since 

everything was known before the experiment. If we consider a body at finite 

temperatures, the number of microstates, and hence , is very large before the 

experiment. After the experiment, we get a lot of information, since we know the 

coordinates and momenta of all the particles. 

The analogy between the amount of information and the entropy ,

multiplier  equal to the Boltzmann constant  and use the natural logarithm. It is 

for this reason that the value of  is called information entropy. Information 

entropy (the amount of information) was defined by analogy with ordinary 

entropy, and it has properties characteristic of ordinary entropy: additivity, extreme 

properties, etc. However, it is impossible to equate ordinary entropy with 

information entropy, since it is unclear what the second law of thermodynamics 

has to do with information. Recall that an extensive quantity is a characteristic of a 

system that increases with the size of the system, i.e., if our system consists of two 



independent subsystems A and B, then the entropy of the whole system can be 

obtained by adding the entropies of the subsystems: 

This is the property that means the extensivity, or additivity, of entropy. 

further work: 
!pip install EntropyHub 

import numpy as np 
import matplotlib.pyplot as plt 
import pandas as pd 
import yfinance as yf 
import neurokit2 as nk 
import EntropyHub as eh 
import warnings 
import scienceplots 
from tqdm import tqdm 
 
warnings.filterwarnings('ignore') 

Approximation entropy 

Approximate Entropy 148, 149] that 

determines the ability to predict fluctuations in time series [167]. Intuitively, it 

means that the presence of repeating patterns (sequences of a certain length 

constructed from consecutive numbers in a series) of fluctuations in a time series 

leads to greater predictability of the time series compared to series without 

repeating patterns. A relatively large value of ApEn shows the probability that 

similar patterns of observations will not follow each other. In other words, a time 

series containing a large number of repeating patterns has a relatively small ApEn 

value, while the ApEn value for a less predictable (more complex) process is 

larger. 

When calculating ApEn for a given time series , consisting of  values 

, two parameters,  and , are selected. The first of these 

parameters, , indicates the length of the pattern, and the second, , defines the 

similarity criterion. Subsequences of elements of the time series , consisting of 



 numbers taken starting from number , are studied and are called vectors 

. Two vectors (templates),  and , are similar if all differences of 

pairs of their respective coordinates are less than the value of , i.e. if 

For the considered set  of all vectors of length  of the time series ,

we can calculate the values 

,

where  is the number of vectors in  that are similar to the vector 

 (given the chosen similarity criterion ). The value of  is the 

proportion of vectors of length  that have similarity to a vector of the same 

length whose elements start with the number . For a given time series, the values 

of  are calculated for each vector in , and then the average value of 

 is found, which reflects the prevalence of similar vectors of length  in 

the series . Directly, the approximation entropy for the time series  using the 

vectors of length  and the similarity criterion  is determined by the formula: 

That is, as the natural logarithm of the ratio of the repeatability of vectors of 

length  to the repeatability of vectors of length .

Thus, if similar vectors are found in the time series, ApEn will estimate the 

logarithmic probability that the following intervals after each vector will be 

different. Smaller ApEn values correspond to a higher probability that vectors are 

followed by similar ones. If the time series is very irregular, the presence of similar 

vectors cannot be predicted and the ApEn value is relatively large. 

Note that ApEn is an unstable characteristic to the input data, as it depends 

quite strongly on the parameters  and .
window = 500      
tstep = 1         
 
m = 3            # embedding dimension 
tau = 1          # time delay  
r = 0.45         # similarity parameter 



 
ret_type = 6     # type of a series:  
# 1 – initial 
# 2 - detrending (difference between present and previous values) 
# 3 – initial returns  
# 4 – standardized returns  
# 5 – absolute values (volatility) 
# 6 – standardized series  
 
length = len(time_ser.values)  # length of a series 
 
ApEn = []                      # an array for storing entropy values 

for i in tqdm(range(0, length-window, tstep)): #  
 
    fragm = time_ser.iloc[i:i+window].copy()   
    fragm = transformation(fragm, ret_type) 
 
# calculate the approximation entropy 
    Ap, _ = nk.entropy_approximate(signal=fragm,  
                                    dimension=m, 
                                    delay=tau,  
                                    tolerance=r, 
                                    corrected=False) 
    ApEn.append(Ap) 

Save the value of ApEn to a text file: 
np.savetxt(f"ApEn_name={symbol}_window={window}_step={tstep}_\ 
           dim={m}_tau={tau}_radius={r}_sertype={ret_type}.txt", ApEn) 

Defining the labels for the figures and the names of the saved figures: 
label_apen = fr'$ApEn$' 
 
file_name_apen = f"ApEn_name={symbol}_window={window}_step={tstep}_\ 
           dim={m}_tau={tau}_radius={r}_sertype={ret_type}" 

Plotting the results: 
plot_pair(time_ser.index[window:length:tstep], 
          time_ser.values[window:length:tstep], 
          ApEn,  
          ylabel,  
          label_apen, 
          xlabel, 
          file_name_apen) 

In Fig. 1.10 is presented the comparative dynamics of S&P 500, Hang Seng 

index, DAX, BSE Sensex, and their approximate entropy.  



 (a) (b) 

   (c)       (d) 

Fig. 1.10: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their 
ApEn

As can be seen from Fig. 1.10, the approximation entropy falls at crisis and 

pre-crisis moments. This indicates that the average value of the correlation integral 

obtained for the phase space of dimension  does not differ much from that 

obtained for the phase space of dimension . That is, when the space is 

reconstructed in different dimensions, all points are simply close enough to each 

other, despite the geometric transformations of the stock market attractor. This 

indicates a fairly high degree of correlation between the price fluctuations of the 

stock indices and the focus of market traders on a single trend. 

Fuzzy entropy 

One of the modifications of Shannon entropy is Fuzzy entropy (FuzzEn) 

[16, 79, 171]. This approach excludes self-similarity between the studied vectors, 



and instead of the Heaviside function, which gives either 0 or 1 for similar vectors, 

a fuzzy membership function is used, which in the case of FuzzEn will associate 

the similarity between two vectors with a real value in the range . The 

difference can be seen at the stage of constructing the contribution vector, where 

we perform detrending for the reconstructed vectors: 

where . Next, for consecutive embedded 

vectors, we find the distance 

In the classical ApEn, distance values are passed through the Heaviside 

function. The fuzzy modification uses membership functions to measure the 

membership of one trajectory to another: 

where , and  and  are the width and gradient of the 

exponential function. 

Next, the following function is calculated, which is similar to the correlation 

integral in classical ApEn: 

Finally, 

window = 500       # window length 
tstep = 1          # time step 
 
m = 3              # embedding dimension 
tau = 1            # time delay 
 
characteristic_func = "default" # type of membership function:  
                                # default,  
                                # sigmoid,  
                                # gudermannian,  
                                # linear 
 



r = (0.4, 2.0)                  # parameters that are passed to the membershi
p function:  
# for ‘default’ and ‘sigmoid’ – 2 values of r,  
# for ‘gudermannian’ and ‘linear’ - 1 value of r,  
 
ret_type = 6 # type of a series:  
# 1 – initial 
# 2 - detrending (difference between present and previous values) 
# 3 – initial returns  
# 4 – standardized returns  
# 5 – absolute values (volatility) 
# 6 – standardized series 
 
length = len(time_ser.values)  # length of a series 
 
FuzzEn = [] # an array for storing entropy values 

for i in tqdm(range(0, length-window, tstep)):  
 
    fragm = time_ser.iloc[i:i+window].copy()   
    fragm = transformation(fragm, ret_type) 
 
# calculation of fuzzy entropy 
    Fuzz, _, _ = eh.FuzzEn(Sig=fragm, m=m, tau=tau, Fx=characteristic_func, r
=r)   
    FuzzEn.append(Fuzz[-1]) # add the calculated value to the array of values 

Save FuzzEn value to a text file: 
np.savetxt(f"FuzzEn_name={symbol}_window={window}_step={tstep}_\ 
        dim={m}_tau={tau}_radius={r}_sertype={ret_type}_\ 
        memberfunc={characteristic_func}.txt", FuzzEn) 

Defining the labels for the figures and the names of the saved figures: 
label_fuzzen = fr'$FuzzEn$' 
 
file_name_fuzzen = f"FuzzEn_name={symbol}_window={window}_step={tstep}_\ 
        dim={m}_tau={tau}_radius={r}_sertype={ret_type}_\ 
        memberfunc={characteristic_func}" 

Plotting the results: 
plot_pair(time_ser.index[window:length:tstep], 
          time_ser.values[window:length:tstep], 
          FuzzEn,  
          ylabel,  
          label_fuzzen, 
          xlabel, 
          file_name_fuzzen, 
          clr='red') 

Fig. 1.11 shows the comparative dynamics of S&P 500, Hang Seng index, 

DAX, BSE Sensex, and their sample entropy. 



 (a) (b) 

            (c)            (d) 

Fig. 1.11: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their 
FuzzEn 

Fig. 1.11 demonstrates the downward dynamics of fuzzy entropy in crisis 

and pre-crisis periods, which works similarly to approximation entropy. It follows 

that fuzzy entropy also indicates an increase in the correlation of the system and its 

dynamics of the stock market. 

Sample entropy 

The calculation of ApEn takes into account the similarities of a particular 

vector  to itself, which is used to avoid a possible value of  in the absence 

of similar vectors. However, this feature leads to the leveling of two important 

characteristics in the similarity entropy: 



ApEn is highly dependent on the length of the pattern (vector) under 

consideration and is lower than expected for vectors of small 

dimensionality; 

ApEn does not take into account the relative density of the data. 

This means that when the ApEn value for one series is higher than for 

another, it should remain so (but is not) for any possible initial conditions. This 

conclusion is all the more important since ApEn is recommended as a measure of 

comparison between two data sets by different authors. 

Taking into account these limitations, another characteristic, Sample 

Entropy (SampEn), was developed for calculation [86]. 

When calculating SampEn, unlike the ApEn algorithm, two conditions are 

added:

the similarity of the vector to itself is not taken into account; 

when calculating the values of conditional probabilities, SampEn 

does not use the length of the vectors. 

Based on the analysis of the above, we can conclude that SampEn: 

more than ApEn, corresponds to the theory of random numbers for a 

series with a known distribution density function; 

preserves the relative density, while ApEn loses this characteristic; 

adds a much smaller error to the calculated value when using vectors 

of small dimensionality. 
window = 500       # window length 
tstep = 1          # time step 
 
m = 3              # embedding dimension 
tau = 1            # time delay 
r = 0.4            # similarity parameter 
 
ret_type = 6       # type of a series:  
# 1 – initial 
# 2 - detrending (difference between present and previous values) 
# 3 – initial returns  
# 4 – standardized returns  
# 5 – absolute values (volatility) 
# 6 – standardized series 
 



length = len(time_ser.values)  # length of a series 
 
SampEn = []                    # an array for storing sample entropy values 

for i in tqdm(range(0, length-window, tstep)):   
 
    fragm = time_ser.iloc[i:i+window].copy()   
    fragm = transformation(fragm, ret_type) 
 
# calculations of sample entropy 
    Samp, _ = nk.entropy_sample(signal=fragm,  
                                dimension=m,  
                                delay=tau,  
                                tolerance=r) 
    SampEn.append(Samp) 

Save the SampEn values to a text file: 
np.savetxt(f"SampEn_name={symbol}_window={window}_step={tstep}_\ 
        dim={m}_tau={tau}_radius={r}_sertype={ret_type}.txt", SampEn) 

Defining the labels for the figures and the titles of the saved figures: 
label_sampen = fr'$SampEn$' 
 
file_name_sampen = f"SampEn_name={symbol}_window={window}_step={tstep}_\ 
        dim={m}_tau={tau}_radius={r}_sertype={ret_type}" 

Plotting the results: 
plot_pair(time_ser.index[window:length:tstep], time_ser.values[window:length:
tstep], SampEn, ylabel, label_sampen, xlabel, file_name_sampen, clr='darkgree
n') 

Fig. 1.12 demonstrates the comparative dynamics of S&P 500, Hang Seng 

index, DAX, BSE Sensex, and their sample entropy. 

(a) (b) 



               (c)            (d) 

Fig. 1.12: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their 

SampEn

Fig. 1.12 shows that SampEn decreases in the pre-crisis periods of the stock 

market, which indicates an increase in the correlation of the trajectories of the 

reconstructed phase space of the N225 index. This suggests that the market in pre-

crisis periods becomes more orderly and trend-resistant. 

Permutation entropy 

Permutation entropy (PEn) is a measure from chaos theory proposed by 

Bandt and Pompe [33] and characterized by conceptual simplicity and 

computational speed. The idea of PEn is based on the usual Shannon entropy, but 

uses permutation patterns  ordinal relations between the values of the system. 

Compared to other measures of complexity, it has certain advantages, such as noise 

resistance and invariance to nonlinear monotonic transformations [77]. 

As in the previous types of entropy, we reconstruct a time series of  values 

with a fixed embedding dimension  and a time delay , and use the embedding 

matrix to form time vector sequences 

and as a result we get  vectors. 



Each element of  is converted into numerical ranks according to their 

order. For example, for  and  and the time series 

, the embedded matrix will have the following pairs: 

, , , .

Next, we form ordinal sequences according to their numerical order. Such 

vectors as  satisfy the condition  and one vector 

 satisfies the condition . We can consider  possible 

permutations of order . In our example, there are only 2! patterns: 

.

For each pattern, we determine its relative frequency: 

The probability of finding a vector with a pattern  is  and with a 

pattern  is , i.e., we form the probability distribution 

. Finally, this type of entropy can be calculated in the same 

way as the ShEn: 

For convenience, PEn is normalized according to the following equation 

[165]: 

where , and the normalized entropy of permutations is in 

the range .
window = 500        # window length 
tstep = 1           # time step 
 
m = 3               # embedding dimension 
tau = 15            # time delay 
 
Type = 'none'       # none - classical  
                    # finegrain – Finegrained PEn 
                    # modified – Modified PEn 
                    # weighted – Weighted PEn 



                    # ampaware – Amplitude-Aware PEn 
                    # edge – Edge PEn 
                    # uniquant – Uniquant PEn 
 
tpx = -1    # finegrain tpx - parameter , positive scalar (by default: 1) 
            # ampaware tpx - parameter A, value in the range [0, 1] (by defau
lt: 0.5) 
            # edge tpx - sensitivity parameter r, scalar > 0 (by default: 1) 
            # uniquant tpx - parameter L, integer > 1 (by default: 4) 
 
log = np.exp(1)    
norm = True       # normed entropy  
 
ret_type = 1      # type of a series:  
# 1 – initial 
# 2 - detrending (difference between present and previous values) 
# 3 – initial returns  
# 4 – standardized returns  
# 5 – absolute values (volatility) 
# 6 – standardized series 
 
length = len(time_ser.values)  # length of a series 
 
PEn = []        # array for storing values of normalized PEn 

for i in tqdm(range(0, length-window, tstep)):   
 
    fragm = time_ser.iloc[i:i+window].copy()   
 
    fragm = transformation(fragm, ret_type) 
 
# calculate PEn 
    _, Pnorm, cPE = eh.PermEn(fragm,  
                              m=m,  
                              tau=tau,  
                              Typex=Type,  
                              tpx=tpx,  
                              Logx=log,  
                              Norm=norm) 
 
    PEn.append(Pnorm[-1]) 

Save the permutation entropy value to a text file: 
np.savetxt(f"PEn_name={symbol}_window={window}_step={tstep}_\ 
        dim={m}_tau={tau}_sertype={ret_type}_type={Type}_param={tpx}.txt", PE
n) 

Defining the labels for the figures and the titles of the saved figures: 
label_permen = fr'$PEn$' 
 
file_name_perm = f"PEn_name={symbol}_window={window}_step={tstep}_\ 
        dim={m}_tau={tau}_sertype={ret_type}_type={Type}_param={tpx}" 



plot_pair(time_ser.index[window:length:tstep], 
          time_ser.values[window:length:tstep], 
          PEn,  
          ylabel,  
          label_permen, 
          xlabel, 
          file_name_perm, 
          clr='indigo') 

Fig. 1.13 demonstrates the comparative dynamics of S&P 500, Hang Seng 

index, DAX, BSE Sensex, and their permutation entropy. 

 (a) (b) 

              (c)           (d) 

Fig. 1.13: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their 
PEn

Fig. 1.13 shows that PEn decreases during crisis and pre-crisis periods in the 

stock market. This indicates an increase in the likelihood of one particular pattern 

emerging for further market dynamics, and thus in the amount of information 

expected when analyzing fluctuations in the stock market indices. 



Singular value decomposition entropy 

The singular value decomposition entropy (SVDEn) [147] can be 

intuitively viewed as an indicator of how many eigenvectors are needed to 

adequately explain a data set. In other words, it measures the richness of features: 

the higher the SVDEn, the more orthogonal vectors are needed to adequately 

based on the decomposition of the singular value of the signal reconstructed by the 

time-delay method. 
window = 500       # window length 
tstep = 1          # time step 
 
m = 3              # embedding dimension 
tau = 1            # time delay 
 
ret_type = 6       # type of a series:  
# 1 – initial 
# 2 - detrending (difference between present and previous values) 
# 3 – initial returns  
# 4 – standardized returns  
# 5 – absolute values (volatility) 
# 6 – standardized series 
 
length = len(time_ser.values)  # length of a series 
 
SVDEn = [] # an array for storing values of SVD entropy 

for i in tqdm(range(0, length-window, tstep)):   
 
    fragm = time_ser.iloc[i:i+window].copy()   
    fragm = transformation(fragm, ret_type) 
 
# calculation of the svd entropy 
    svden, _ = nk.entropy_svd(signal=fragm,  
                            dimension=m,  
                            delay=tau) 
 
    SVDEn.append(svden) 

Saving SVDEn to a text file: 
np.savetxt(f"SVDEn_name={symbol}_window={window}_step={tstep}_\ 
        dim={m}_tau={tau}_sertype={ret_type}.txt", SVDEn) 

Defining the labels for the figures and the titles of the saved figures: 
label_svden = fr'$SVDEn$' 
 



file_name_svden = f"SVDEn_name={symbol}_window={window}_step={tstep}_\ 
        dim={m}_tau={tau}_sertype={ret_type}" 

Plotting the results:  
plot_pair(time_ser.index[window:length:tstep], 
          time_ser.values[window:length:tstep], 
          SVDEn,  
          ylabel,  
          label_svden, 
          xlabel, 
          file_name_svden, 
          clr='darkorange') 

Fig. 1.14 shows the comparative dynamics of S&P 500, Hang Seng index, 

DAX, BSE Sensex, and their singular value decomposition entropy. 

 (a) (b) 

   (c)       (d) 

Fig. 1.14: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their 
SVDEn 

Fig. 1.14 shows that the entropy of the singular value decomposition 

decreases in (pre)crisis periods, which indicates an increase in correlations in the 



stock market. Since SVDEn is based on the distribution of eigenvectors, we can 

assume that in pre-crisis moments, market dynamics are driven by one or more 

eigenvectors, which are the driving component of the index under study. 

Dispersion entropy 

For a given one-dimensional signal of length : , the 

Dispersion entropy algorithm (DispEn) includes 4 main steps [111]: 

1) First, the  are mapped to  classes labeled from 1 to .

There are a number of linear and nonlinear approaches for this. Although 

the linear mapping algorithm is the fastest when the maximum and/or 

minimum values of the time series are much larger or smaller than the 

mean/median value of the signal, most values of  are assigned to only a 

few classes. Thus, we first use a normal cumulative distribution function 

(NCDF) to map  to  from 0 to 1. Next, a linear 

algorithm is performed to assign each  an integer from 1 to . To do 

this, for each term of the displayed signal, we use ,

where  represents the -th term of the classified time series, and 

rounding implies either increasing or decreasing the number to the next 

digit. It is worth noting that this step can be performed using other linear 

and nonlinear mapping methods. 

2) Each vector  with dimension  and time delay  is of the form 

,  and is 

projected onto the variance pattern , where 

. The number of possible dispersion patterns 

that can be assigned to each vector  is , since the signal has 

elements and each element can be assigned an integer value from 1 to .

3) For all potential  dispersion patterns, the relative frequency is 

calculated: 



4) Finally, based on the Shannon entropy formula, DispEn is calculated as 

When all possible dispersion patterns have the same probability, we get the 

largest value of DispEn, which is . Conversely, if only one 

differs from zero (a perfectly regular/predictable signal), we get the smallest value 

of DispEn. 
window = 500       # sliding window width 
tstep = 1          # sliding window time step 
m = 3              # embedding dimension 
tau = 1            # time delay 
 
fluct = False # fluctuation-dispersion entropy 
rho = 1       # parameter for Type="finesort", positive scalar value (by defa
ult: 1) 
classes = 6   # number of symbols, which are used during transofrmation 
 
type = 'ncdf' # type of symbolic conversion of a series: 
# "ncdf" - Normalized cumulative distribution function 
# "kmeans" - K-means clustering algorithm 
# "linear" - Linear segmentation of the signal range 
# "finesort" - Entropy of fine scattering 
 
ret_type = 6      # type of a series:  
# 1 – initial 
# 2 - detrending (difference between present and previous values) 
# 3 – initial returns  
# 4 – standardized returns  
# 5 – absolute values (volatility) 
# 6 – standardized series 
 
length = len(time_ser.values)  # length of a series 
 
DispEn = [] # an array of values for storing dispersion entropy 

for i in tqdm(range(0, length-window, tstep)):   
 
    fragm = time_ser.iloc[i:i+window].copy()   
    fragm = transformation(fragm, ret_type) 
 
# calculations of the dispersion entropy 
    Disp, _ = nk.entropy_dispersion(signal=fragm,  
                                    dimension=m,  



                                    delay=tau,  
                                    c=classes,  
                                    symbolize=type,  
                                    fluctuation=fluct,  
                                    rho=rho) 
    DispEn.append(Disp) 

Saving DispEn value to a text file: 
np.savetxt(f"DispEn_symbol={symbol}_window={window}_step={tstep}_d_e={m}_tau=
{tau}_\ 
           series_type={ret_type}_fluct={fluct}_rho={rho}_\ 
           classes={classes}_type={Type}.txt", DispEn) 

Defining the labels for the figures and the names of the saved figures: 
label_dispen = fr'$DispEn$' 
 
file_name_dispen = f"DispEn_symbol={symbol}_window={window}_step={tstep}_d_e=
{m}_tau={tau}_\ 
           series_type={ret_type}_fluct={fluct}_rho={rho}_\ 
           classes={classes}_type={Type}" 

Plotting the results:  
plot_pair(time_ser.index[window:length:tstep], 
          time_ser.values[window:length:tstep], 
          DispEn,  
          ylabel,  
          label_dispen, 
          xlabel, 
          file_name_dispen, 
          clr='coral') 

Fig. 1.15 shows the comparative dynamics of S&P 500, Hang Seng index, 

DAX, BSE Sensex, and their dispersion entropy. 

 (a) (b) 



 (c)            (d) 

Fig. 1.15: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their 
DispEn

Fig. 1.15 shows DispEn declines in the run-up to the crashes. This is 

particularly noticeable for the 1970, 1990, 2010, and 2020 crashes. This suggests 

that the distribution of dispersion patterns becomes skewed, which is reflected in 

the drop in entropy. This also indicates a periodization of the market. For periods 

diverse, making the market more unpredictable. 

Spectral entropy  

Spectral entropy (SE or SpecEn) [84] considers the normalized power 

spectral density (PSD) of a signal in the frequency domain as a probability 

distribution and calculates its Shannon entropy: 

A signal with a single frequency component (for example, a pure sine wave) 

has the lowest entropy. On the other hand, a signal with all frequency components 

of equal power (white noise) has the highest entropy. 
window = 500 # window length 
tstep = 1    # time step 
 
num_bins = 30 # if an integer is passed, divides the PSD into several frequen
cy bands 
 
method = 'fft' # method for calculating the PSD: 



               # welch 
               # fft 
               # multitapers 
               # lombscargle 
               # burg 
 
ret_type = 1      # type of a series:  
# 1 – initial 
# 2 - detrending (difference between present and previous values) 
# 3 – initial returns  
# 4 – standardized returns  
# 5 – absolute values (volatility) 
# 6 – standardized series 
 
length = len(time_ser.values)  # length of a series 
 
SpEn = [] # an array of values for storing spectral entropy 

for i in tqdm(range(0, length-window, tstep)):  
 
    fragm = time_ser.iloc[i:i+window].copy()   
    fragm = transformation(fragm, ret_type) 
 
# calculate the spectral entropy 
    spec, _ = nk.entropy_spectral(signal=fragm,  
                                  bins=num_bins, 
                                  method=method) 
 
    SpEn.append(spec) 

Saving SpecEn values to a text file: 
np.savetxt(f"SpEn_symbol={symbol}_window={window}_step={tstep}_\ 
           series_type={ret_type}_bins={num_bins}_psd={method}.txt", SpEn) 

Defining the labels for the figures and the names of the saved figures: 
label_spen = fr'$SpEn$' 
 
file_name_spen = f"SpEn_symbol={symbol}_window={window}_step={tstep}_\ 
                   series_type={ret_type}_bins={num_bins}_psd={method}" 

Plotting the results:  
plot_pair(time_ser.index[window:length:tstep], 
          time_ser.values[window:length:tstep], 
          SpEn,  
          ylabel,  
          label_spen, 
          xlabel, 
          file_name_spen, 
          clr='deeppink') 

In Fig. 1.16 is presented the comparative dynamics of S&P 500, Hang Seng 

index, DAX, BSE Sensex, and their spectral entropy.  



 (a) (b) 

   (c)             (d) 

Fig. 1.16: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their 
SpecEn 

Fig. 1.16 demonstrates that SpecEn has too chaotic a dynamics, which 

makes it inapplicable for monitoring and prevention of the stock market crashes. 

1.6 Conclusions on informational measures of complexity 

Thus, the considered information measures of complexity allow us to study 

certain aspects of the complexity of systems of any nature. The multiscale version 

of the introduced measures is especially productive. A thorough analysis of time 

series for systems of different nature, different levels of complexity, comparing 

them with test signals, studying the behavior of systems in different (not 

necessarily equilibrium, stationary) conditions will allow us to understand the 



nature of complexity and predict the possible behavior of systems in critical 

conditions. 

Using the example of entropy measures of complexity, this section tests the 

hypothesis about the relationship between complexity measures and crisis 

phenomena, which was put forward on the basis of complex systems theory. Using 

a sliding window algorithm based on a set of entropy indicators, it is shown that 

financial collapses are characterized by changes in complexity: in the pre-crisis 

period, as a rule, we can observe the ordering of the system, and in the crisis and 

post-crisis periods, the growth of chaos. Comparing entropy characteristics opens 

up the possibility of early identification and prevention of crisis phenomena in 

systems of different nature and complexity. 

Thus, the presented indicators-precursors of crisis phenomena, theoretically, 

allow to circumvent the need for significant computing resources and rather 

controversial methods of forecasting price fluctuations and their trends. 



2 Application of recurrence analysis and recurrence 

diagrams to the study of dynamics and topology of 

complex systems 

2.1 Topological and structural analysis of recurrence diagrams 

Studies of complex systems, both natural and artificial, have shown that they 

are based on nonlinear processes, a thorough study of which is necessary for 

understanding and modeling complex systems. In recent decades, the set of 

traditional (linear) research methods has been significantly expanded by nonlinear 

methods derived from the theory of nonlinear dynamics and chaos; many studies 

have been devoted to the assessment of nonlinear characteristics and properties of 

processes occurring in nature (scaling, fractal dimensionality). However, most 

methods of nonlinear analysis require either sufficiently long or stationary data 

series, which are quite difficult to obtain naturally. Moreover, it has been shown 

that these methods give satisfactory results for models of real systems that are 

idealized. These factors required the development of new methods of nonlinear 

data analysis. 

The state of natural or artificial systems usually changes over time. The 

study of these often complex processes is an important task in many disciplines, 

allowing to understand and describe their essence, for example, to predict the state 

for some time into the future. The goal of such research is to find mathematical 

models that sufficiently correspond to real processes and can be used to solve the 

tasks at hand. 

e the theory of recurrent analysis, 

give some examples, and consider its possible applications in the analysis and 

forecasting of complex financial and economic systems. 



2.2 Phase space and its reconstruction 

The state of the system is described by its state variables 

 where the upper index is the variable number. The set of 

state variables at time  constitutes the state vector  in the -dimensional phase 

space. This vector moves in time and in the direction determined by its velocity 

vector 

The sequence of vectors  forms a trajectory in phase space, and the 

velocity field  is tangent to this trajectory. The evolution of the trajectory 

describes the dynamics of the system and its attractor. Knowing , we can obtain 

information about the state of the system at time  by integrating the expression. 

Since the shape of the trajectory allows us to judge the nature of the process 

(periodic or chaotic processes have characteristic phase portraits), it is not 

necessary to perform integration to determine the state of the system, it is enough 

to build a graphical representation of the trajectory. 

When studying complex systems, there is often no information on all state 

variables, or not all of them can be measured. As a rule, we have a single 

observation made at a discrete time interval . Thus, measurements are written in 

the form of a series , where . The interval  can be constant, but 

this is not always possible and creates problems for the application of standard data 

analysis methods that require a uniform scale of observations. 

The interactions and their number in complex systems are such that even one 

state variable can be used to judge the dynamics of the entire system as a whole. 

Thus, an equivalent phase trajectory that preserves the structures of the original 

phase trajectory can be recovered from a single observation or time series [118] by 

the  using the time-delay method [66]: 

Here  is the embedding dimension,  is the time delay (the real time delay 

is defined as ). The topological structures of the recovered trajectory are 



preserved if , where d is the dimension of the attractor [66]. In 

practice, in most cases, the attractor can be recovered when . The delay is 

usually chosen a priori. 

There are several approaches to choosing the minimum sufficient dimension 

, except for the analytical one. Methods based on the concept of false nearest 

neighbors (FNN) have shown high efficiency. Its essence lies in the fact that when 

the dimensionality of the embedding is reduced, the number of false points falling 

in the neighborhood of any point of the phase space increases. This leads to a 

simple method  determining the number of FNNs as a function of the 

dimensionality. There are other methods based on this concept, for example, 

determining the distance relations between the same neighboring points at different 

. The dimensionality of an attractor can also be determined using cross-

correlation sums. 

 (a) (b) 

Fig. 2.1: 
recurrence plot (b). The phase space vector at point , which falls in the neighborhood (gray 
circle in (a)) of the given phase space vector at point , is a considered recurrence point. It is 
indicated by a black dot on the recurrence diagram at position ( ). The phase space vector 
outside the neighborhood (the empty circle in (a)) is denoted by a white dot on the recurrence 
diagram 



2.3 Recurrence analysis

Processes in nature are characterized by pronounced recurrent behavior, such 

as periodicity or irregular cyclicity. Moreover, the recurrence (repeatability) of 

states in the sense of following a subsequent trajectory close enough to the 

previous one is a fundamental property of dissipative dynamical systems. This 

property was noted back in the 80s of the XIX century by the French 

If the system reduces its dynamics to a limited subset of the phase space, 

then it almost certainly, i.e. with a probability practically equal to 1, returns to any 

initially state as close as possible. 

The essence of this fundamental property is that even a small perturbation in 

a complex dynamic system can lead the system to an exponential deviation from 

its state, and after a while the system tends to return to a state close to the previous 

one, and goes through similar stages of evolution. 

This can be verified by graphically depict

space. However, the possibilities of such an analysis are severely limited. As a 

rule, the dimensionality of the phase space of a complex dynamical system is 

greater than three, which makes it practically inconvenient to consider it directly; 

the only possibility is projection into two- and three-dimensional spaces, which 

often does not give a correct picture of the phase portrait. 

In 1987, Eckmann and co-authors proposed a way to map an m-dimensional 

phase trajectory of states of a system  of length  onto a two-dimensional 

square binary matrix of size  [93], where 1 (black dot) corresponds to the 

repetition of a state at some time  at some other time , and both coordinate axes 

are time axes. Such a representation was called a recurrence plot (RP) or 

recurrence diagram because it captures information about the recurrent behavior of 

the system. 

Mathematically, the above is described as 



where  is the number of states ,  is the size of the neighborhood of 

point  at time ,  is the norm, and  is the Heaviside function. 

It is impractical and, as a rule, impossible to find full recurrence in the value 

of  (the state of a dynamic, and especially a chaotic system, does not repeat 

itself completely equivalent to the initial state, but approaches it as close as 

possible). Thus, recurrence is defined as the sufficient closeness of state  to state 

. In other words, recurrent states are those  states that fall into an -

dimensional neighborhood with radius  and centered at . These points  are 

called recurrence points [163, 164]. 

Since ,  by definition, a recurrence diagram always 

contains a black diagonal line  the line of identity (LOI) at an angle  to the 

coordinate axes. An arbitrarily taken recurrent point does not carry any useful 

information about the states at times  and . Only the entire set of recurrent points 

allows you to restore the properties of the system. 

The appearance of the recurrence diagram allows us to judge the nature of 

the processes taking place in the system, the presence and influence of noise, states 

of

(extreme events). 

(a) 



(b) 

(c) 

(d) 



(e) 

Fig. 2.2: Dynamic time series characterizing homogeneity (a), drift (b), oscillation (c), 
contrasting topology (d), laminarity (e) and their recurrence diagrams 

2.4 Analysis of the diagrams 

Obviously, processes of different behavior will produce recurrence diagrams 

with different patterns. Thus, visual evaluation of the diagrams can give an idea of 

the evolution of the trajectory under study. There are two main classes of image 

structure: topology, represented by large-scale structures, and texture, formed by 

small-scale structures. 

Topology gives a general idea of the nature of the process. There are four 

main classes: 

homogeneous recurrence diagrams are typical for stationary and 

autonomous systems in which the relaxation time is small compared to 

the length of the series; 

periodic structures that repeat (diagonal lines, staggered patterns) 

correspond to various oscillating systems with periodicity in dynamics; 

drift corresponds to systems with slowly changing parameters, and this 

makes the upper left and lower right corners of the recurrence diagram 

white; 

adrupt changes in the system dynamics, as well as extreme situations, 

cause the appearance of white areas or bands. 

RPs make it easier to identify extreme and rare events. 



 (a) (b) (c) (d) 

Fig. 2.3: Characteristic topologies of recurrent diagrams: (a)  homogeneous (normally 
distributed noise); (b)  periodic (Van der Pol generator); (c)  drift (Ikeda mapping with a 
superimposed linearly growing sequence); (d)  contrasting regions or bands (generalized 
Brownian motion) [96] 

A detailed examination of recurrence diagrams reveals small-scale structures 

 a texture made up of simple points, diagonal, horizontal, and vertical lines. 

Combinations of vertical and horizontal lines form rectangular clusters of points: 

single, separately located recurrent points appear when the corresponding 

states are rare, or unstable in time, or caused by strong fluctuations. In 

this case, they are not signs of randomness or noise; 

diagonal lines  (for  where  is the length of the 

diagonal line) appear when a segment of the trajectory in phase space 

runs parallel to another segment, i.e., the trajectory repeats itself, 

returning to the same region of phase space at different times. The length 

of such lines is determined by the time during which the trajectory 

segments remain parallel; the direction (angle of inclination) of the lines 

characterizes the internal time of the subprocesses corresponding to these 

trajectory segments. The passage of lines parallel to the identity line (at 

an angle of  to the coordinate axes) indicates the same direction of 

the trajectory segments, perpendicularly 

segments), which may also be a sign of phase space reconstruction with 

an inappropriate embedding dimension. Irregular appearance of diagonal 

lines is a sign of a chaotic process; 



vertical (horizontal) lines  (with , where  is the 

length of a vertical or horizontal line) highlight the time intervals in 

which the state of the system does not change or changes insignificantly 

Fig. 2.4: Basic concepts of recurrence analysis. The displayed recurrence diagram is based on a 
time series that has been reconstructed to 11 reconstructed vectors, from  to . A 
diagonal line of length , a vertical line of length , and a white vertical line of length 

 were identified [158] 

2.5 Quantitative analysis of recurrence diagrams 

For a qualitative description of a system, a graphical representation of the 

system is the best. However, the main disadvantage of graphical representation is 

that it forces users to subjectively intuitively interpret the patterns and structures 

presented in the recurrence diagram. 

In addition, as the size of the data increases, it becomes problematic to 

analyze all  values. As a result, you have to work with separate sections of the 

original data. Analyzing in this way can create new defects that distort the 

objectivity of the observed patterns and lead to incorrect interpretations. To 

overcome this limitation and to disseminate an objective assessment among 

researchers, definitions and procedures for quantifying the complexity of recurrent 



charts were introduced by Webber and Zbilut [39, 85] in the early 1990s and later 

extended by Marwan et al [119]. 

Small-scale clusters can be a combination of isolated points (random 

recurrences). Such an evolution at different time periods or in reverse time order 

will represent diagonal lines (deterministic structures), as well as 

vertical/horizontal lines to indicate laminar states (discontinuities) or states 

representing singularities. For quantitative description of the system of systems, 

such small-scale clusters serve as the basis for recurrence quantification analysis

(RQA) [18]. 

RQA within the sliding window procedure 

For further work, we create a window procedure in which we again define 

the type of series and a few more parameters. Then we initialize the arrays for each 

recurrence measure: 
ret_type = 6            # type of a series
window = 500            # sliding window length
tstep = 1               # sliding window step
length = len(time_ser)  # length of a series

m = 1                   # embedding dimension
tau = 1                 # time delay
eps = 0.3               # radius 

# Initialize arrays to store windowed values of recurrence measures

RR = []                 # recurrence rate
DET = []                # determinism
DIV = []                # divergence
AVG_DIAG_LINE = []      # average diagonal line length
ENT_DIAG = []           # entropy of diagonal lines
LAM = []                # laminarity
TT = []                 # trapping time
ENT_VERT = []           # entropy of vertical lines
ENT_WHITE_VERT = []     # entropy of white vertical lines
AVG_WVERT_LINE = []     # average white vertical line length
VERT_DIV = []           # divergence of vertical lines
RATIO_DET_REC = []      # ratio of determinism to recurrence rate
RATIO_LAM_DET = []      # ratio of laminarity to determinism
WHITE_VERT_DIV = []     # divergence of white vertical lines
DIAG_RR = []            # diagonal recurrence rate



For further calculations, we will use the complexity_rqa() method of the 

neuralkit2 library. Its syntax is the following: 
complexity_rqa(signal, dimension=3, delay=1, tolerance='sd', 

min_linelength=2, method='python', show=False) 

Parameters: 

signal (Union[list, np.array, pd.Series])  the signal (i.e., a time 

series) in the form of a vector of values; 

delay (int)  time delay (often denoted , sometimes referred to as 

) in samples; 

dimension (int)  embedding dimension ( , sometimes referred to as 

 or  or );

tolerance (float)  tolerance (often denoted as ), distance to consider 

two data points as similar. If  (default), will be set 

to 0.2 SDsignal; 

min_linelength (int)  minimum length of diagonal and vertical lines. 

Default to 2; 

method (str)  can be  to use the PyRQA package (requires to 

install it first); 

show (bool)  visualize recurrence matrix. 

Returns: 

rqa (DataFrame)  the RQA results; 

info (dict)  a dictionary containing additional information regarding 

the parameters used to compute RQA. 

Now we can start the sliding window procedure: 
for i in tqdm(range(0, length-window, tstep)): 

    fragm = time_ser.iloc[i:i+window].copy()  
    fragm = transformation(fragm, ret_type)  

    resultRQA, _ = nk.complexity_rqa(fragm,
                                     delay=tau,
                                     dimension=m,
                                     tolerance=eps)



# Calculating the ratio of laminarity to determinism
    resultRQA['LamiDet'] = resultRQA['Laminarity']/resultRQA['Determinism']

# Calculating the divergence of black vertical lines
    resultRQA['VDiv'] = 1./resultRQA['VMax']

# Calculating the divergence of white vertical lines
    resultRQA['WVDiv'] = 1./resultRQA['WMax']

    RR.append(resultRQA['RecurrenceRate'])
    DET.append(resultRQA['Determinism'])
    DIV.append(resultRQA['Divergence']) 
    AVG_DIAG_LINE.append(resultRQA['L'])
    ENT_DIAG.append(resultRQA['LEn'])
    LAM.append(resultRQA['Laminarity']) 
    TT.append(resultRQA['TrappingTime']) 
    ENT_VERT.append(resultRQA['VEn'])
    ENT_WHITE_VERT.append(resultRQA['WEn'])
    AVG_WVERT_LINE.append(resultRQA['W']) 
    VERT_DIV.append(resultRQA['VDiv'])
    WHITE_VERT_DIV.append(resultRQA['WVDiv'])
    RATIO_DET_REC.append(resultRQA['DeteRec']) 
    RATIO_LAM_DET.append(resultRQA['LamiDet'])
    DIAG_RR.append(resultRQA['DiagRec'])

Saving the results to text files: 
name =f"RQA_classic_name={symbol}_window={window}_ \
    step={tstep}_rettype={ret_type}_m={m}_ \
    tau={tau}_eps={eps}.txt"

np.savetxt("RR"+ name, RR)
np.savetxt("DIAG_RR"+ name, DIAG_RR)
np.savetxt("DET"+ name, DET)
np.savetxt("DIV"+ name, DIV)
np.savetxt("VERT_DIV"+ name, VERT_DIV)
np.savetxt("WHITE_VERT_DIV"+ name, WHITE_VERT_DIV)
np.savetxt("LAM"+ name, LAM)
np.savetxt("TT"+ name, TT)
np.savetxt("AVG_DIAG_LINE"+ name, AVG_DIAG_LINE)
np.savetxt("AVG_WRITE_VERT_LINE"+ name, AVG_WVERT_LINE)
np.savetxt("ENT_DIAG"+ name, ENT_DIAG)
np.savetxt("ENT_VERT"+ name, ENT_VERT)
np.savetxt("ENT_WHITE_VERT"+ name, ENT_WHITE_VERT)
np.savetxt("RATIO_DET_REC"+ name, RATIO_DET_REC)
np.savetxt("RATIO_LAM_DET"+ name, RATIO_LAM_DET)

Recurrence measures of complexity  

the following function: 



def plot_recurrence_measure(measure, label, clr="magenta"):

    fig, ax = plt.subplots()

    ax2 = ax.twinx()

    ax2.spines.right.set_position(("axes", 1.03))

    p1, = ax.plot(time_ser.index[window:length:tstep], 
                  time_ser.values[window:length:tstep], 
"b-", label=fr"{ylabel}")
    p2, = ax2.plot(time_ser.index[window:length:tstep],
                   measure, 
                   color=clr, 
                   label=fr'${label}$')

    ax.set_xlabel(xlabel)
    ax.set_ylabel(f"{ylabel}")

    ax.yaxis.label.set_color(p1.get_color())
    ax2.yaxis.label.set_color(p2.get_color())

    tkw=dict(size=2, width=1.5)

    ax.tick_params(axis='x', rotation=45, **tkw)
    ax.tick_params(axis='y', colors=p1.get_color(), **tkw)
    ax2.tick_params(axis='y', colors=p2.get_color(), **tkw)
    ax2.legend(handles=[p1, p2])

    plt.savefig(label +
f" RQA_classic_name={symbol}_window={window}_step={tstep}_ \
        rettype={ret_type}_m={m}_tau={tau}_eps={eps}.jpg")

    plt.show();

2.5.2.1 Recurrence rate  

The simplest indicator is the recurrence rate (RR), which determines the 

density of recurrent points on the plot, ignoring the LOI: 

where  is the number of points on the phase space trajectory. 

The recurrence rate corresponds to the probability that a certain state will be 

repeated. 



Fig. 2.5 demonstrates the comparative dynamics of S&P 500, Hang Seng 

index, DAX, BSE Sensex, and their  measure.  

 (a) (b) 

               (c)             (d) 

Fig. 2.5: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their 
 measure 

As we can see from Fig. 2.5, the degree of recurrence increases during crash 

events, indicating an increase in the degree of self-organization and coherence of 

trading activity among traders in this market. 

2.5.2.2 Diagonal recurrence rate  

This approach is based on diagonal recurrence profiles of the time series 

[22]. The diagonal recurrence profile determines the number of recurrence points 

at different lags similar to the autocorrelation function. To obtain the diagonal 

recurrence profile, the proportion of recurrence points on the diagonals located in 



the lower right or lower left corner of the chart is simply counted and plotted as a 

function of distance from the main diagonal, i.e. lag. 

In other words, the diagonal recurrence rate captures the amount of 

autocorrelation at different lags. 

Fig. 2.6 demonstrates the comparative dynamics of S&P 500, Hang Seng 

index, DAX, BSE Sensex, and their diagonal  index.  

 (a) (b) 

   (c)       (d) 

Fig. 2.6: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their 
diagonal  measure 

Fig. 2.6 shows that the diagonal recurrence rate increases in the pre-crisis 

and crisis periods, indicating an increase in the magnitude of autocorrelation, 

which in turn demonstrates an increase in the degree of self-organization. 



2.5.2.3 Measure of determinism  

The next indicator represents the proportion of recurrent trajectories that 

form diagonal lines of minimum length . This measure is called determinism

and is related to the predictability of a dynamic system: 

where  is the frequency distribution of the diagonal lines with lengths .

Deterministic systems are characterized by a significant variation of 

diagonal lines of different lengths. Periodic signals are characterized by long 

diagonal lines, while for chaotic signals the diagonal lines will be short. For 

stochastic systems, there will be no diagonal lines at all, except for random 

patterns that will form very short diagonal lines. 

White noise, for example, would have a recurrence pattern with almost 

isolated recurrence points and a very small percentage of diagonal lines, while a 

deterministic process would show a very small number of single recurrences but a 

high density of long diagonal lines. 

Fig. 2.7 demonstrates the comparative dynamics of S&P 500, Hang Seng 

index, DAX, BSE Sensex, and their determinism measure.  

 (a) (b) 



   (c)       (d) 

Fig. 2.7: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their 

As we can see from Fig. 2.7, in the pre-crisis periods,  begins to 

increase, which also indicates an increase in the degree of predictability 

(orderliness) of system fluctuations. 

2.5.2.4 Laminarity 

The indicator characterizing the number of recurrent states that form vertical 

lines is called laminarity and is related to the number of laminar phases in the 

system: 

and  is the frequency distribution of the lengths  of vertical lines that 

have a length of at least . Laminarity characterizes the probability of a system 

to remain in an unchanged state. As the number of isolated recurrent points in the 

system increases, the degree of laminarity will decrease.  

Fig. 2.8 demonstrates the comparative dynamics of S&P 500, Hang Seng 

index, DAX, BSE Sensex, and their laminarity index.  



 (a) (b) 

   (c)       (d) 

Fig. 2.8: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their 

It can be seen that the degree of laminarity increases during crisis states. 

Both the density of diagonal points and the overall number of recurrent trajectories 

in the phase space increases. Crises are characterized by trend stability, persistence 

and determinism of their behavior. 

2.5.2.5 Average diagonal line length  

You can also measure the average diagonal lines length. The average 

diagonal lines length is defined as 



In general, this indicator characterizes the average period of time when two 

phase space trajectories are sufficiently close to each other. The average length of 

the diagonal lines determines the average time at which the system remains 

predictable.  

In Fig. 2.9 is presented the comparative dynamics of S&P 500, Hang Seng 

index, DAX, BSE Sensex, and their average length of diagonal lines 

 (a) (b) 

   (c)       (d) 

Fig. 2.9: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their 
average length of diagonal lines 

As before, we can see that the average time the studied stock indices stays in 

the deterministic state increases before crisis periods, which indicates an increase 

in the degree of collectivization of traders in the market. 



2.5.2.6 Trapping/delay time  

The average length of the vertical line is related to the predictability time of 

the dynamic system and the trapping time:

The average length of the vertical lines determines the average time the 

system stays in the laminar state. That is, it corresponds to the average period of 

value characterizes the longer and longer delay time of the system under study in a 

certain state.  

In Fig. 2.10 is presented the comparative dynamics of S&P 500, Hang Seng 

index, DAX, BSE Sensex, and their trapping time indicator.  

 (a) (b) 

 (c) (d) 



Fig. 2.10: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their 

Fig. 2.10 shows that  increases in (pre-)crisis states, indicating that the 

system is trying to stay in a state of crisis for some time.  

2.5.2.7 Average white vertical lines length 

The average white vertical lines length can be defined as 

where  is the frequency distribution of white vertical lines of length ,

and  corresponds to the shortest length of white vertical lines (the shortest 

period of return to the recurrence state). The presented measure can be 

characterized as the average system unpredictability horizon.  

In Fig. 2.11 is presented the comparative dynamics of S&P 500, Hang Seng 

index, DAX, BSE Sensex, and their average length of white vertical lines.  

 (a) (b) 



   (c)       (d) 

Fig. 2.11: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their 
average length of white vertical lines 

2.5.2.8 Diagonal lines entropy  

Given the appropriate diagonal segments, the amount of information needed 

to describe the entire distribution of this type of line can be calculated. The 

probability  that a diagonal line has length  can be estimated from the 

frequency distribution  with . The Shannon 

entropy of the probability of occurrence of such diagonal lines (diagonal lines 

entropy) can be defined as follows: 

This indicator reflects the complexity of the structure under study. 

For uncorrelated noise or oscillations, we would get small value of the 

entropy, which would indicate an asymmetric distribution of diagonal lines: there 

would be a small fraction of diagonal lines of a particular length, which would 

characterize the recurrence of the system under study. An increase in this entropy 

would indicate an increase in the symmetry of the distribution of diagonal line 

lengths.  

In Fig. 2.12 is presented the comparative dynamics of S&P 500, Hang Seng 

index, DAX, BSE Sensex, and their entropy of diagonal lines.  



 (a) (b) 

   (c)       (d) 

Fig. 2.12: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their 
entropy of diagonal lines 

Fig. 2.12 shows that the entropy of the diagonal lines increases during crises, 

indicating the growing influence of deterministic processes with varying degrees of 

predictability. 

2.5.2.9 Vertical lines entropy  

We can define the Shannon entropy for the distribution of vertical 

structures (vertical lines entropy) of a recurrence plot. The probability  that a 

vertical line has length  can be estimated from the frequency distribution 

with . The Shannon entropy of this probability is 

defined as 

ln



This measure, similar to the previous entropy, is also a measure of system 

complexity.  

For a sinusoidal process, we would expect a small value of this entropy, 

since it is a simple periodic process. For a complex process with memory, we 

expect a high value of this type of recurrent entropy. This would mean that the 

laminarity of the process is characterized by different periods of long-term memory 

of the system. 

In Fig. 2.13 is presented the comparative dynamics of S&P 500, Hang Seng 

index, DAX, BSE Sensex, and their entropy of vertical lines.  

 (a) (b) 

   (c)       (d) 

Fig. 2.13: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their 
entropy of vertical lines 



Fig. 2.13 shows that the entropy of vertical lines begins to increase during 

the crash, indicating an increase in the degree of laminarity, i.e., an increase in the 

uniformity of the distribution of vertical lines of different lengths. 

2.5.2.10 Divergence  

The  indicator can provide us with information about the maximum 

degree of predictability of the period under study. The inverse value of the 

maximum length of the diagonal lines  or divergence can indicate the speed 

and duration of the divergence of the studied trajectories. This indicator can be 

defined as 

This measure is similar to the largest Lyapunov exponent [93]. However, the 

relationship between this measure and the positive maximum Lyapunov exponent 

is much more complicated (to calculate the Lyapunov exponent from RP, the entire 

frequency distribution of the diagonal lines must be taken into account). 

The higher the divergence value, the faster the phase space trajectories 

diverge. And vice versa, the lower the divergence value, the closer the trajectories 

under study are to each other.  

In Fig. 2.14 is presented the comparative dynamics of S&P 500, Hang Seng 

index, DAX, BSE Sensex, and their divergence indicator.  

 (a) (b) 



 (c) (d) 

Fig. 2.14: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their 
 indicator 

Fig. 2.14 shows that the divergence of the diagonal lines begins to decline in 

the crisis and pre-crisis periods, which also indicates an increase in the degree of 

2.5.2.11 Divergence of vertical lines 

The inverse value of the maximum vertical line length  or vertical line 

divergence can be defined as 

The maximum length of the vertical lines provided us with information 

about the maximum degree of system invariance. Vertical divergence allows us to 

characterize the rate of onset or decay of laminarity in the system. The higher the 

value of , the faster the system leaves the laminar state and vice versa. 

In Fig. 2.15 is presented the comparative dynamics of S&P 500, Hang Seng 

index, DAX, BSE Sensex, and the divergence index of their vertical lines.  



 (a) (b) 

               (c)            (d) 

Fig. 2.15: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their 
divergence of vertical lines 

Fig. 2.15 shows that periods of crises are characterized by a decline in 

vertical divergence, i.e., an increase in the number of vertical structures that 

characterize an even greater degree of laminarity of states. 

2.5.2.12 White vertical lines divergence 

The inverse value of the maximum length of the white vertical lines

( ) can be described as white vertical lines divergence. It can be defined 

as follows: 

The increase of this indicator should indicate an increase in the degree of 

recurrence of the system, and its decline should demonstrate an increase in 

unpredictability. 



In Fig. 2.16 is presented the comparative dynamics of S&P 500, Hang Seng 

index, DAX, BSE Sensex, and their divergence of white vertical lines.  

 (a) (b) 

   (c)           (d) 

Fig. 2.16: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their 
divergence of white vertical lines 

Fig. 2.16 shows that the divergence of the white vertical lines begins to 

increase in the pre-crisis periods of stock indices, indicating an increase in the 

degree of determinism of the system and a decrease in the time spent by the stock 

market phase trajectories in a divergent state. 

2.5.2.13 Entropy of white vertical lines 

The probability  that a white vertical line has length  can be estimated 

from the frequency distribution  with . The 

Shannon entropy of the probability of white vertical lines is defined as 



where  is the minimum length of the white vertical line. 

In Fig. 2.17 is presented the comparative dynamics of S&P 500, Hang Seng 

index, DAX, BSE Sensex, and their entropy of white vertical lines.  

 (a) (b) 

               (c)              (d) 

Fig. 2.17: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their 
entropy of white vertical lines 

It can be seen that the entropy of the white vertical lines decreases in crisis 

and pre-crisis periods of the stock market and indicates an increase in the overall 

predictability of the system and a shift in the distribution of white vertical lines to 

specific lengths. That is, their distribution in times of crisis becomes less 

symmetrical and signals a gradual replacement of white vertical lines with black 

ones. 



2.5.2.14 Recurrence rate to determinism ratio 

The ratio between  and  ( ) can be used to detect hidden 

phase transitions in a system: 

In Fig. 2.18 is presented the comparative dynamics of S&P 500, Hang Seng 

index, DAX, BSE Sensex, and ratio between  and  measures.  

 (a) (b) 

   (c)             (d) 

Fig. 2.18: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their 
ratio between the measure of  and 



This indicator decreases before stock market crises. This suggests that the 

overall density of recurrent points, both isolated and the entire distribution of 

vertical structures, should increase. In crisis periods,  is higher than .

2.5.2.15 The ratio of laminarity to determinism 

Just like the previous measure, the ratio of laminarity to determinism can 

allow us to identify hidden transitions in the signal under study: 

In Fig. 2.19 is presented the comparative dynamics of S&P 500, Hang Seng 

index, DAX, BSE Sensex, and ratio between  and  measures.  

 (a) (b) 

 (c) (d) 

Fig. 2.19: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their 
ratio between the measure of  and 

Regarding the dynamics of the  indicator, we can say that the overall 

degree of determinism begins to prevail over laminarity during crises. 



2.6 Conclusions on recurrence analysis 

In this section, quantitative recurrence measures were presented to study the 

evolution of the system. These measures were applied to a time series representing 

the closing prices of S&P 500, Hang Seng index, DAX, and BSE Sensex stock 

indices. It has been demonstrated that quantitative indicators are able to detect 

transitions between chaotic and periodic states (and vice versa), allow identifying 

laminar states (chaos-chaos transitions), states of determinism and the time until 

the onset of a state of predictability. Based on the results of the presented 

indicators, we can say that the studied collapse and pre-collapse events are 

characterized by an increase in recurrence, and this kind of behavior can be used as 

a harbinger of possible crisis phenomena. 



3 Non-extensive Tsallis statistics 

3.1 Non-equilibrium thermodynamics and non-extensive statistical 

mechanics 

The great challenge of complexity theory, which is the basis of the modern 

scientific paradigm, originates from old and important problems such as the arrow 

of time, the existence of a simple and fundamental physical level for a single 

description of macroscopic and microscopic levels, the relationship between the 

observer and the object under study, etc. In general, with regard to the theory of 

complexity and each new level of reality, new concepts and new classifications are 

needed. 

In particular, the theory of complexity includes: chaotic dynamics in the 

space of states, far from equilibrium phase transitions, long-term correlations, self-

organization and multiscale, fractal processes in space and time, and other 

significant phenomena [4]. Complexity theory is considered the third scientific 

revolution of the last century (after relativity and quantum theory). However, 

complexity theory is still far from its academic maturity. In this direction, a 

book by G. Nikolis and I. Prigogine [70]. Generally, we can summarize the basic 

concept of complexity theory as follows: 

1. Complexity theory is a generalization of statistical physics for critical 

states of thermodynamic equilibrium and for processes far from 

equilibrium. 

2. Complexity is the extension of dynamics to nonlinearity and strange 

dynamics. 

3. Also, according to Ilya Prigogine, complexity theory is related to the 

dynamics of correlations instead of the dynamics of trajectories or wave 

functions. 



According to complexity theory, various physical phenomena occurring in 

distributed physical systems, such as cosmic plasma, liquids or solids, chemistry, 

biology, ecosystems, DNA dynamics, socio-economic or information systems, 

networks can be described and understood in a similar way. This description is 

based on the principle of entropy maximization. Also, according to the theory of 

complexity, these systems are holistically stable dissipative structures formed by a 

general natural process aimed at maximizing entropy. From the point of view of 

complexity, there is no significant differentiation between a group of galaxies, 

stars, animals, flowers, or elementary particles, because everywhere we have open, 

dynamic, and self-organized systems and everywhere nature works to maximize 

entropy. 

In the study of complex physical systems and phenomena, such as self-

organizing and fractal structures, subdiffusion, turbulence, chemical reactions, and 

various economic, social, and biological systems, the Gibbs distribution does not 

provide a good fit to the observed phenomena. Many studies have shown that such 

systems are characterized by power distributions [46]. They are not derived from 

the Gibbs-Shannon maximum entropy principle, which is the basis of both 

equilibrium and non-equilibrium statistical thermodynamics [43-45]. This has 

led to numerous attempts to construct a generalized statistic that would provide 

power law asymptotics of the distribution function. Such generalized statistics can 

be constructed on the basis of several entropies. Among them, an important place 

is occupied by the Tsallis entropy.

Research in the field of mechanics of non-extensive (non-additive) systems 

has recently become a subject of considerable interest in connection with the 

manifestations of non-additive properties in anomalous physical phenomena. This 

is due to both the novelty of the general theoretical problems that arise here and the 

importance of practical applications (see the bibliography presented at 

(https://tsallis.cbpf.br/biblio.htm), which is constantly updated). The beginning of a 

systematic study in this area is associated with the work of Tsallis, in which the 



author introduced a parametric formula for the statistical -entropy, which depends 

on some real number  (the so-called deformation parameter) and is non-additive 

for a set of independent complex systems. The theory of non-extensional systems 

based on the Tsallis entropy is currently being intensively developed. These works 

have become a significant step in the development of the information theoretic 

approach and in the development of the principles of non-extensive statistical 

mechanics and equilibrium thermodynamics of open systems. It is important to 

note that the range of applications of these and many other non-extensive 

parametric entropies is currently constantly expanding, covering various areas of 

science, such as cosmology and cosmogony, plasma theory, quantum mechanics 

and statistics, nonlinear dynamics and fractals, geophysics, biomedicine, and many 

others. 

From a physical point of view, economic dynamics can be viewed as 

spatially distributed dynamics and is related to the general category of nonlinear 

distributed systems. The analysis of economic time series demonstrates complex 

and chaotic dynamics in phase s

method of delays) allows us to reconstruct a topological equivalent to the original 

phase space that preserves the basic geometric and dynamic properties, such as 

degrees of freedom, fractal dimension, multifractality, Lyapunov exponents, 

prediction matrix, etc. The reconstructed phase space can be used to estimate all of 

the above quantities, as well as phase transitions, statistical behavior, entropy 

generation, etc. In addition, the phase space can have multifractal properties and 

discontinuous turbulence characteristics, which indicate the existence of long-

range interactions in space and time, as well as multiscale interactions. 

These characteristics also indicate the existence of fractional dynamics in 

phase space, which can be described by the Fokker-Planck fractional differential 

equations and anomalous diffusion equations. The solutions of these equations are 

fractional space-time functions and non-Gaussian distribution functions, which 

belong to the category of Levy distributions and Tsallis distributions. Non-



equilibrium steady states of economic dynamics originate from processes of strong 

self-organization corresponding to local maxima of the Tsallis entropy, while 

changes in the control parameters of the economic system can cause a phase 

transition and a shift of economic dynamics to a new stable equilibrium, a steady 

state with maximum Tsallis entropy. This phase transition leads to a multifractal 

change in the formation of the phase space and to a change in the phenomenology 

of the economic system. Finally, the statistics of the dynamics in the multifractal 

phase space can be described by means of power functions of the Tsallis 

ods. 

In recent years, statistical mechanics has expanded its original purpose: the 

application of statistics to large systems whose states are governed by some kind of 

Hamiltonian functionals [46]. Their ability to relate the microscopic states of 

individual system components to macroscopic properties is now widely used [43]. 

Undoubtedly, the most important of these connections is still the determination of 

thermodynamic properties through the correspondence between the concept of 

entropy, originally introduced by Rudolf Clausius in 1865, and the number of 

allowed microscopic states, introduced by Ludwig Boltzmann around 1877 when 

he studied the approach to the equilibrium of an ideal gas [44]. This relationship 

can be expressed as 

where  is a positive constant, and  is the number of microstates 

compatible with the macroscopic state of an isolated system. This equation, known 

as Boltzmann's principle, is one of the cornerstones of standard statistical 

mechanics. When the system is not isolated, but instead is in contact with some 

large reservoir, we can modify Eq. (3.1) to obtain the Boltzmann-Gibbs entropy 

(BG):



where  is the probability of a microscopic configuration [46]. BG 

statistical mechanics is still based on hypotheses such as molecular chaos [70] and 

ergodicity [42]. Despite the absence of an actual fundamental derivation, BG 

statistics has undoubtedly been successful in studying systems dominated by short 

spacetime interactions. Thus, it is quite possible that other physical entropies 

besides BG can be defined to properly describe anomalous systems for which the 

simplified ergodicity and/or independence hypothesis does not hold. Inspired by 

such concepts, in 1988 Constantino Tsallis proposed a generalization of BG 

statistical mechanics to cover systems that violate ergodicity, systems whose 

microscopic configurations cannot be considered independent. This generalization 

is based on non-additive entropies, characterized by an index and leading to non-

extensive statistics:

where  are the probabilities associated with microscopic configurations, 

 their total number,  a real number, and 

a measure of the non-extensive nature of the system. It corresponds to the standard 

BG statistic. Eq. (3.3) modifies  ( ) as the basis for a 

possible generalization of BG statistical mechanics [60, 134]. The value of the 

entropy index for a particular system should be determined a priori from 

microscopic dynamics. 

Since its introduction, the Tsallis entropy (3.3) has been the source of 

several important results in both fundamental and applied physics, as well as in 

other scientific fields such as biology, chemistry, economics, geophysics, and 

medicine [71]. 

3.2 Non-extensive entropy and Tsallis triplet 

Systems characterized by BG statistical mechanics have the following 

characteristics: (i) their distribution functions for energies are proportional to an 



exponential function; (ii) they have a strong sensitivity to initial conditions that 

grows exponentially with time (chaos), characterized by a positive maximum 

Lyapunov exponent; (iii) their relaxation occurs exponentially with a certain 

relaxation time. In other words, these three behaviors are described by exponential 

functions (i.e., ). However, it has been found that for systems that can be 

studied within the framework of non-expansive statistical mechanics, the energy 

probability density function (associated with stationarity or equilibrium), 

sensitivity to initial conditions, and relaxation are described by three entropy 

indices called the Tsallis triplet, or -triplet [43, 69]. 

Non-extensive statistical theory is mathematically based on the nonlinear 

equation 

the solution of which is the -exponential function: 

For , -Gaussian corresponds to the usual Gaussian distribution. 

The solution of Eq. (3.4) can be realized in three different ways included in 

the Tsallis -triplet: . These quantities characterize the three 

physical processes that are summarized here, while the -triplet values characterize 

the attractor set of dynamics in the phase space of the dynamic, and they can 

change when the dynamics of the system is attracted to another set of attractors. 

For a non-extensive system, the value of the -exponent depends on the 

estimated properties of the dynamics and phase space of the system. For dynamic 

systems, a -triplet is estimated, which reflects three properties of the system (Fig. 

3.1). The  index is estimated on the basis of an equilibrium model of the rank 

distribution using nonlinear estimation methods [151]. This index is a parameter of 

the system's area of attraction. The  exponent reflects the sensitivity of the 

system to initial conditions and entropy production and is determined by the 



multifractal spectrum [32]. The relaxation index  is found on the basis of 

autocorrelation and characteristics of diffusion processes [47]. 

Fig. 3.1: Time periodization of the periods of -entropy production. The first period corresponds 
to the production of entropy through the  parameter of the Tsallis -triplet. The second 
period corresponds to a certain relaxation process through the parameter . The system detects 
fluctuations due to the  parameter 

Index  and non-extensive physical conditions 

The value of  for the steady state is estimated from the yield distribution 

function, which in turn is obtained by fitting -Gaussian: 

for an empirically constructed histogram  and various 

 values selected by minimizing . Depending on the 

value of ,  can take the following forms: 

To assess the dynamics of the  value, a graph of the dependence of 

 on  is plotted for the selected interval  (for example, from 1 to 5), 

which provides the best linear approximation (estimated by the maximum 



coefficient of determination ) [54]. It is clear that the values of  become 

markedly non-Gaussian along the tails, and can instead be described by a power 

law. 

Study of relaxation processes through the prism of the 

The corresponding -value for the relaxation process is obtained from the 

autocorrelation coefficient: 

For BG statistics, such a correlation should decrease exponentially. The 

same algorithm as for  must be worked out on a graph of the dependence of 

on  to determine which  best linearizes empirical data. 

Sensitivity to the initial conditions 

Entropy production is related to the general nature of the attractor set. This 

attractor can be described by multifractality and sensitivity to initial conditions. 

The sensitivity to initial conditions can be expressed as  

where  is the deviation of the trajectory in phase space: 

, and  is the distance between adjacent trajectories due to time . The 

solution of Eq. (3.9) can be represented as: 

First, it was hypothesized and later proved for time series of non-extensive 

systems of different nature that such a correlation exists [14]: 

where  and  are the minimum and maximum  values of the 

corresponding multifractal spectrum .



The spectrum of multifractality, therefore, follows from the procedure of 

multifractal detrended fluctuation analysis, which allows you to calculate the Hurst 

exponent for different moments and time scales. 

Practical calculations of -triplet 

import matplotlib.pyplot as plt  
import numpy as np 
import yfinance as yf 
import pandas as pd 
import scienceplots 
import neurokit2 as nk 
import fathon 
import scipy 
import statsmodels.api as sm 
from fathon import fathonUtils as fu 
from scipy.stats import norm 
from scipy.special import gamma 
from scipy.optimize import curve_fit 
from tqdm import tqdm 
 
%matplotlib inline 

And we will define the necessary functions for further work: 
# q-exponential function 
def np_exp_q(x, q=1): 
    if q == 1: 
       return np.exp(x) 
    else: 
       return (1+(1-q)*x)**(1/(1-q)) 
 
# q-logarithm 
def np_log_q(x, q=1): 
    if q == 1: 
       return np.log(x) 
    else:  
       return x**(1-q)-1/(1-q) 
 
# values for q-Gaussian 
def C_q(q=1.0): 
    if q == 1: 
       return np.sqrt(np.pi) 
    elif q < 1: 
       return 2*np.sqrt(np.pi)*gamma(1/(1-q))/(3-q)*np.sqrt(1-q)*gamma((3-q)/
(2*(1-q))) 
    elif q > 1: 
       return (np.sqrt(np.pi)*gamma((3-q))/(2*(q-1)))/(np.sqrt(q-1)*gamma(1/(



q-1))) 
 
# pdf of q-Gaussian for q_stat calculations 
def G_q(r, beta, q): 
    return np.sqrt(beta)/C_q(q) * np_exp_q(-beta*r, q) 

# autocorrelation function for q_rel 
def acf(x, maxlag): 
 
    n = len(x) 
    a = (x - x.mean()) / (x.std() * n) 
    b = (x - x.mean()) / x.std() 
 
    cor = np.correlate(a, b, mode="full") 
    acf = cor[n:n+maxlag+1] 
    lags = np.arange(maxlag +1) 
 
    return acf, lags 
 
# relaxation function for q_rel 
def rel_func(x, q, tau): 
    return np_exp_q(-x/tau, q) 

# a function for calculating the returns of a series or its standardization 
def transformation(signal, ret_type): 
 
    for_rec = signal.copy() 
 
    if ret_type == 1:  
       pass 
    elif ret_type == 2: 
        for_rec = for_rec.diff() 
    elif ret_type == 3: 
        for_rec = for_rec.pct_change() 
    elif ret_type == 4: 
        for_rec = for_rec.pct_change() 
        for_rec -= for_rec.mean() 
        for_rec /= for_rec.std() 
    elif ret_type == 5:  
        for_rec = for_rec.pct_change() 
        for_rec -= for_rec.mean() 
        for_rec /= for_rec.std() 
        for_rec = for_rec.abs() 
    elif ret_type == 6: 
        for_rec -= for_rec.mean() 
        for_rec /= for_rec.std() 
 
    for_rec = for_rec.dropna().values 
 
    return for_rec 

# function for plotting paired charts 
def plot_pair(x_values,  
              y1_values, 
              y2_values,   
              y1_label,  



              y2_label, 
              x_label,  
              file_name, clr="magenta"): 
 
    fig, ax = plt.subplots() 
 
    ax2 = ax.twinx() 
    ax2.spines.right.set_position(("axes", 1.03)) 
 
    p1, = ax.plot(x_values,  
                  y1_values,  
"b-", label=fr"{y1_label}") 
    p2, = ax2.plot(x_values, 
                   y2_values,  
                   color=clr,  
                   label=y2_label) 
 
    ax.set_xlabel(x_label) 
    ax.set_ylabel(f"{y1_label}") 
    ax.yaxis.label.set_color(p1.get_color()) 
    ax2.yaxis.label.set_color(p2.get_color()) 
 
    tkw = dict(size=2, width=1.5) 
 
    ax.tick_params(axis='x', rotation=45, **tkw) 
    ax.tick_params(axis='y', colors=p1.get_color(), **tkw) 
    ax2.tick_params(axis='y', colors=p2.get_color(), **tkw) 
    ax2.legend(handles=[p1, p2]) 
 
    plt.savefig(file_name +".jpg") 
    plt.show(); 

plt.style.use(['science', 'notebook', 'grid'])  
 
size = 22 
params = { 
'figure.figsize': (8, 6),             
'font.size': size,                    
'lines.linewidth': 2,                 
'axes.titlesize': 'small',            
'axes.labelsize': size,               
'legend.fontsize': size,              
'xtick.labelsize': size,              
'ytick.labelsize': size,              
"font.family": "Serif",               
"font.serif": ["Times New Roman"],    
'savefig.dpi': 300,                   
'axes.grid': False                    
} 
 
plt.rcParams.update(params)           



Calculations of the  exponent 

3.2.5.1 -Gaussian estimation for the whole time series 

q_stat_time_ser = time_ser.copy() 
ret_type = 4                       # type of a series 
q_stat_time_ser = transformation(q_stat_time_ser, ret_type) 
 
hist, bin_edg = np.histogram(q_stat_time_ser, bins=250, density=True) 
 
mu, std = norm.fit(q_stat_time_ser) 
x = np.linspace(q_stat_time_ser.min(), q_stat_time_ser.max(), len(bin_edg[1:]
)) 
p = norm.pdf(x, mu, std) 
 
xval = bin_edg[1:]**2 
yval = hist 
 
popt, pcov = curve_fit(G_q, xdata=xval, ydata=yval, bounds=([0.0, 0.0], [np.i
nf, 3.0])) 

fig, ax = plt.subplots(1, 1) 
ax.plot(bin_edg[1:], hist, 'o', label=r"$P_{empirical}$") 
ax.plot(x, p, 'o', label="Gauss") 
ax.plot(x, G_q(x**2, popt[0], popt[1]), label=r"$q$-Gaussian") 
ax.set_yscale('log') 
ax.set_xlabel("x") 
ax.set_ylabel(r"$\log{P(\beta, x)}$") 
 
plt.legend() 
plt.show(); 

Fig. 3.2 demonstrates distribution function of normalized returns for S&P 

500, Hang Seng index, DAX, and BSE Sensex compared to theoretical Gaussian 

and -Gaussian distributions 

 (a) (b) 



   (c)       (d) 

Fig. 3.2: Distribution function of normalized returns for S&P 500 (a), Hang Seng index (b), 
DAX (c), and BSE Sensex (d) compared to theoretical Gaussian and -Gaussian distributions 

Fig. 3.2 shows that the standardized returns for the studied stock indices go 

beyond . As can be seen, the theoretical Gaussian distribution significantly 

underestimates the occurrence of extremely high and low returns. If the logarithm 

of the empirical probability for such returns is, approximately, at the level of 

for S&P 500,  for Hang Seng,  for DAX, and  for BSE Sensex, then 

the Gaussian distribution is, approximately,  for S&P 500,  for Hang 

Seng,  for DAX, and  for BSE Sensex. That is, as an example, the 

Gaussian distribution underestimates the empirical probability of positive returns 

by a factor of . Although the -Gaussian also does not seem ideal for 

describing such returns, the underestimation of heavy tails in the case of non-

extensive statistics is much smaller compared to the normal Gaussian. 

3.2.5.2  calculations within the sliding window procedure 

window = 500   # sliding window width 
tstep = 1      # sliding window step 
ret_type = 4   # type of a series:  
 
length = len(time_ser) 
 
q_stats = [] 

for i in tqdm(range(0, length-window, tstep)): 
 
    fragm = time_ser.iloc[i:i+window].copy()   
    fragm = transformation(fragm, ret_type)    



    hist_fragm, bin_edg_fragm = np.histogram(fragm, bins=100, density=True) 
 
    xval = bin_edg_fragm[1:]**2 
    yval = hist_fragm 
 
    popt, pcov = curve_fit(G_q, xdata=xval, ydata=yval, bounds=([0.01, 1.0], 
[np.inf, 5.0])) 
    q_stat = popt[1] 
 
    q_stats.append(q_stat) 

Saving the results to a text file: 
name = f"q_stat_name={symbol}_window={window}_step={tstep}_rettype={ret_type}
.txt" 
 
np.savetxt(name, q_stats) 

Defining the parameters for saving figures: 
# labeling of the q_stat indicator in the figure legend 
label_q_stat = r'$q_{stat}$' 
 
# figure title 
file_name = f"q_stat_name={symbol}_window={window}_step={tstep}_rettype={ret_
type}" 
 
# color of the indicator 
color = 'brown' 

plot_pair(time_ser.index[window:length:tstep], time_ser.values[window:length:
tstep], q_stats, ylabel, label_q_stat, xlabel, file_name, color) 

Fig. 3.3 represents the comparative dynamics of S&P 500, Hang Seng index, 

DAX, BSE Sensex, and their  exponent. 

 (a) (b) 



   (c)      (d) 

Fig. 3.3: Comparative dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), and BSE 
Sensex (d), and their  exponent 

Calculation of the  exponent  

window = 500   # sliding window width 
tstep = 1      # sliding window time step 
ret_type = 1   # type of a series:  
 
max_lag = 100 
 
length = len(time_ser) 
 
q_rels = [] 

for i in tqdm(range(0, length-window, tstep)): 
 
    fragm = time_ser.iloc[i:i+window].copy()   
    fragm = transformation(fragm, ret_type)    
    autocor, lags = acf(x=fragm, maxlag=max_lag) 
    lags = lags 
    autocor = autocor 
 
    popt, pcov = curve_fit(rel_func, xdata=lags[1:], ydata=autocor[1:], bound
s=(1, [np.inf, 10])) 
    q_rel = popt[0] 
 
    q_rels.append(q_rel) 

Saving the results to a text file: 
name = f"q_rel_name={symbol}_window={window}_step={tstep}_rettype={ret_type}_
maxlag={max_lag}.txt" 
 
np.savetxt(name, q_rels) 

Defining the parameters for saving figures: 
# labeling of the q_rel indicator in the figure legend 
label_q_rel = r'$q_{rel}$' 
 



# figure title 
file_name = f"q_rel_name={symbol}_window={window}_step={tstep}_rettype={ret_t
ype}_maxlag={max_lag}" 
 
# color of the exponent 
color = 'red' 

Plot the results: 
plot_pair(time_ser.index[window:length:tstep], 
          time_ser.values[window:length:tstep], 
          q_rels,  
          ylabel,  
          label_q_rel, 
          xlabel, 
          file_name, 
          color) 

In Fig. 3.4 is presented the comparative dynamics of S&P 500, Hang Seng 

index, DAX, BSE Sensex, and their  exponent.  

 (a) (b) 

 (c) (d) 

Fig. 3.4: Comparative dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex 
(d), and their  exponent 



For the studied indicator, Fig. 3.4 shows that the degree of relaxation 

increases in the pre-crisis state of the system, which is an indicator of the growth of 

-organization through certain external indicators. 

Calculation of the  exponent 

window = 500   # sliding window width 
tstep = 1      # sliding window step 
ret_type = 4   # type of a series:  
 
rev = True # whether to repeat the calculation of the fluctuation function fr
om the end of the series 
accumulate = False # re-accumulation of a detrended series to work with highl
y uncorrelated series 
 
q_min = -5 # minimum value of q 
q_max = 5  # maximum value of q 
q_inc = 1  # increment step of q 
 
win_beg = 10 # Initial segment width 
win_end = window-1 # Final segment width 
 
length = len(time_ser) 
 
q = np.arange(q_min, q_max+q_inc, q_inc) 
q = np.round_(q, decimals =1) 
 
order = 3 # polynomial order for detrending (MF-DFA) 
 
q_sens_values = [] 

for i in tqdm(range(0, length-window, tstep)): 
 
    fragm = time_ser.iloc[i:i+window].copy()   
 
    fragm = transformation(fragm, ret_type)    
 
    if accumulate == True: 
        fragm = np.cumsum(fragm-np.mean(fragm)) 
 
    a = fu.toAggregated(fragm) 
 
    pymfdfa = fathon.MFDFA(a) 
 
    wins = fu.linRangeByStep(win_beg, win_end) 
 
    n, F = pymfdfa.computeFlucVec(wins, q, revSeg=rev, polOrd=order) 
    list_H, list_H_intercept = pymfdfa.fitFlucVec() 
 
    if accumulate == True: 
        list_H = list_H - 1 
 



# calculation of tau(q) values 
    tau = q * list_H - 1 
 
# calculation of singularity values 
    alpha = np.gradient(tau, q, edge_order=2) 
 
# maximum value of the singularity 
    maximal_alpha = alpha.max() 
 
# minimum value of the singularity 
    minimal_alpha = alpha.min() 
 
# q_sens calculations 
    q_sens = (maximal_alpha-minimal_alpha-maximal_alpha*minimal_alpha)/(maxim
al_alpha-minimal_alpha) 
 
    q_sens_values.append(q_sens) 

Saving the results to a text file: 
name = f"q_sens_name={symbol}_ret={ret_type}_qmin={q_min}_qmax={q_max}_qinc={
q_inc}_wind={window}_step={tstep}.txt" 
 
np.savetxt(name, q_sens_values) 

Defining the parameters for saving figures: 
# labeling of the q_rel indicator in the figure legend 
label_q_sens = r'$q_{sens}$' 
 
# figure title 
file_name = f"q_sens_name={symbol}_ret={ret_type}_qmin={q_min}_qmax={q_max}_q
inc={q_inc}_wind={window}_step={tstep}" 
 
# color of the indicator 
color = 'green' 

Plot the results: 
plot_pair(time_ser.index[window:length:tstep], 
          time_ser.values[window:length:tstep], 
          q_sens_values,  
          ylabel,  
          label_q_sens, 
          xlabel, 
          file_name, 
          color) 

Fig 3.5 presents the comparative dynamics of S&P 500, Hang Seng index, 

DAX, BSE Sensex, and their  exponent.  



 (a) (b) 

           (c)          (d) 

Fig. 3.5: Comparative dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex 
(d), and their  exponent 

The  indicator shows a decline in the pre-crisis periods, indicating that 

the market is particularly sensitive at these moments. For completely identical and 

independently distributed values,  would remain close to 1. In pre-crisis 

states, it tends to negative values, which indicate s

attractor to singularity, i.e. the convergence of trajectories to each other. 

Tsallis entropy calculations 

window = 500   # sliding window width 
tstep = 1      # sliding window time step 
ret_type = 1   # type of a series  
 
length = len(time_ser) 
 
tsallis_en = [] 



for i in tqdm(range(0, length-window, tstep)): 
 
    fragm = time_ser.iloc[i:i+window].copy()   
    fragm = transformation(fragm, ret_type)    
    p, be = np.histogram(fragm, bins='auto',  
                        density=True)   
    r = be[1:] - be[:-1]    
    P = p * r  
    P = P[P!=0]  
 
    tsen, _ = nk.entropy_tsallis(freq=P,  
                                 q=1,  
                                 base=np.exp(1)) 
    tsen /= np.log(len(P)) 
 
    tsallis_en.append(tsen) 

Saving the results to a text file: 
name = f"tsen_name={symbol}_ret={ret_type}_wind={window}_step={tstep}.txt" 
 
np.savetxt(name, tsallis_en) 

Defining the parameters for saving figures: 
# Tsallis entropy notation in the figure legend 
label_ts_en = r'$TsEn$' 
 
# figure title 
file_name = f"tsen_name={symbol}_ret={ret_type}_wind={window}_step={tstep}" 
 
# color of the indicator 
color = 'purple' 

Plot the results: 
plot_pair(time_ser.index[window:length:tstep], 
          time_ser.values[window:length:tstep], 
          tsallis_en,  
          ylabel,  
          label_ts_en, 
          xlabel, 
          file_name, 
          color) 

Fig. 3.6 shows the comparative dynamics of S&P 500, Hang Seng index, 

DAX, BSE Sensex, and their Tsallis entropy 



 (a) (b) 

            (c)          (d) 

Fig. 3.6: Comparative dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex 
(d), and their Tsallis entropy  

Fig. 3.6 shows that the non-extensive Tsallis entropy decreases in the pre-

crisis periods, indicating an increase in the degree of non-additivity (self-organized 

dynamics) of the market. 

3.3 Conclusions on non-extensive statistics and -triplet 

In this chapter, a non-extensive statistical mechanics approach to the 

dynamics of daily historical values of the major stock indices and their returns is 

presented. It was found that the stock indices obey the Tsallis statistics. The time 

dynamics of the -triple was modeled, which made it possible to obtain the 

reaction of the components of the triple to the formation and course of crisis 

phenomena when compared with the original time series. The  value increases 



in times of crises, as price fluctuations increase. The  value increases in pre-

-

equilibrium state and subsequent relaxation. Finally,  has a minimal value in 

the pre-crisis period, indicating a special sensitivity of the system near the 

bifurcation point, which is the crisis itself. 

It seems promising to study the features of the -triplet for complex network 

structures obtained by transforming a time series into a network using one of the 

known methods. It is also interesting to search for alternative components of non-

extensivity, such as a measure of irreversibility of the time series, or a measure of 

recurrence, etc. Obviously, these approaches can provide the necessary progress 

both at the fundamental and applied levels to achieve a deeper understanding of the 

nature of complex systems. 



4 Fractal and multifractal measures of complexity 

4.1 Definition of a fractal 

Fractals are geometric objects: lines, surfaces, spatial bodies that have a 

highly rough surface or shape and are characterized by the property of self-

similarity [25, 26, 76]. The word fractal comes from the Latin word fractus and is 

translated as fractional, broken. Self-similarity as the main characteristic of a 

fractal means that it varies more or less homogeneously over a wide range of 

scales. Thus, when zoomed in, small fractal fragments become very similar to large 

ones. In the ideal case, this self-similarity leads to the fact that the fractal object is 

invariant with respect to stretching, i.e., it is said to have dilatational symmetry. It 

implies that the main geometric features of a fractal remain unchanged when the 

scale changes. 

Obviously, fractal objects in the real world are not infinitely self-similar, and 

there is a minimum scale  such that the self-similarity property disappears at a 

scale . In addition, at sufficiently large length scales , where 

is the characteristic geometric size of objects, this self-similarity property is also 

violated. Therefore, the properties of natural fractals are considered only on scales 

 that satisfy the relation . Such restrictions are natural, since 

when we give an example of a fractal  a broken, nonsmooth trajectory of a 

Brownian particle  we understand that this image represents an obvious 

idealization. The fact is that on small scales, the finite mass and size of the 

Brownian particle, as well as the finite time of the collision, are hidden. When 

these circumstances are taken into account, the trajectory of a Brownian particle 

begins to represent a smooth curve. 

It is worth noting that the property of exact self-similarity is characteristic 

only of regular fractals. If, instead of a deterministic method of construction, 

some element of randomness is included in the algorithm of their creation (as is the 



case, for example, in many processes of differential cluster growth, electrical 

breakdown, etc.), then so-called random fractals appear. Their main difference 

from regular fractals is that the self-similarity properties are valid only after 

appropriate averaging over all statistically independent realizations of the object. In 

this case, the enlarged part of the fractal is not exactly identical to the original 

fragment, but their statistical characteristics coincide. 

4.2 Coastline length 

Initially, the concept of a fractal in physics arose in connection with the task 

of determining the length of a coastline. When it was measured using an existing 

map of the area, an interesting detail emerged: the larger the map used, the longer 

the coastline appeared to be [23, 27, 31, 78

straight line distance between points A and B located on the coastline is R (see Fig. 

4.1). 

Fig. 4.1: Determining the length of the coastline between points A and B [152] 

Then, to measure the length of the coastline between these points, we will 

place rigidly connected nodes along the shore so that the distance between adjacent 

nodes would be, for example,  km. The length of the coastline in kilometers 

between points A and B is then equal to the number of nodes minus 1 multiplied 

by 10. The next measurement of this length will be done in the same way, but the 

distance between neighboring nodes will be  km. 



It turns out that the result of these measurements will be different. As the 

scale  decreases, we will get larger and larger values of the length. Unlike a 

smooth curve, the coastline is often so indented (down to the smallest scale) that as 

the length of the link  decreases, the value of  the length of the coastline  does 

not tend to a finite limit, but increases according to a power law 

and  is a certain power-law index called the fractal dimension of the 

coastline [31]. The larger the value of , the more broken or detailed the coastline 

appears. The origin of the Eq. (4.1) should be intuitive: the smaller the scale we 

use, the less details of the coastline will be taken into account and the less they will 

contribute to the measured length. On the contrary, by increasing the scale, we 

.

Thus, we can see that to determine the length of the coastline  using a rigid 

scale , we need to make  steps, and the value of  varies with  so that 

depends on  according to the law . As a result, the length of the 

coastline grows unlimitedly as the scale decreases. This circumstance sharply 

distinguishes a fractal curve from an ordinary smooth curve (such as a circle or 

ellipse), for which the limit of the length of the approximating broken line  is 

finite as the length of its link  approaches zero. As a result, for a smooth curve, its 

fractal dimension is , i.e., it coincides with the topological dimension. 

4.3 Fractal dimension of sets 

Previously, we introduced the concept of the fractal dimension of the 

coastline. Now let us give a general definition of this quantity. Let  be the usual 

Euclidean dimension of the space in which our fractal object is located (

line,  plane,  usual three-dimensional space). Now 

object with entirely -



at least  spheres for this. Then, if for sufficiently small  the value of 

varies with  according to the power law 

then  is called the Hausdorff or fractal dimension of this object [155]. 

Obviously, this formula is equivalent to the relation , which was used 

above to determine the length of the coastline. Eq. (4.3) can be rewritten as 

This ratio serves as a general definition of the fractal dimension .

According to it, the value of  represents the local characteristic of the object 

under study. 

4.4 Procedures for calculating monofractal dimensions 

Currently, there are many definitions and methods for measuring fractal 

dimension. The most common one-dimensional fractal dimensions are the 

Hausdorff dimension, the Higuchi dimension, and the Petrosian and Minkowski 

dimension [95]. The Hausdorff dimension is the simplest fractal dimension. 

However, its computational complexity is high, which makes it difficult to apply in 

practice. The Minkowski dimension is relatively simple, and the fractal dimension 

of the signal can be obtained by adjusting the size of the length of the side of the 

e signal surface is determined. Therefore, it 

is widely recognized and used. Which of the fractal dimension indicators most 

accurately describes the complexity of the signal and is able to identify crisis 

phenomena is the key point of this section. 

R/S analysis 

The Rescaled range (R/S analysis) method, developed by Mandelbrot and 

Wallace [25], is based on the previously established Hurst hydrological analysis 

method [74, 75], and allows for the calculation of the self-similarity parameter ,

which measures the intensity of long-term dependencies in a time series. The 



coefficient , called the Hurst coefficient, contains minimal predictions about the 

nature of the system under study and can classify time series. This indicator 

distinguishes between random (Gaussian) and nonrandom series; in addition, it is 

associated with the fractal dimension, which, in turn, characterizes the degree of 

smoothness of the graph based on the time series. The R/S analysis method can 

also identify the maximum length of the interval (cycle) at which values retain 

information about the system's initial data (long-term memory). 

The analysis begins with the construction of a series of logarithmic returns, 

, where  is the value of the original time series at 

time ,  is the time step. The resulting sequence  is divided into 

subsequences of length .

For each subsequence :

1) The mean value  and the standard deviation  are found. 

2) The data is normalized by subtracting the mean of the sequence 

, .

3) The cumulative sum of the sequence of s is found: ,

.

4) Within each subsequence is the range between the maximum and 

minimum values: ,

which is standardized by the standard deviation .

5) The average  of the normalized range values for all subsequences 

of length  is calculated. 

The R/S-statistics calculated in this way corresponds to the ratio 

, where the value of  can be obtained by calculating  for sequences of 

intervals with increasing time horizon: 

The Hurst coefficient can be found by plotting the relationship  vs. 

on a double logarithmic scale and taking the slope of the line interpolating the 

points of the resulting graph. If , the sequence is white noise;



indicates a persistent (trending) series, when there is a tendency for large values of 

the series to follow large values and vice versa;  indicates an anti-

persistent (mean-reversion) series. 

As the time horizon increases, the slope of the interpolating line should tend 

to ; the transition process itself indicates the loss of the influence of the 

initial conditions on the current values, and thus we can talk about the long 

memory horizon  this is the point before which the slope of the interpolating line 

is different from 0.5, and after  about 0.5. 

  Note to the R/S analysis 

There is also a relationship between fractal dimension and Hurst exponent 

While for the coastline we determined the scaling of its length depending 

on the change in , in the case of R/S analysis we determine the change in the 

normalized range of the series values within the scale 

Detrended fluctuation analysis 

Detrended fluctuation analysis (DFA) [49] is based on the hypothesis that 

a correlated time series can be mapped to a self-similar process by integration. 

Thus, measuring the self-similarity properties can indirectly indicate the 

correlation properties of the series. The advantages of DFA compared to other 

methods (spectral analysis, R/S analysis) are that it reveals long-term correlations 

of non-stationary time series and also allows to ignore obvious random correlations 

that are a consequence of non-stationarity [178]. 

There are DFAs of different orders that differ in the trends that are extracted 

from the data. 

order DFA. 



1) For a time series of length N, the cumulative sum, 

, where  is the -th value of the time series,  is its 

average value, .

2) The resulting series  is divided into  subsequences (windows) 

of equal width  and for each subsequence (in each window) the 

following procedures are performed: 

the local linear trend of  is found using the least squares 

method; 

the subsequence is detrended by subtracting the value of the local 

trend  from the values of the series  belonging to the 

sequence ;

the average  of the detrended values is found. 

For the values obtained in this way, all the subsequences are 

where  is the number of points in the subsequence (window width),  is 

the number of subsequences, and  is the average of the detrended values for 

subsequence .

The above procedure is repeated for different values of , resulting in a set 

of dependencies  on . Plotting  versus  and interpolating the 

obtained values with a regression line allows us to calculate the scaling index ,

which is the coefficient of the slope of the interpolation line and characterizes the 

change in the correlations of fluctuations in the time series  with an increase in 

the time interval .

Compared to R/S analysis, DFA provides more opportunities for interpreting 

the scaling factor :

;

in the presence of only short-term correlations,  may differ from 0.5, 

but tends to tend to 0.5 with increasing window size; 



a value of  indicates persistent long-term correlations 

that follow a power law; 

 indicates an anti-persistent series; 

the special case when  means the presence of  noise. 

for cases when , correlations exist, but no longer reflect power 

law; 

the case of  indicates Brownian noise, which represents 

integrated white noise. 

In the case of power law dependence of the autocorrelation function, there is 

a decrease in autocorrelation with :

In addition, the spectral density also decreases according to a power law: 

The corresponding exponents are expressed through the following relations: 

;

.

The second-order DFA (DFA2) calculates the deviations of  of the 

profile from the second-order interpolation polynomial. Thus, the effects of 

possible linear and parabolic trends for scales larger than those under consideration 

are removed. In general, the DFA of order  calculates the profile deviations from 

the interpolation polynomial of the -th order, which removes the influence of all 

possible trends of orders up to  for scales larger than the window size. 

Then, the nearest polynomial  for the profile at each of the 

segments  is calculated and the deviation is determined 

Next, we find the average value of the fluctuations of all detrended profiles: 



The value of Eq. (4.7) can be interpreted as the root mean square 

displacement (movement) of the point of random walks in the chain after  steps. 

Higuchi fractal dimension  

The Higuchi fractal dimension [36, 157] is a type of monofractal 

dimension defined as follows: 

Suppose that we have a time series  and a reconstructed 

time series  for 

, where  represents the original time;  represents 

the degree of time shift. The notation  represents the integer part of . For each 

reconstructed time series , the average length of the time sequence  is 

calculated: 

Then, for all average lengths , the general average 

average value of  is proportional to the scale , i.e. . Next, we find 

a logarithm of both sides and obtain the equation . By 

interpolating the regression line through the dependence of  on , we 

can obtain the fractality index  as the slope of this line. The index  will 

represent the Higuchi fractal dimension. 

Petrosian fractal dimension 

First, for the time series , we create its discretized (binary) 

version, :



The Petrosian fractal dimension [20, 37, 135] can be defined as 

where  is the number of total changes in the sign of :

.

Katz fractal dimension 

Suppose that the signal consists of a pair of points . Then, the Katz 

fractal dimension [109] is defined as 

where , and the value of 

.

Sevcik fractal dimension 

First, for the set of values , normalization is performed: 

 and .

The Sevcik fractal dimension [40] can be defined as 

 is the length of the signal, which can be calculated by the formula 

.

Fractal dimension via normalized length density  

This indicator is calculated as follows [7]: 

1) For the time series , standardization is performed: 

, where  is the mean value of the series,  is the standard 

deviation. 



2) The normalized length density is calculated 

. The actual calculation of the fractal dimension via 

Normalized Length Density (FNLD) is based on the construction of 

a monotonic calibration curve  using a set of Weierstrass 

functions for which the values of  are set theoretically. 

3) For computational purposes, two models of this relationship have 

been created: 

logarithmic model: ;

a power law model: . The neurokit2

Python library uses the power law model. The parameters 

, , and , according to [7]. 

Fractal dimension and power spectral density 

The fractal dimension can be calculated based on the analysis of the power 

spectral density slope (PSD) [62, 136] in signals characterized by a power law 

frequency dependence. 

First, the time series is transformed to the frequency domain and then the 

signal is divided into harmonic oscillations of a certain amplitude, which are 

relationship between the frequencies in the signal and the power of these 

frequencies, then in logarithmic coordinates this is manifested through a linear 

relationship. The slope of the regression line is taken as an estimate of the fractal 

dimension. 

A slope of 0 corresponds to white noise, and a slope less than 0 but greater 

than -1 corresponds to pink noise, i.e.  noise. Spectral slopes steeper than -2 

indicate fractional Brownian motion, which is a manifestation of random walk 

processes. 



Correlation dimension 

The correlation dimension ( ) is a derivative of the correlation integral 

(correlation sum) and can be represented as [122-124]: 

The correlation dimension can be derived from the following power law: 

or 

where  is the total number of pairs of points whose distance is less than 

the radius .

In the first case, we select the -th trajectory and all other -th trajectories, 

and see if the -th trajectories fall within the -neighborhood of the -th trajectory. 

If the distance between them does not exceed the circle of radius , we set 1. But if 

the distance between the trajectories is greater than , then we set 0. Then all this is 

summed up, divided by the total number of trajectories. In essence, the correlation 

integral is the average probability that the two trajectories in the phase space under 

consideration will be close enough to each other. The closer the points of the phase 

space are located, the higher the value of the correlation integral. The more 

equidistant the trajectories appear from each other, the closer the value of the 

correlation integral is to zero. 

We can find the value of the correlation dimension similarly to the previous 

fractal indicators: we look for the dependence of the correlation integral on the 

value of . This dependence is plotted on a logarithmic scale. 

Here are some interesting examples. 

Electrocardiogram (ECG): ECG signals reflect the electrical activity of the 

heart. The complexity of an ECG signal can be estimated using the correlation 

dimension. The correlation dimension of a healthy heart ECG is expected to be 



higher due to the presence of complex patterns and variability. On the other hand, 

abnormal ECG signals, for example, from patients with arrhythmias or heart 

disease, may have a lower correlation dimension due to the loss of signal 

complexity. 

Electroencephalogram (EEG): EEG signals record the electrical activity of 

the brain. The correlation dimension can be used to analyze the complexity of 

brain activity, which can vary with different cognitive states, sleep stages, or 

neurological disorders. In healthy individuals, EEG signals during wakefulness and 

attention may have a higher correlation dimension compared to signals during 

sleep, when brain activity is more regular and synchronized. 

Respiratory signals: Respiratory signals, such as respiratory rate or airflow, 

can also be analyzed using correlation dimensionality. The complexity of these 

signals can vary depending on factors such as stress, exercise, or the presence of 

respiratory disease. Normal breathing may have a higher correlation dimension, 

while abnormalities in breathing signals, such as obstructive sleep apnea or 

respiratory disorders, may result in a lower correlation dimension. 

Gait analysis: The correlation dimension can be used to analyze gait 

patterns. It helps to understand the complexity of a person's movements while 

walking or running. Changes in the correlation dimension of gait signals can 

indicate changes in gait stability or gait abnormalities caused by neurological or 

musculoskeletal conditions. 

Heart rate variability (HRV): HRV is a change in the time intervals 

between successive heartbeats. It is influenced by the autonomic nervous system 

and reflects the adaptability and complexity of the cardiovascular system. A higher 

HRV level, corresponding to a higher correlation dimension, is usually associated 

with a better state of the cardiovascular system and its adaptability to physiological 

and environmental changes. Its decline may be associated with abnormal cardiac 

dynamics. 



DNA sequences: The correlation dimension can also be used in the analysis 

of DNA sequences. It helps to identify self-similar or fractal patterns within 

sequences, which can be important for understanding genetic complexity, 

evolutionary relationships, and gene regulation. High correlation dimensionality 

means high complexity of the DNA strand. Low correlation dimension  simplified 

DNA strand. 

Financial markets: Higher correlation dimensionality in financial market 

time series data indicates greater complexity and the existence of underlying self-

similar models or fractal structures. Chaotic behavior of stock prices may be 

associated with periods of high volatility and unpredictability. On the other hand, a 

lower value of the correlation dimension may indicate more predictable and less 

complex price movements, which corresponds to periods of stability or less 

volatile market conditions. 

4.5 Practical estimations of monofractal indicators 

First, import the necessary libraries: 
import matplotlib.pyplot as plt  
import numpy as np 
import neurokit2 as nk 
import yfinance as yf 
import pandas as pd 
import scienceplots 
from tqdm import tqdm 
 
%matplotlib inline 

plt.style.use(['science', 'notebook', 'grid'])  
 
size = 22 
params = { 
'figure.figsize': (8, 6),             
'font.size': size,                    
'lines.linewidth': 2,                 
'axes.titlesize': 'small',            
'axes.labelsize': size,               
'legend.fontsize': size,              
'xtick.labelsize': size,              
'ytick.labelsize': size,              



"font.family": "Serif",               
"font.serif": ["Times New Roman"],    
'savefig.dpi': 300,                   
'axes.grid': False                    
} 
 
plt.rcParams.update(params)           

transformation() function to standardize the series: 
def transformation(signal, ret_type): 
 
    for_rec = signal.copy() 
 
    if ret_type == 1:    
       pass 
    elif ret_type == 2: 
        for_rec = for_rec.diff() 
    elif ret_type == 3: 
        for_rec = for_rec.pct_change() 
    elif ret_type == 4: 
        for_rec = for_rec.pct_change() 
        for_rec -= for_rec.mean() 
        for_rec /= for_rec.std() 
    elif ret_type == 5:  
        for_rec = for_rec.pct_change() 
        for_rec -= for_rec.mean() 
        for_rec /= for_rec.std() 
        for_rec = for_rec.abs() 
    elif ret_type == 6: 
        for_rec -= for_rec.mean() 
        for_rec /= for_rec.std() 
 
    for_rec = for_rec.dropna().values 
 
    return for_rec 

Calculation of the Hurst exponent using R/S analysis 

For further calculations, we will use the neurokit2 and fathon libraries. 

The second of them can be installed as follows: 
!pip install fathon 

Next, import the library itself and related modules: 
import fathon 
from fathon import fathonUtils as fu 

The neurokit2 library contains the necessary method for R/S analysis 

fractal_hurst. Its syntax: 
fractal_hurst(signal, scale='default', corrected=True, show=False)



Parameters: 

signal (Union[list, np.array, pd.Series])  the signal (i.e., a time series) 

in the form of a vector of values or dataframe; 

scale (list)  a list containing the lengths of the windows (number of data 

points in each subseries) that the signal is divided into;  

corrected (boolean)  if True, the Anis-Lloyd-Peters correction factor 

will be applied to the output according to the expected value for the 

individual (R/S) values;  

show (bool)  if True, returns a plot. 

Returns: 

h (float)  Hurst exponent;  
kwargs  a dictionary containing information regarding the parameters 
used in the procedure. 

the sliding window procedure. 

4.5.1.1 Calculations of R/S analysis for the whole time series 

First of all, we will find the value of profitability for our series and 

standardize them. After that, we will perform the calculations: 
signal = time_ser.copy() 
ret_type = 4 # type of a series:  
# 1 – initial 
# 2 - detrending (difference between present and previous values) 
# 3 – initial returns  
# 4 – standardized returns  
# 5 – absolute values (volatility) 
# 6 – standardized series 
 
for_rs = transformation(signal, ret_type)  

 (see Fig. 4.2): 



 (a) (b) 

   (c)       (d) 

Fig. 4.2: Dependence of R/S values on scaling for S&P 500 (a), Hang Seng index (b), DAX (c), 
BSE Sensex (d) 

As we can see from Fig. 4.2, the value of  for the studied stock indices 

close to 0.5, which indicates the similarity of their dynamics to a random walk. But 

as the laws governing the market change over time, so must the correlations within 

the system, and therefore the Hurst exponent can also change. 

4.5.1.2 Sliding window procedure for R/S analysis 

def plot_pair(x_values,  
              y1_values, 
              y2_values,   
              y1_label,  
              y2_label, 
              x_label,  
              file_name, clr="magenta"): 
 



    fig, ax = plt.subplots() 
 
    ax2 = ax.twinx() 
    ax2.spines.right.set_position(("axes", 1.03)) 
 
    p1, = ax.plot(x_values,  
                  y1_values,  
                  "b-", label=fr"{y1_label}") 
    p2, = ax2.plot(x_values, 
                   y2_values,  
                   color=clr,  
                   label=y2_label) 
 
    ax.set_xlabel(x_label) 
    ax.set_ylabel(f"{y1_label}") 
    ax.yaxis.label.set_color(p1.get_color()) 
    ax2.yaxis.label.set_color(p2.get_color()) 
 
    tkw = dict(size=2, width=1.5) 
 
    ax.tick_params(axis='x', rotation=45, **tkw) 
    ax.tick_params(axis='y', colors=p1.get_color(), **tkw) 
    ax2.tick_params(axis='y', colors=p2.get_color(), **tkw) 
    ax2.legend(handles=[p1, p2]) 
 
    plt.savefig(file_name +".jpg") 
 
    plt.show(); 

sliding window procedure: 
ret_type = 4 # type of a series:  
# 1 – initial 
# 2 - detrending (difference between present and previous values) 
# 3 – initial returns  
# 4 – standardized returns  
# 5 – absolute values (volatility) 
# 6 – standardized series 
window = 500 # sliding window width 
tstep = 1    # sliding window step 
length = len(time_ser.values)  # length of a series 
corr = False # Anis-Lloyd-Peters correction factor 
 
H = []                         # array for values of Hurst exponent 

for i in tqdm(range(0, length-window, tstep)):  
 
    fragm = time_ser.iloc[i:i+window].copy()   
    fragm = transformation(fragm, ret_type) 
 
# calculate hurst exponent 
    h, _ = nk.fractal_hurst(fragm, corrected=corr, show=False) 
 
    H.append(h) 



np.savetxt(f"rs_hurst_name={symbol}_window={window}_step={tstep}_ \ 
           rettype={ret_type}_corrected={corr}.txt" , H) 

Visualize the result: 
measure_label = r'$H$' 
file_name = f"rs_hurst_name={symbol}_window={window}_step={tstep}_ \ 
            rettype={ret_type}_corrected={corr}" 

plot_pair(time_ser.index[window:length:tstep], 
          time_ser.values[window:length:tstep], 
          H,  
          ylabel,  
          measure_label, 
          xlabel, 
          file_name) 

Fig. 4.3 represents the visualization of the comparative dynamics of S&P 

500, Hang Seng index, DAX, BSE Sensex, and their Hurst exponent.  

 (a) (b) 

   (c)       (d) 

Fig. 4.3: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their 
Hurst exponent 



In Fig. 4.3, we can see that the Hurst exponent increases in the pre-crisis 

period and decreases during the crisis. Before the crisis, market dynamics are 

characterized by an increase in trend resistance (persistence), which reflects the 

DFA-based calculations 

The fathon library provides tools for both the classical detrended fluctuation 

analysis and its multifractal analog. 

4.5.2.1 DFA-based calculations for the whole time series 

 for the entire series. The calculation 

procedure based on the fathon library will look in the following way: 

Find the standardized returns of the series:  
signal = time_ser.copy() 
ret_type = 4 # type of a series 
 
for_dfa = transformation(signal, ret_type)  

cumulat = fu.toAggregated(for_dfa) # find cumulative values 
 
rev = True # whether to repeat the calculation of the fluctuation function fr
om the end 
order = 2  # order of the local trend 
 
pydfa = fathon.DFA(cumulat) # initializing the DFA object to perform further 
calculations 
 
win_beg = 100   # initial width of the segments 
win_end = 2000  # final width of the segments 
 
wins = fu.linRangeByStep(win_beg, win_end) # generate an array of linearly se
parated elements. 
 
n, F = pydfa.computeFlucVec(wins,  
                            polOrd=order,  
                            revSeg=rev)    # calculate the fluctuation functi
on 
 
H, H_intercept = pydfa.fitFlucVec()        # calculate alpha exponent 

We derive the dependence of the fluctuation function on the scale: 
polyfit = np.polyfit(np.log(n), np.log(F), 1) 
fluctfit = np.exp(1)**np.polyval(polyfit, np.log(n)) 



We plot the dependence of the fluctuation function on the scale in a 

logarithmic scale (see Fig. 4.4): 
fig, ax = plt.subplots() 
fig.suptitle("DFA-based Hurst exponent") 
 
ax.scatter(np.log(n), np.log(F), marker="o", zorder=1, label="_no_legend_") 
 
label = fr"$\alpha$ = {H:.2f}" 
ax.plot(np.log(n), np.log(fluctfit), color="#E91E63", zorder=2, linewidth=3, 
label=label) 
 
ax.set_ylabel(r'$\ln{F_{2}(n)}$') 
ax.set_xlabel(r'$\ln{n}$') 
 
ax.legend(loc="lower right") 
 
plt.show() 

 (a) (b) 

 (c) (d) 

Fig. 4.4: Logarithmic dependence of the fluctuation function values on scaling for S&P 500 (a), 
Hang Seng index (b), DAX (c), and BSE Sensex (d) 



The DFA procedure shows that the values of stock indices appear to be 

rather anti-persistent, but the result presented is quite close to the one obtained 

using the R/S

algorithm. 

4.5.2.2 DFA-based calculations within the sliding window procedure 

window = 500 # sliding window width 
tstep = 1    # sliding window step 
ret_type = 4 # type of a series:  
 
rev = True # whether to repeat the calculation of the fluctuation function fr
om the end 
order = 2 # order of the polynomial trend 
 
periods = 1 
 
win_beg = 10             # initial scale of segments 
win_end = window-1       # the final scale of the segments 
 
 
 
length = len(time_ser.values) # time series length 
 
alpha = []               # an array of alpha (Hurst) indicators 
D_f = []                 # fractal dimension 
beta = []                # spectral density indicator 
gamma = []               # autocorrelation indicator 

, the fractal dimension , the spectral 

density index , and the autocorrelation index :
for i in tqdm(range(0, length-window, tstep)): 
 
 
    fragm = time_ser.iloc[i:i+window].copy()   
    fragm = transformation(fragm, ret_type) 
 
# calculate cumulative values 
    cumulat_wind = fu.toAggregated(fragm)  
 
# initializing the DFA object 
    pydfa = fathon.DFA(cumulat_wind)  
 
# generate an array of linearly separated elements 
    wins = fu.linRangeByStep(win_beg, win_end)  
 



# find the fluctuation function 
    n, F_wind = pydfa.computeFlucVec(wins, polOrd=order, revSeg=rev)     
 
# find the alpha exponent 
    H_wind, _ = pydfa.fitFlucVec() 
 
# find the fractal dimension         
    D = 2. - H_wind 
 
# find spectral density indicator 
    bi = 2. * H_wind - 1 
 
# find autocorrelation indicator 
    gi = 2. - 2. * H_wind 
 
    alpha.append(H_wind) 
    D_f.append(D) 
    beta.append(bi) 
    gamma.append(gi) 

Save absolute values of indicators to text files:  
np.savetxt(f"alpha_{symbol}_{window}_{tstep}_ \ 
{ret_type}_{order}_{win_beg}_{win_end}.txt", alpha) 
np.savetxt(f"D_f_{symbol}_{window}_{tstep}_ \ 
{ret_type}_{order}_{win_beg}_{win_end}.txt", D_f) 
np.savetxt(f"beta_{symbol}_{window}_{tstep}_ \ 
{ret_type}_{order}_{win_beg}_{win_end}.txt", beta) 
np.savetxt(f"gamma_{symbol}_{window}_{tstep}_ \ 
{ret_type}_{order}_{win_beg}_{win_end}.txt", gamma) 

Define labels for figures and names of saved figures: 
label_alpha = fr'$\alpha$' 
label_d = fr'$D_f$' 
label_beta = fr'$\beta$' 
label_gamma = fr'$\gamma$' 
 
file_name_alpha = f"alpha_{symbol}_{window}_{tstep}_ \ 
{ret_type}_{order}_{win_beg}_{win_end}" 
file_name_d = f"D_f_{symbol}_{window}_{tstep}_ \ 
{ret_type}_{order}_{win_beg}_{win_end}" 
file_name_beta = f"beta_{symbol}_{window}_{tstep}_ \ 
{ret_type}_{order}_{win_beg}_{win_end}" 
file_name_gamma = f"gamma_{symbol}_{window}_{tstep}_ \ 
{ret_type}_{order}_{win_beg}_{win_end}" 

plot_pair(time_ser.index[window:length:tstep], 
          time_ser.values[window:length:tstep], 
          alpha,  
          ylabel,  
          label_alpha, 
          xlabel, 
          file_name_alpha) 



Fig 4.5 represents the comparative dynamics of S&P 500, Hang Seng index, 

DAX, BSE Sensex, and their  exponent.  

 (a) (b) 

   (c)           (d) 

Fig. 4.5: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their 
exponent 

When compared with R/S analysis, Fig. 4.5 shows that the DFA dynamics of 

the generalized Hurst exponent is much more stable. We are now able to 

differentiate a significant proportion of the crash events that took place in the gold 

market. The generalized Hurst exponent shows that pre-crisis phenomena are 

characterized by an increase in the trend stability of the market, an increase in the 

degree of self-organization of the system. 
plot_pair(time_ser.index[window:length:tstep], 
          time_ser.values[window:length:tstep], 
          D_f,  
          ylabel,  
          label_d, 



          xlabel, 
          file_name_d) 

Fig. 4.6 shows the comparative dynamics of S&P 500, Hang Seng index, 

DAX, BSE Sensex, and their fractal dimension .

 (a) (b) 

   (c)           (d) 

Fig. 4.6: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their 
fractal dimension 

Fig. 4.6 shows that  is characterized by a decline in times of crisis. This is 

an indicator that a higher degree of market organization is reflected in smoother or 

less volatile fluctuations of the signal under study. 
plot_pair(time_ser.index[window:length:tstep], 
          time_ser.values[window:length:tstep], 
          beta,  
          ylabel,  
          label_beta, 
          xlabel, 
          file_name_beta) 



Fig. 4.7 shows the comparative dynamics of S&P 500, Hang Seng index, 

DAX, BSE Sensex, and their spectral density index .

 (a) (b) 

             (c)          (d) 

Fig. 4.7: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their 
spectral density index 

In Fig 4.7, the spectral power density increases during crisis periods, which 

indicates a decrease in signal power at a unit frequency interval. This is also 

evidence of an increase in the correlation properties of the system. 
plot_pair(time_ser.index[window:length:tstep], 
          time_ser.values[window:length:tstep], 
          gamma,  
          ylabel,  
          label_gamma, 
          xlabel, 
          file_name_gamma) 

Fig. 4.8 provides the comparative dynamics of S&P 500, Hang Seng index, 

DAX, BSE Sensex, and their autocorrelation index.  



 (a) (b) 

   (c)       (d) 

Fig. 4.8: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their 
autocorrelation index 

Fig. 4.8 shows that the  indicator decreases in crisis and pre-crisis periods. 

This is an indicator of a slowdown in the decline of the autocorrelation function, 

dynamics. 

Calculating the Higuchi fractal dimension 

As already mentioned, the Higuchi fractal dimension is a type of fractal 

dimension for time series. It is calculated by reconstructing a number of new 

data sets. For each reconstructed data set, the length of the curve is calculated and 

plotted against the corresponding -value on a logarithmic scale. The HFD 

corresponds to the slope of a linear trend using the least squares method. 



We calculate the optimal  value for the entire time series. The neurokit2

library provides a ready-made procedure for automated selection of this parameter. 

The optimal  value is calculated based on the point at which the fractal 

dimension reaches a plateau for a range of  values [83]. 

The syntax of this function is as follows:  
complexity_k(signal, k_max='max', show=False)

Parameters: 

signal (Union[list, np.array, pd.Series])  the signal (i.e., a time 

series) in the form of a vector of values; 

k_max (Union[int, str, list], optional)  maximum number of interval 

times (should be greater than or equal to 3) to be tested. If max, it 

selects the maximum possible value corresponding to half the length 

of the signal; 

show (bool)  visualize the slope of the curve for the selected 

value. 

Returns: 

k (float) the optimal  of the time series;

info (dict) a dictionary containing additional information regarding 

the parameters used to compute optimal .

4.5.3.1 Higuchi fractal dimension for the whole time series 

transformation. We will 

use the original time series for further calculations: 
signal = time_ser.copy() 
ret_type = 1      # type of a series:  
# 1 – initial 
# 2 - detrending (difference between present and previous values) 
# 3 – initial returns  
# 4 – standardized returns  
# 5 – absolute values (volatility) 
# 6 – standardized series 
 
for_higuchi = transformation(signal, ret_type)  



 (see 

Fig. 4.9): 
k_max, info = nk.complexity_k(for_higuchi, k_max=100, show=True) 

 (a) (b) 

   (c)         (d) 

Fig. 4.9: Dependence of the Higuchi fractal dimension on the range of  values for the whole 
time series of S&P 500 (a), Hang Seng index (b), DAX (c), and BSE Sensex (d) 

logarithmic scale. For a fractal signal, a linear relationship should hold. The 

neurokit2 library contains a method for calculating this fractal dimension. The 

syntax of this procedure is as follows: 
fractal_higuchi(signal, k_max='default', show=False, **kwargs) 

Parameters: 

signal (Union[list, np.array, pd.Series])  the signal (i.e., a time 

series) in the form of a vector of values; 



k_max (str or int)  maximum number of interval times (should be 

greater than or equal to 2); 

show (bool)  visualize the slope of the curve for the selected 

value. 

Returns: 

HFD (float)  Higuchi fractal dimension of the time series;  

info (dict)  a dictionary containing additional information regarding 

the parameters used to compute Higuchi fractal dimension. 
hfd, info = nk.fractal_higuchi(for_higuchi, k_max=k_max, show=True) 

In Fig. 4.10 is presented the dependence of signal length on time delay for 

the whole time series of S&P 500, Hang Seng index, DAX, and BSE Sensex 

 (a) (b) 

   (c)       (d) 



Fig. 4.10: Dependence of signal length on time delay for the whole time series of S&P 500 (a), 
Hang Seng index (b), DAX (c), and BSE Sensex (d) 

In the following, we will use the obtained optimal value to calculate the 

Higuchi fractal dimension within the sliding window algorithm. 

4.5.3.2 Calculations of Higuchi fractal dimension within the sliding window algorithm 

window = 500 # window length 
tstep = 1    # time step 
ret_type = 1 # type of a series:  
# 1 – initial 
# 2 - detrending (difference between present and previous values) 
# 3 – initial returns  
# 4 – standardized returns  
# 5 – absolute values (volatility) 
# 6 – standardized series 
 
k_max_wind = 30                    # maximum time delay 
 
length = len(time_ser.values)      # series length 
 
hfd_wind = []                      # array of Higuchi dimensions 

and start the sliding window procedure: 
for i in tqdm(range(0, length-window, tstep)): 
 
    fragm = time_ser.iloc[i:i+window].copy()   
 
    fragm = transformation(fragm, ret_type) 
 
# calculate the Higuchi fractal dimension 
    higuchi, _ = nk.fractal_higuchi(fragm,  
                                    k_max=k_max_wind,  
                                    show=False) 
 
# save the result to an array of values 
    hfd_wind.append(higuchi) 

Save the initial values to a text file: 
np.savetxt(f"fd_higuchi_name={symbol}_kmax={k_max_wind}_\ 
           wind={window}_step={tstep}.txt", hfd_wind) 

Define the labels for the figures and the titles of the saved figures: 
label_higuchi = fr'$HFD$' 
 
file_name_higuchi = f"fd_higuchi_name={symbol}_kmax={k_max_wind}_\ 
           wind={window}_step={tstep}" 



Display the result:  
plot_pair(time_ser.index[window:length:tstep], 
          time_ser.values[window:length:tstep], 
          hfd_wind,  
          ylabel,  
          label_higuchi, 
          xlabel, 
          file_name_higuchi) 

Fig. 4.11 represents the comparative dynamics of S&P 500, Hang Seng 

index, DAX, BSE Sensex, and their Higuchi fractal dimension.  

 (a) (b) 

   (c)            (d) 

Fig. 4.11: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their 
Higuchi fractal dimension 

As can be seen from the figure, the Higuchi fractal dimension can serve as 

an indicator or precursor of crisis phenomena. It can be seen that this indicator 

begins to decline in pre-crisis periods or at the very moment of the crisis, 



indicating an increase 

correlation and the trend stability of market dynamics. 

Calculating the Petrosian fractal dimension 

Petrosian [20] proposed a fast method for estimating fractal dimensionality 

by converting a signal into a binary sequence from which the fractal 

dimensionality is estimated. There are several variations of the algorithm 

(neurokit2, for example, offers options "A" "B" "C", or "D"), which differ 

primarily in the way the discrete (symbolic) sequence is created (see 

complexity_symbolize() for details). The most common method "C", by 

default) binarizes the signal by the sign of consecutive differences. 

Most of these sampling methods assume that the signal is periodic (without a 

linear trend). To remove linear trends, linear detrending can be useful. 

The syntax of this procedure is as follows: 
fractal_petrosian(signal, symbolize='C', show=False) 

Parameters: 

signal (Union[list, np.array, pd.Series])  the signal (i.e., a time 

series) in the form of a vector of values;  

symbolize (str)  method to convert a continuous signal input into a 

symbolic (discrete) signal. By default, assigns 0 and 1 to values below 

and above the mean. Can be None to skip the process (in case the 

input is already discrete);  

show (bool)  if True, will show the discrete the signal. 

Returns: 

pfd (float)  the Petrosian fractal dimension (PFD);  

info (dict)  a dictionary containing additional information regarding 

the parameters used to compute PFD. 



complexity_symbolize() function. We will describe only those discretization 

methods that are related to PFD: 

 binarizes the signal by higher vs. lower values as 

 is also valid); 

 uses values that are within the mean +/- 1 SD band vs. 

values that are outside this band. 

 computes the difference between consecutive samples 

and binarizes depending on their sign; 

 forms separates consecutive samples that exceed 1 

the sliding window dynamics of the indicator. 

4.5.4.1 Calculations of Petrosian fractal dimension within sliding window procedure 

Since most of these discretization methods require detrending the series, we 

will perform calculations for the gold price returns. We will use the following 

parameters: 
window = 500 # sliding window width 
tstep = 1 # sliding window time step 
ret_type = 4 # type of a series:  
# 1 – initial 
# 2 - detrending (difference between present and previous values) 
# 3 – initial returns  
# 4 – standardized returns  
# 5 – absolute values (volatility) 
# 6 – standardized series 
 
symb = "B" # type of series discretization  
 
length = len(time_ser.values) # series length  
 
petr_wind = []                 # array for Petrosian FD 

Start the sliding window procedure: 
for i in tqdm(range(0, length-window, tstep)): 
 
    fragm = time_ser.iloc[i:i+window].copy()   
    fragm = transformation(fragm, ret_type) 



 
# calculate the Petrosian fractal dimension 
    petrocian, _ = nk.fractal_petrosian(fragm,  
                                        symbolize=symb,  
                                        show=False) 
 
# save the result to an array of values 
    petr_wind.append(petrocian) 

Save the initial values to a text document:  
np.savetxt(f"fd_petrosian_name={symbol}_method={symb}_\ 
           wind={window}_step={tstep}.txt", petr_wind) 

Define labels for figures and titles of saved figures:  
label_petrocian = fr'$PFD$' 
 
file_name_petrocian = f"fd_petrosian_name={symbol}_method={symb}_\ 
           wind={window}_step={tstep}" 

Plot the result: 
plot_pair(time_ser.index[window:length:tstep], 
          time_ser.values[window:length:tstep], 
          petr_wind,  
          ylabel,  
          label_petrocian, 
          xlabel, 
          file_name_petrocian) 

Fig. 4.12 shows the comparative dynamics of S&P 500, Hang Seng index, 

DAX, BSE Sensex, and their Petrosian fractal dimension.  

 (a) (b) 



   (c)         (d) 

Fig. 4.12: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their 
Petrosian fractal dimension 

Fig. 4.12 shows that the Petrosian dimension also decreases during crisis 

events, indicating an increase in market periodization and synchronization of 

Calculating Katz fractal dimension 

consecutive signal points are summed and averaged, and the maximum distance 

between the starting point and any other point in the sample is determined. 

The fractal dimension varies from 1.0 for straight lines, to about 1.15 for 

The syntax of the procedure for calculating this dimension is as follows: 
fractal_katz(signal) 

Parameters: 

signal (Union[list, np.array, pd.Series])  the signal (i.e., a time 

series) in the form of a vector of values. 

Returns: 

kfd (float)  Katz fractal dimension of the single time series;  

info (dict)  a dictionary containing additional information (currently 

empty, but returned nonetheless for consistency with other functions). 



4.5.5.1 Calculating Katz fractal dimension within the sliding window procedure 

Since this indicator is parameter-independent, we only need the size of the 

time window, step, and series type: 
window = 500  # sliding window width 
tstep = 1     # sliding window time step  
ret_type = 1  # type of a series 
# 1 - initial  
# 2 - detrending (difference between present and previous values) 
# 3 - initial returns 
# 4 - standardized returns 
# 5 - absolute values (volatility) 
# 6 - standardized series 
length = len(time_ser.values)      
 
kz_wind = []                      # array for Katz FD 

Start the sliding window procedure: 
for i in tqdm(range(0, length-window, tstep)): 
 
    fragm = time_ser.iloc[i:i+window].copy()   
    fragm = transformation(fragm, ret_type) 
 
# calculate Katz FD 
    katz, _ = nk.fractal_katz(fragm) 
 
# save results 
    kz_wind.append(katz) 

Save the initial values to a text document: 
np.savetxt(f"fd_katz_name={symbol}_wind={window}_step={tstep}.txt", kz_wind) 

Define the labels for the figures and the titles of the saved figures: 
label_katz = fr'$KFD$' 
 
file_name_katz = f"fd_katz_name={symbol}_wind={window}_step={tstep}" 

Plot the result: 
plot_pair(time_ser.index[window:length:tstep], 
          time_ser.values[window:length:tstep], 
          kz_wind,  
          ylabel,  
          label_katz, 
          xlabel, 
          file_name_katz) 

In Fig. 4.13 is presented the comparative dynamics of S&P 500, Hang Seng 

index, DAX, BSE Sensex, and their Katz fractal dimension.  



 (a) (b) 

   (c)       (d) 

Fig. 4.13: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their 
Katz fractal dimension 

Fig. 4.13 shows that the Katz fractal dimension also decreases in crisis and 

pre-crisis periods and is also an indicator of the growing degree of correlation of 

the system during these periods. 

Calculating the Sevcik fractal dimension  

The algorithm of this fractal dimension was proposed to calculate the fractal 

dimension of signals by Sevcik [40]. This method can be used to quickly measure 

the complexity of a signal. 

Syntax of the method: 
fractal_sevcik(signal) 

Parameters: 



signal (Union[list, np.array, pd.Series])  the signal (i.e., a time 

series) in the form of a vector of values. 

Returns: 

sfd (float)  the sevcik fractal dimension;  

info (dict)  an empty dictionary returned for consistency with the 

other complexity functions. 

4.5.6.1 Calculating Sevcik fractal dimension within the sliding window procedure 

window = 500    # sliding window width 
tstep = 1       # sliding window time step 
ret_type = 1    # type of a series:  
# 1 - initial 
# 2 - detrending (difference between present and previous values) 
# 3 – initial returns  
# 4 – standardized returns  
# 5 – absolute values (volatility) 
# 6 – standardized series 
 
length = len(time_ser.values)      # series length 
 
sfd_wind = []                      # array for Sevcik FD 

Start the sliding window procedure: 
for i in tqdm(range(0, length-window, tstep)): 
 
    fragm = time_ser.iloc[i:i+window].copy()   
    fragm = transformation(fragm, ret_type) 
 
# calculate the fractal dimension of Sevchik 
    sevcik, _ = nk.fractal_sevcik(fragm) 
 
# save the result to an array of values 
    sfd_wind.append(sevcik) 

Save the initial values to a text document: 
np.savetxt(f"fd_cevcik_name={symbol}_wind={window}_step={tstep}.txt", sfd_win
d) 

Define the labels for the figures and the titles of the saved figures: 
label_sevcik = fr'$SFD$' 
 
file_name_sevcik = f"fd_cevcik_name={symbol}_wind={window}_step={tstep}" 

Plot the results: 
plot_pair(time_ser.index[window:length:tstep], 
          time_ser.values[window:length:tstep], 



          sfd_wind,  
          ylabel,  
          label_sevcik, 
          xlabel, 
          file_name_sevcik) 

Fig. 4.14 shows the comparative dynamics of S&P 500, Hang Seng index, 

DAX, BSE Sensex, and their Sevcik fractal dimension.  

 (a) (b) 

             (c)          (d) 

Fig. 4.14: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their 
Sevcik fractal dimension 

We can see that Sevcik fractal dimension reacts with a decline to crash 

events in the stock market. The downturns during the crises of 2008, 2011, 2015, 

and 2020 are particularly characteristic. Stock price fluctuations during these crisis 

events were also characterized by an increase in persistence (correlations). 



Calculating the fractal dimension through normalized length density 

This is a fairly simple measure corresponding to the average absolute 

sequential differences of a (standardized) signal 

(np.mean(np.abs(np.diff(std_signal)))). The method was developed for 

measuring the complexity of signals of very short duration (< 30 samples), and can 

be used, for example, when continuous changes in the fractal dimension of a signal 

are of interest when computing within sliding windows. 

Procedure syntax: 
fractal_nld(signal, corrected=False) 

Parameters: 

signal (Union[list, np.array, pd.Series])  the signal (i.e., a time 

series) in the form of a vector of values;  

corrected (bool)  if True, will rescale the output value according to 

the power model estimated by Kalauzi et al. (2009) to make it more 

FD = 

1.9079*((NLD-0.097178)^0.18383). Note that this can result 

in np.nan if the result of the difference is negative. 

Returns: 

NLDFD (float)  fractal dimension;  

info (dict)  A dictionary containing additional information (currently, 

but returned nonetheless for consistency with other functions). 

Calculating NLD fractal dimension within the sliding window 

procedure 

window = 500    # window length 
tstep = 1       # time step 
ret_type = 4    # type of a series:  
# 1 – initial 
# 2 - detrending (difference between present and previous values) 
# 3 – initial returns  
# 4 – standardized returns  



# 5 – absolute values (volatility) 
# 6 – standardized series 
 
nld_corrected = True # FD normalization 
 
length = len(time_ser.values)      # series length 
 
nldfd_wind = []                    # array of NLDFD  

Start the sliding window procedure: 
for i in tqdm(range(0, length-window, tstep)): 
 
    fragm = time_ser.iloc[i:i+window].copy()   
    fragm = transformation(fragm, ret_type) 
 
# calculate NLDFD  
    nld, _ = nk.fractal_nld(fragm,  
                            corrected=nld_corrected) 
 
# save the result to an array of values 
    nldfd_wind.append(nld) 

Save the initial values to a text document: 
np.savetxt(f"fd_nld_name={symbol}_wind={window}_\ 
           step={tstep}_corrected={nld_corrected}.txt", nldfd_wind) 

Define the labels for the figures and the titles of the saved figures: 
label_nld = fr'$NLDFD$' 
 
file_name_nld = f"fd_nld_name={symbol}_wind={window}_\ 
                step={tstep}_corrected={nld_corrected}" 

Plot the results: 
plot_pair(time_ser.index[window:length:tstep], 
          time_ser.values[window:length:tstep], 
          nldfd_wind,  
          ylabel,  
          label_nld, 
          xlabel, 
          file_name_nld) 

Fig. 4.15 presents the comparative dynamics of S&P 500, Hang Seng index, 

DAX, BSE Sensex, and their fractal dimension dynamics through the normalized 

length density.  



 (a) (b) 

   (c)       (d) 

Fig. 4.15: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their 
fractal dimension dynamics through the normalized length density 

Fig. 4.15 shows that  decreases during crisis and pre-crisis events, 

indicating that correlations increase during these periods. 

Calculation of fractal dimension through the slope of the power spectral 

density

neurokit2 library: 
fractal_psdslope(signal, method='voss1988', show=False, **kwargs) 

Parameters: 

signal (Union[list, np.array, pd.Series])  the signal (i.e., a time 

series) in the form of a vector of values;  

method (str)  method to estimate the fractal dimension from the 

slope, can be "voss1988" (default) or "hasselman2013";



show (bool)  if True, returns the log-log plot of PSD versus 

frequency;  

**kwargs  other arguments to be passed to signal_psd().

Returns: 

slope (float)  estimate of the fractal dimension obtained from PSD 

slope analysis;  

info (dict)  a dictionary containing additional information regarding 

the parameters used to perform PSD slope analysis. 

4.5.9.1 Calculating the PSD fractal dimension for the whole time series 

use the initial time series for further calculations: 
signal = time_ser.copy() 
ret_type = 1 # type of a series:  
# 1 – initial 
# 2 - detrending (difference between present and previous values) 
# 3 – initial returns  
# 4 – standardized returns  
# 5 – absolute values (volatility) 
# 6 – standardized series 
 
for_psd = transformation(signal, ret_type)  

logarithmic scale (see Fig. 4.16): 
psdslope, info = nk.fractal_psdslope(for_psd, method="voss1988", show=True) 



Fig. 4.16: Dependence of power spectral density on frequency in logarithmic scale for S&P 500 
index

Obviously, the slope of the power spectral density at different frequencies 

has a linear dependence, and the slope of the line constructed from the spectrum is 

close to -2, indicating that the dynamics of the S&P 500 index is close to fractional 

Brownian motion. 

the slope of the spectrum within the 

sliding window algorithm. 

4.5.9.2 Calculating the PSD fractal dimension within the sliding window procedure 

window = 500    # sliding window width 
tstep = 1       # sliding window time step 
ret_type = 4    # type of a series:  
# 1 – initial 
# 2 - detrending (difference between present and previous values) 
# 3 – initial returns  
# 4 – standardized returns  
# 5 – absolute values (volatility) 
# 6 – standardized series 
 
method_psd = "voss1988" # method for calculating spectral density 
 
length = len(time_ser.values)  # series length 
 
psd_wind = []                  # array for PSDFD  

Start the sliding window procedure: 
for i in tqdm(range(0, length-window, tstep)): 
 
    fragm = time_ser.iloc[i:i+window].copy()   
    fragm = transformation(fragm, ret_type) 
 
# calculate PSDFD  
    psd, _ = nk.fractal_psdslope(fragm, method=method_psd) 
 
# save results to an array 
    psd_wind.append(psd) 

Save the initial values to a text document: 
np.savetxt(f"fd_psd_name={symbol}_method{method_psd}_\ 
           wind={window}_step={tstep}.txt", psd_wind) 

Define the labels for the figures and the titles of the saved figures: 



label_psd = fr'$PSDFD$' 
 
file_name_psd = f"fd_psd_name={symbol}_method{method_psd}_\ 
                wind={window}_step={tstep}" 

Plot the results: 
plot_pair(time_ser.index[window:length:tstep], 
          time_ser.values[window:length:tstep], 
          psd_wind,  
          ylabel,  
          label_psd, 
          xlabel, 
          file_name_psd) 

In Fig. 4.17 is presented the comparative dynamics of S&P 500, Hang Seng 

index, DAX, BSE Sensex, and their fractal dimension by the slope of the power 

spectral density.  

 (a) (b) 

  (c) (d) 

Fig. 4.17: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their 
fractal dimension by the slope of the power spectral density 



The figure above shows that this indicator also reacts with a decline to crisis 

and pre-crisis events, indicating an increase in the autocorrelation of the time 

series. It is also clear that there are variations in the slope of the power density 

spectrum. At some points in time, the signal dynamics can be similar to Brownian 

motion, and at others to white noise. 

 Calculation of the correlation dimension 

The correlation dimension is a lower bound for estimating the fractal 

dimension of the investigated phase space. 

First, the phase space of the signal is reconstructed according to the time-

delay method, and then the distances between all points of the trajectory are 

pairs of points whose distance is less than a given radius. The final correlation 

dimension is approximated by a graph of the correlation sum versus the radius of 

the multidimensional neighborhood of the trajectories under study on a logarithmic 

scale. 

This dimension can be called with fractal_correlation(). Its syntax is 

as follows: 
fractal_correlation(signal, delay=1, dimension=2, radius=64, 

show=False, **kwargs) 

Parameters: 

signal (Union[list, np.array, pd.Series])  the signal (i.e., a time 

series) in the form of a vector of values; 

delay (int)  time delay ( ) in samples; 

dimension (int)  embedding dimension ( );

radius (Union[str, int, list])  the sequence of radiuses to test. If an 

integer is passed, will get an exponential sequence of 

length radius ranging from 2.5% to 50% of the distance range. 

Methods implemented in other packages can be used via "nolds",

"Corr_Dim" or "boon2008";



show (bool)  plot of correlation dimension if True. Defaults to False. 

Returns: 

cd (float)  the correlation dimension (CD) of the time series; 

info (dict)  a dictionary containing additional information regarding 

the parameters used to compute the correlation dimension. 

4.5.10.1 Calculating the correlation dimension for the whole time series 

signal = time_ser.copy() 
ret_type = 6 # type of a series:  
# 1 – initial 
# 2 - detrending (difference between present and previous values) 
# 3 – initial returns  
# 4 – standardized returns  
# 5 – absolute values (volatility) 
# 6 – standardized series 
 
for_corr = transformation(signal, ret_type)  

against the radius on a logarithmic scale (see Fig. 4.18): 
cd, info = nk.fractal_correlation(for_corr, 
                                  delay=1,  
                                  dimension=1, 
                                  radius="nolds",  
                                  show=True) 

 (a) (b) 



   (c)       (d) 

Fig. 4.18: Dependence of the correlation sum on the radius of the multidimensional 
neighborhood of the studied trajectories for the time series of S&P 500 (a), Hang Seng index (b), 
DAX (c), and BSE Sensex (d) 

As we can see, the correlation sum does indeed have a linear dependence for 

different values of the radius of the neighborhood of a particular trajectory, which 

correlation dimension varies during periods of turbulence. 

4.5.10.2 Calculating the correlation dimension within the sliding window algorithm 

For this indicator, we define the following parameters: 
window = 500    # sliding window width 
tstep = 1       # sliding window time step 
ret_type = 6    # type of a series:  
# 1 – initial 
# 2 - detrending (difference between present and previous values) 
# 3 – initial returns  
# 4 – standardized returns  
# 5 – absolute values (volatility) 
# 6 – standardized series 
 
d_wind = 3         # embedding dimension 
tau_wind = 1       # time delay 
rad_wind = "nolds" # method for determining an array of radii 
 
length = len(time_ser.values)      # series length 
 
corr_wind = []                     # array for CD  

Start the sliding window procedure: 
for i in tqdm(range(0, length-window, tstep)): 
 



    fragm = time_ser.iloc[i:i+window].copy()   
 
    fragm = transformation(fragm, ret_type) 
 
# calculate correlation dimension 
    cd_wind, _ = nk.fractal_correlation(fragm, 
                                        delay=tau_wind,  
                                        dimension=d_wind, 
                                        radius=rad_wind) 
 
# save results 
    corr_wind.append(cd_wind) 

Save the initial values to a text file: 
np.savetxt(f"fd_correlation_name={symbol}_wind={window}_\ 
                step={tstep}_dim={d_wind}_tau={tau_wind}_\ 
                radius={rad_wind}.txt", corr_wind) 

Define the labels for the figures and the titles of the saved figures: 
label_cd = fr'$CD$' 
 
file_name_cd = f"fd_correlation_name={symbol}_wind={window}_\ 
                step={tstep}_dim={d_wind}_tau={tau_wind}_\ 
                radius={rad_wind}" 

Plot the results: 
plot_pair(time_ser.index[window:length:tstep], 
          time_ser.values[window:length:tstep], 
          corr_wind,  
          ylabel,  
          label_cd, 
          xlabel, 
          file_name_cd) 

Fig. 4.19 provides the comparative dynamics of S&P 500, Hang Seng index, 

DAX, BSE Sensex, and their correlation fractal dimension.  

 (a) (b) 



   (c)       (d) 

Fig. 4.19: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their 
correlation fractal dimension 

Fig. 4.19 shows that the correlation dimension for the stock indices also 

decreases in crisis and pre-crisis periods, indicating that current stocks prices are 

more correlated with previous ones. Another way to put it is that during crises, 

traders begin to self-organize and collectively buy or sell the asset in question; in 

other words, their dynamics become more synchronized. Since the correlation 

dimension is measured for the trajectories of the phase space, a decline in this 

indicator indicates an increase in the density of the trajectories under study. That is, 

the phase space becomes sparser, and all its trajectories are concentrated in only 

one specific area, which is an indicator of the cohesion of the hidden variables of 

the system under study. 

4.6 Definition of multifractals 

In this laboratory, we will present the basics of the theory of multifractals 

inhomogeneous fractal objects, for a complete description of which, in contrast to 

regular fractals, it is not enough to introduce only one quantity, its fractal 

dimension , but a whole range of such dimensions is needed, the number of 

which, generally speaking, is infinite. The reason for this is that, along with purely 

geometric characteristics, which are determined by the value of , such fractals are 

also characterized by some specific statistical properties. The easiest way to 



-  example of the 

Sierpinski triangle obtained using the method of random iterations (see Fig. 4.20). 

Fig. 4.20: Sierpinski triangle whose regions are generated with different probabilities 

Suppose that in the random iteration method, we have now for some reason 

preferred one of the vertices of the triangle, for example, vertex A, and began to 

choose it with a probability of 90%. The other two vertices B and C are equivalent 

for us, but they now account for only 5% each. The result of such an 

asymmetrical game  is shown in the figure above. It can be seen that the points 

inside the ABC triangle are now extremely unevenly distributed. Most of them are 

located near the top of A and its prototypes. At the same time, vertices B and C 

(and their prototypes) have very few of them. However, according to the usual 

terminology, this set of points (provided that the number of iterations tends to 

infinity) is a fractal, because the main property of the fractal  self-similarity 

has been preserved. Indeed, the triangle DFC, although it has 20 times fewer 

points, is completely similar in its statistical and geometric properties to the large 

triangle ABC. As in the great triangle, the points in it are concentrated mostly near 

the vertex D, an analogue of the vertex A. 

Fig. 4.21 shows in more detail the resulting distribution of points along the 

Sierpinski triangle. The numbers in each of the small triangles show its relative 

population of set points. 



Fig. 4.21: Distribution of points along the Sierpinski triangle shown in the previous figure 

However, despite the uneven distribution of fractal points, the fractal 

dimension remained the same, . Covering this set with smaller and 

smaller triangles can be carried out according to the same algorithm as before. 

Such a coincidence makes us think about the search for new quantitative 

characteristics that could distinguish an uneven distribution of points from a 

uniform one. Another, more complex example of a non-uniform fractal, which we 

would like to cite, is shown in the following figure. On the left is a large square 

with a side equal to one, which at this (zero) stage completely covers some fractal 

set of points . In the next (first) stage, in the center of the figure, it is shown how 

the same set can be covered by three smaller squares with sides ,

, which, respectively, contain the quotient  and 

 of all points. 

The next stage of coverage (shown in the figure on the right) already 

contains 9 squares with sides ,  (in the lower right 

corner) and ,  (top right and left). The relative 

population of these squares by the points of the set is shown in the figure. It 

corresponds to the product of population factors (probabilities): ,

,  for the lower right group, , ,

for the upper left and , ,  for the upper right 

group. Note that there is a clear correspondence between the population of the 

square  and its size .



The further process of partitioning and covering the set  is carried out 

according to this renormalization scheme. Each square having size  and 

population  at the  -th step is replaced at  step by three squares with 

dimensions of  and populations of  respectively, placed in 

the same way relative to each other, as shown in Fig. 4.22. 

Fig. 4.22: An example of a multifractal obeying a renormalization scheme 

Two of the cases discussed above are examples of heterogeneous fractals. 

set across the fractal or the uneven distribution of small and large fluctuations in 

the time series. The reason for the heterogeneity in the previous cases is the same: 

different probabilities of filling geometrically identical elements of the fractal, or, 

in the general case, the discrepancy between the filling probabilities and the 

geometric dimensions of the corresponding regions. Such inhomogeneous fractal 

objects are called multifractals in the literature, and we will study them in the 

future. 

4.7 Generalized fractal dimensions 

ect

occupying some bounded area  size  in Euclidean space with dimension .

Suppose at some stage of its construction it is a set of  points somehow 

distributed in this region. We will assume that in the end, . An example of 



such a set is the Sierpinski triangle constructed by random iterations. Each step of 

the iterative procedure adds one new point to this set. 

 area into cubic cells with side  and volume 

. Let the number of occupied cells  vary between , where 

is the total number of occupied cells, which, of course, depends on the size of cell 

.

Let  represent the number of points in cell number , then the value 

 represents the probability that a randomly selected point 

in our set is in cell . In other words, the probabilities  characterize the relative 

population of cells. From the condition of probability normalization, it follows that 

Let us now introduce into consideration the generalized partition function

, which is characterized by an exponent of the degree , which can acquire 

any values in the interval 

The spectrum of generalized fractal dimensions of , which characterizes 

a given distribution of points in the  region, is determined by the relation 

, where the function  has the form 

ln ln

As we will show below, if , i.e., independent of , then a 

given set of points is an ordinary, regular fractal characterized by only one 

quantity, the fractal dimension . Conversely, if the function  somehow changes 

with , then the set of points in question represents a multifractal. 



Thus, the multifractal in the general case is characterized by some nonlinear

function , which determines the behavior of the statistical sum  at 

:

It should be borne in mind that in a real situation we always have a finite, 

albeit very large, number of discrete points , so in computer simulation of a 

particular set, the limit transition  must be performed with caution, 

remembering that it is always preceded by a limit .

Let us now show how the generalized statistical sum behaves in the case of 

an ordinary regular fractal with fractal dimension . In this case, all occupied cells 

contain the same number of points, , i.e. the fractal appears to be 

homogeneous. Then it is obvious that the relative populations of the cells, 

, are also the same, and the generalized statistical sum takes the form 

Let us now consider that, according to the definition of the fractal dimension 

, the number of occupied cells at a sufficiently small  behaves as follows: 

Substituting (4.10) for (4.9), and comparing with (4.8), we get 

We conclude that in the case of an ordinary fractal, the function (4.11) is 

linear. Then all  are really independent of . A fractal in which all generalized 

fractal dimensions do  coincide is called a monofractal.

If the distribution of points among the cells is not the same, then the fractal 

is called inhomogeneous, that is, it is a multifractal, and to characterize it, a whole 

range of generalized fractal dimensions  is required, the number of which, in the 

general case, is infinite.  



Thus, for example, in  the main contribution to the generalized 

statistical sum (4.8) is made by the cells containing the largest number of 

particles in them and, accordingly, characterized by the highest probability of 

filling them . On the contrary, at , the main contribution to the 

generalized statistical sum is made by the most sparse cells with the lowest 

probability of filling them . Thus, the function  shows  how heterogeneous the 

studied set of points  seems to be. 

Further, to characterize the distribution of points, it is necessary to know not 

only the function , but also its derivative: 

This derivative has an important physical content that will be demonstrated 

later. Now again note that for a multifractal system it does not remain constant and 

changes with .

4.8 Multifractal spectrum function 

Spectrum of fractal dimensions 

In the previous paragraph, we introduced the concept of a multifractal  an 

object that is an inhomogeneous fractal. To describe it, we introduced a set of 

generalized fractal dimensions , where  takes any values in the interval 

. However, the quantities of  are not, strictly speaking, fractal 

dimensions in the general sense of the word. 

Therefore, the so-called multifractal spectrum  (the spectrum of 

multifractal singularities) is often used to characterize a multifractal set, to which, 

as we will see later, the term fractal dimension is more suitable. We will show that 

the magnitude  is actually equal to the Hausdorff dimension of some 

homogeneous fractal subset from the original set , which gives the dominant 

contribution to the statistical sum for a given value .



One of the main characteristics of a multifractal is a set of probabilities 

that show the relative population of the cells of the  with which we cover this set. 

The smaller the size of the cell, the smaller the value of its population. For self-

similar sets, the dependence of  on the size of the cell  has a power character: 

where  represents some exponent (different for different cells ).

  Additionaly on 

By directing the  value to zero, the fractality can be considered locally for 

each point (element) of the system under study, and thus the  indicator is the local 

fractal dimension. It is also called the  or the singularity 

strength. We can observe a power dependence, since, obviously, the distribution 

, so the 

probabilistic measure changes in proportion to the size of the windows 

   (a)                                             (b)                                        (c) 
Fig. 4.23: Schematic representation of the relationship between singularity strength and density 
compared to neighborhoods

The gray scale represents a probabilistic measure for each location, as shown 

in each panel. In Fig. 4.23 (a), only the -th location has a non-zero density, the rest 

of the spaces are empty. The probabilistic measure on the cell remains  even 

when the cell size  increases, which is emphasized by a bold line. However, due 

to the fact that we do not observe an increase in density further, the  indicator 

remains zero. In Fig. 4.23 (b) all cells have the same density. The probabilistic 



measures of the cells are , , and  for the smallest, second, smallest, and 

largest cell (highlighted in bold line). Thus, the singularity strength of the -th cell 

is 2. Fig. 4.23 (c) The -th cell is sparse compared to the surrounding cells. The 

probabilistic measure of the cells is , , and  for the smallest, second, 

smallest, and largest cells (highlighted with a bold line). Thus, the singularity 

strength of the -th cell is 3. 

  Additionally on 

It can be said that the smoother the surface of the system appears, the fewer 

elements are involved in its development, the smaller the singularity indicator. The 

more elements of the system interconnect with each other, the more processes take 

place during the evolution of the system, the greater the singularity index

It is known that for a regular (homogeneous) fractal, all exponents of the 

degree are the same and equal to the fractal dimension :

In this case, the statistical sum (4.8) takes the following form: 

Therefore,  and all generalized fractal dimensions 

in this case coincide and do not depend on .

However, for such a complex object as a multifractal, due to its 

heterogeneity, the probabilities of filling cells  generally vary, and the  degree 

indicator for different cells can take different values. It is quite typical that these 

values continuously fill some closed interval , with  and 

.

values of . Let  be the probability that  is in the range  to . In 

other words,  is the relative number of cells  characterized by the same 



degree of  with  lying in this interval. In the case of a monofractal for which all 

 are the same (and equal to the fractal dimension ), this number is obviously 

proportional to the total number of cells  power-dependent on the size 

of cell . The exponent in this relation is determined by the fractal dimension of 

the set .

For a multifractal, however, this is not the case, and different values of 

meet with a probability characterized not by the same value , but by different 

(depending on ) values of the exponent :

Thus, the physical meaning of the function  is that it represents the 

Hausdorff dimension of some homogeneous subset  from the original set of ,

characterized by the same probabilities of filling cells . Since the fractal 

dimension of the subset is obviously always less than or equal to the fractal 

dimension of the original set , there is an important inequality for the function 

:

As a result, we can conclude that the set of different values of the function 

 (at different ) represents the spectrum of fractal dimensions [94, 95] of 

homogeneous subsets , into which the original set of  can be divided, each of 

which is characterized by its own value of fractal dimension .

Legendre transformation 

Let us establish the connection of the function  with the previously 

introduced function partition function .

Substituting the probabilities  in , and moving from summation by 

to integration by  with the probability density (7.5), we get 



Since the magnitude of  is very small, the main contribution to this integral 

will be made by those values  at which the exponent  is minimal 

(and the subintegral function is maximum). This contribution will be proportional 

to the value of the subintegral function at the maximum point. The value of 

itself is determined from the following condition: 

Also, from the minimum condition, we have 

As a result, we get that the dependence  is implicitly defined from 

, and that the function  is convex everywhere: 

This means that the value  is indeed the fractal dimension of the 

subset  that has the largest dominant contribution to the statistical sum (7.6) 

for a given value of the exponent .

Since , we conclude that 

Remembering that , we can find the function :

Thus, if we know the function of the multifractal spectrum , then from 

the relation (4.15) and (4.16) we can find the function . On the contrary, 

knowing , we can reproduce the relationship  using the equation 

and then find  from (4.16). These two equations define the function 

.



Taking into account that , and reducing this equation by ,

we arrive at the ratio , which is equivalent to (4.16).  

The expressions for  and  define the Legendre transformation

[124, 154] from the variables  to the variables :  and 

. As you know, for a homogeneous fractal 

. Therefore,  and .

 on the plane  consists of 

only one point .

4.9 Multifractal detrended fluctuation analysis 

Monofractal and multifractal structures of financial signals are a special kind 

of scale-invariant structures. Most often, the monofractal structure of financial time 

series is defined by a single power law and implies that scale invariance does not 

depend on time and space. However, we can often observe spatial and temporal 

variation of the scale-invariant structure of the complex system under study. These 

space-time variations indicate the multifractal nature of the financial signal, which 

is defined by the multifractal spectrum. The multifractal spectrum can help to 

quantify the asymmetry of ups and downs in the stock or cryptocurrency markets, 

predict a gradually approaching financial crisis, and thus contribute to the success 

of further trading decisions. The main purpose of this section is to present one of 

the most accurate procedures for determining a set of fractal indicators, the 

multifractal detrended fluctuation analysis (MF-DFA) [87-89], which is still 

one of the most powerful methods for analyzing systems of different nature and 

complexity [61, 63, 72, 82, 101, 113, 125, 140, 146, 179]. 

There are 9 steps for MF-DFA: 

1. Noise and random walks in time series presents a method for making a 

time series look like a random walk. 



2. Calculating the standard deviation of a time series

deviation, which is the basic procedure for further calculations in MF-DFA 

and a typical way to calculate the average variation of time series of various 

nature. 

3. Local RMS variation of time series n of the local 

variation of the time series as the standard deviation of the time series within 

segments that may or may not overlap. 

4. Local time series detrending is the calculation of the same local standard 

deviation around trends that are often found in financial time series. 

5. Monofractal detrended fluctuation analysis : the amplitudes of local 

standard deviations are summed into a generalized standard deviation. The 

total standard deviation for segments with small sample sizes is dominated 

by fast fluctuations in the time series. In contrast, the total standard deviation 

for segments with large sample sizes is dominated by slow fluctuations. The 

power law relationship between the total standard deviation for several 

sample sizes (i.e., scales) is determined using monofractal detrended 

fluctuation analysis (DFA) and is called the Hurst exponent ( ).

6. Multifractal detrended fluctuation analysis : MF-DFA is obtained by 

expanding the generalized standard deviation by the -th order. The qth 

order standard deviation can distinguish between segments with small and 

large fluctuations. The power-law relationship between the -th order 

standard deviation is numerically defined as the -th order generalized Hurst 

exponent. 

7. Multifractal spectrum of time series : several multifractal spectra are 

calculated based on the -order Hurst index. 

8. Generalized fractal dimensions presents a more detailed description of the 

 indicators, which will be described further.



9. Analogies of multifractals with thermodynamics shows that the obtained 

quantitative multifractal indicators have a connection with thermodynamic 

To further visualize each step of the MF-DFA procedure, we import the 

following modules: 
import matplotlib.pyplot as plt  
import matplotlib.gridspec as gridspec 
import numpy as np 
import neurokit2 as nk 
import yfinance as yf 
import pandas as pd 
import scienceplots 
from scipy.integrate import cumulative_trapezoid 
from tqdm import tqdm 
 
%matplotlib inline 

plt.style.use(['science', 'notebook', 'grid'])  
 
size = 22 
params = { 
'figure.figsize': (8, 6),             
'font.size': size,                    
'lines.linewidth': 2,                 
'axes.titlesize': 'small',            
'axes.labelsize': size,               
'legend.fontsize': size,              
'xtick.labelsize': size,              
'ytick.labelsize': size,              
"font.family": "Serif",               
"font.serif": ["Times New Roman"],    
'savefig.dpi': 300,                   
'axes.grid': False                    
} 
 
plt.rcParams.update(params)           

Here, we will present the description of multifractal analysis algorithm using 

the example of S&P 500 index. When describing the MF-DFA procedure, we will 

compare the multifractality of this series with artificially generated monofractal 

series, the complexity of which should obviously be less.  

Let us again plot the time series for further explanation: 
fig, ax = plt.subplots(1, 1)                
ax.plot(time_ser.index, time_ser.values)    
ax.legend([symbol])                         



ax.set_xlabel(xlabel)                       
ax.set_ylabel(ylabel)                       
 
plt.xticks(rotation=45)                     
 
plt.savefig(f'{symbol}.jpg')                
plt.show();                                 

Fig. 4.24: Dynamics of daily changes in S&P 500 index 

The last thing we need to do is to transform the original series to the returns. 

transformation() function and use it to find the 

returns:
def transformation(signal, ret_type): 
 
    for_rec = signal.copy() 
 
    if ret_type == 1:        
        pass 
    elif ret_type == 2: 
        for_rec = for_rec.diff() 
    elif ret_type == 3: 
        for_rec = for_rec.pct_change() 
    elif ret_type == 4: 
        for_rec = for_rec.pct_change() 
        for_rec -= for_rec.mean() 
        for_rec /= for_rec.std() 
    elif ret_type == 5:  
        for_rec = for_rec.pct_change() 
        for_rec -= for_rec.mean() 
        for_rec /= for_rec.std() 



        for_rec = for_rec.abs() 
    elif ret_type == 6: 
        for_rec -= for_rec.mean() 
        for_rec /= for_rec.std() 
 
    for_rec = for_rec.dropna().values 
 
    return for_rec 

signal = time_ser.copy() 
ret_type = 4 # type of a series:  

# 1 – initial 
# 2 - detrending (difference between present and previous values) 
# 3 – initial returns  
# 4 – standardized returns  
# 5 – absolute values (volatility) 
# 6 – standardized series 
 
sp_ret = transformation(signal, ret_type) # calculate returns  
sp_length = len(sp_ret)                  # define length of a series 

As already mentioned, when describing the MF-DFA procedure, we will 

also use monofractal signals for comparison. For further calculations, we will 

generate a signal of white and pink noise. The signal_noise() function of the 

neurokit2 library can help us with this. This function generates pure Gaussian 

(1/f)**beta noise. The power spectrum of the generated noise is proportional to 

S(f)=(1/f)**beta. The following categories of noise have been described: 

violet noise: beta ;

blue noise: beta ;

white noise: beta ;

flicker/pink noise: beta ;

brown noise: beta .

Its syntax is as follows:  
signal_noise(duration=10, sampling_rate=1000, beta=1, 

random_state=None) 

Parameters:  

duration (float)  desired length of duration (s); 

sampling_rate (int)  the desired sampling rate (in Hz, i.e., 

samples/second); 



beta (float)  the noise exponent; 

random_state (None, int, numpy.random.RandomState or 

numpy.random.Generator)  seed for the random number generator. 

Returns: 

noise (array)  the signal of pure noise.  

Now we can generate 2 types of noises: 
white_noise = nk.signal_noise(duration=sp_length, # generate white noise 
                              sampling_rate=1,  
                              beta=0,  
                              random_state=123) 
 
pink_noise = nk.signal_noise(duration=sp_length,  # generate pink noise 
                              sampling_rate=1,  
                              beta=1,  
                              random_state=123) 

Noise and random walks in time series 

The multifractal detrended fluctuation analysis of is based on the classical 

detrended fluctuation analysis (DFA). Classical DFA is applied to time series with 

a structure similar to random walks [48]. However, most financial time series have 

fluctuations that are more similar to random walk increments. If a financial time 

series has a noise-like structure, like returns, it should be converted to a random 

walk time series before applying DFA. Noise can be converted to random walk by 

subtracting the mean and integrating the time series (finding its cumulative sum). 

The white noise time series, monofractal (pink noise), and multifractal are noisy 

time series and are converted to random walks (see Fig. 4.25): 
RW1 = np.cumsum(white_noise-np.mean(white_noise)) # random walk of white nois
e 
RW2 = np.cumsum(pink_noise-np.mean(pink_noise))   # random walk of the monofr
actal 
RW3 = np.cumsum(sp_ret-np.mean(sp_ret))         # random walk for S&P 500 

fig, ax = plt.subplots(3, 1, sharex=True) 
 
ax[0].plot(time_ser.index[1:], sp_ret) 
ax[0].plot(time_ser.index[1:], RW3, 'r') 
ax[0].margins(x=0) 
ax[0].set_title('Multifractal time series', fontsize=16) 
 
ax[1].plot(time_ser.index[1:], pink_noise, label= 'Noise-like time series') 



ax[1].plot(time_ser.index[1:], RW2, 'r', label= 'Random walk') 
ax[1].margins(x=0) 
ax[1].set_title('Monofractal time series', fontsize=16) 
ax[1].legend() 
 
ax[2].plot(time_ser.index[1:], white_noise) 
ax[2].plot(time_ser.index[1:], RW1, 'r') 
ax[2].margins(x=0) 
ax[2].set_title('White noise', fontsize=16) 
 
plt.show(); 

Fig. 4.25: Multifractal (top panel), monofractal (middle panel), and white noise-like (bottom 
panel) time series 

Calculating the standard deviation of time series 

The traditional analysis of the variation in a time series is to calculate the 

average value of the variation as the standard deviation. The reader can use the 

code below to calculate the standard deviation for time series with white noise, 

monofractal, and multifractal data: 
RMS_ordinary = np.sqrt(np.mean(white_noise**2))    # root mean square variati
on of white noise 
RMS_monofractal = np.sqrt(np.mean(pink_noise**2))  # root mean square variati
on of monofractal 
RMS_multifractal = np.sqrt(np.mean(sp_ret**2))    # root mean square variatio
n of multifractal 



fig, ax = plt.subplots(3, 1, sharex=True) 
 
ax[0].plot(time_ser.index[1:], sp_ret, label= 'Noise-like time series') 
ax[0].axhline(y=np.mean(sp_ret), c='r', linestyle='--', label='Mean') 
ax[0].axhline(y=np.mean(sp_ret)+RMS_multifractal, c='r', linestyle='-', label
='+/- 1 RMS') 
ax[0].axhline(y=np.mean(sp_ret)-RMS_multifractal, c='r', linestyle='-') 
ax[0].set_ylim(-20, 20) 
ax[0].margins(x=0) 
ax[0].set_title('Multifractal time series', fontsize=16) 
 
ax[1].plot(time_ser.index[1:], pink_noise) 
ax[1].axhline(y=np.mean(pink_noise), c='r', linestyle='--') 
ax[1].axhline(y=np.mean(pink_noise)+RMS_monofractal, c='r', linestyle='-') 
ax[1].axhline(y=np.mean(pink_noise)-RMS_monofractal, c='r', linestyle='-') 
ax[1].margins(x=0) 
ax[1].set_title('Monofractal time series', fontsize=16) 
 
ax[2].plot(time_ser.index[1:], white_noise) 
ax[2].axhline(y=np.mean(white_noise), c='r', linestyle='--') 
ax[2].axhline(y=np.mean(white_noise)+RMS_ordinary, c='r', linestyle='-') 
ax[2].axhline(y=np.mean(white_noise)-RMS_ordinary, c='r', linestyle='-') 
ax[2].margins(x=0) 
ax[2].set_title('White noise', fontsize=16) 
 
handles, labels = ax[0].get_legend_handles_labels() 
fig.legend(handles, labels, loc='lower center') 
 
plt.show(); 

Fig. 4.26 shows multifractal, monofractal, and white noise-like time series 

with zero mean (red dashed line) and RMS (red solid line).  



Fig. 4.26: Multifractal (top panel), monofractal (middle panel) and white noise-like (bottom 
panel) time series with zero mean (red dashed line) and RMS (red solid line) 

Fig. 4.26 illustrates that the average amplitude of variation (i.e., standard 

deviation) is the same for all three time series, even though they have quite 

different structures. MF-DFA can distinguish between these structures. 

Local RMS variation of time series 

The multifractal time series in the top panel have local fluctuations of 

different magnitudes. The Root Mean Square Deviation (RMS) in the previous 

code can be calculated for segments of the time series to distinguish the magnitude 

of local fluctuations. A simple procedure is to divide the time series into equal-

sized, non-overlapping segments and calculate the local RMS for each segment. 

This can be done with the code below: 
def calc_rms(arr, scale=1335, m=1): 
 
    # simulate a random walk (X) 
    X = np.cumsum(arr - np.mean(arr)) 
 
    # transpose the values of X  
    X = X.T                            
 
    # determine the length of the segments 
    scale = scale 
 
    # determine the order of the polynomial 
    m = m 
 
    # determining the number of segments 
    segments = np.floor(len(X) / scale).astype(int) 
 
    Index = {}  # dictionary of value indices 
    fit = {}    # a dictionary for saving the obtained polynomial curves for 
each segment 
    RMS = []    # list of standard deviations 
 
    for v in range(segments+1):       # go through each segment 
        Idx_start = v * scale         # determine the initial value of the se
gment 
        Idx_stop = (v+1) * scale    # determine the final value 
 
        # form an array of indices of the values of the segment under study 
        Index[v] = np.arange(Idx_start, min(Idx_stop, len(X)))   
 
        # get values by indices 



        X_Idx = X[Index[v]] 
 
        # determine the polynomial coefficients of order m 
        C = np.polyfit(Index[v], X_Idx, m) 
 
        # build a polynomial curve according to the determined coefficients 
        fit[v] = np.polyval(C, Index[v]) 
 
        # determine the variation of the series around the polynomial trend 
        RMS.append(np.sqrt(np.mean((X_Idx - fit[v])**2))) 
 
    return fit, RMS, Index, X 

The first line of code of the calc_rms() function converts a noisy time 

series, a multifractal, into a random walk time series . The third line of code sets 

the scale of the parameter that determines the sample size of non-overlapping 

segments for which the local root mean square deviation, RMS, is calculated. The 

fifth line is the number of segments into which the time series  can be divided, 

where len(X) is the sample size of the time series . Thus, segments = 8 with 

len(X) = 11316 and scale = 1335. Lines nine through sixteen are a loop that 

calculates the local rms value around the trend fit[v] for each segment, updating 

the time index. In the first loop, , Index[0] goes from 0 to 1335 segment 

values (not inclusive). In the second cycle, , Index[1] goes from 1335 to 

2670 of the second segment value. In the last cycle , Index[8] goes from 

10680 to 12015 (not inclusive). 

Local time series detrending 

In complex systems, there are slowly changing trends, so to quantify the 

scale-invariance of fluctuations around these trends, it is necessary to detrend the 

signal. In the previous code, a polynomial trend fit[v] is fitted to  at each 

segment . The parameter m determines the order of the polynomial. The 

polynomial trend is linear if , quadratic if , and cubic if . The 

line C = np.polyfit(Index[v], X[Index[v]], m) defines the coefficients 

of the polynomial C used to create the polynomial trend fit[v] for each segment. 

Then, for the residual variation, X(Index[v])-fit[v], the local root mean 



square deviation, RMS[v], is calculated within each segment . The local root 

mean square variation, RMS[v], is shown in Fig. 4.27 as the distance between the 

red dashed trends and the red solid lines. 
fit_1, RMS_1, Index_1, X = calc_rms(sp_ret, scale=1335, m=1) # estimation of 
local deviation for multifractal 
fit_2, RMS_2, Index_2, X = calc_rms(sp_ret, scale=1335, m=2) # Estimation of 
local deviation for a monofractal 
fit_3, RMS_3, Index_3, X = calc_rms(sp_ret, scale=1335, m=3) # local deviatio
n estimation for white noise 

fig, ax = plt.subplots(3, 1, sharex=True) 
 
 
ax[0].plot(time_ser.index[1:], X) 
for v in list(fit_1.keys()): 
    ax[0].plot(time_ser.index[Index_1[v]], fit_1[v], 'r--') 
    ax[0].plot(time_ser.index[Index_1[v]], fit_1[v]+RMS_1[v], c='r', linestyl
e='-') 
    ax[0].plot(time_ser.index[Index_1[v]], fit_1[v]-RMS_1[v], c='r', linestyl
e='-') 
 
ax[0].margins(x=0) 
ax[0].set_title('Linear detrending '+r'$(m=1)$', fontsize=16) 
 
 
ax[1].plot(time_ser.index[1:], X, label='Random walk of a multifractal signal
') 
for v in list(fit_2.keys()): 
    if v == 1: 
        ax[1].plot(time_ser.index[Index_2[v]], fit_2[v], 'r--', label='Local 
trend') 
        ax[1].plot(time_ser.index[Index_2[v]], fit_2[v]+RMS_2[v], c='r', line
style='-', label='+/- 1 RMS') 
        ax[1].plot(time_ser.index[Index_2[v]], fit_2[v]-RMS_2[v], c='r', line
style='-') 
else: 
        ax[1].plot(time_ser.index[Index_2[v]], fit_2[v], 'r--') 
        ax[1].plot(time_ser.index[Index_2[v]], fit_2[v]+RMS_2[v], c='r', line
style='-') 
        ax[1].plot(time_ser.index[Index_2[v]], fit_2[v]-RMS_2[v], c='r', line
style='-') 
 
ax[1].margins(x=0) 
ax[1].set_title('Quadratic detrending '+r'$(m=2)$', fontsize=16) 
 
 
ax[2].plot(time_ser.index[1:], X) 
for v in list(fit_3.keys()): 
    ax[2].plot(time_ser.index[Index_3[v]], fit_3[v], 'r--') 
    ax[2].plot(time_ser.index[Index_3[v]], fit_3[v]+RMS_3[v], c='r', linestyl
e='-') 
    ax[2].plot(time_ser.index[Index_3[v]], fit_3[v]-RMS_3[v], c='r', linestyl



e='-') 
 
ax[2].margins(x=0) 
ax[2].set_title('Cubic detrending '+r'$(m=3)$', fontsize=16) 
 
handles, labels = ax[1].get_legend_handles_labels() 
fig.legend(handles, labels, loc='lower center') 
 
plt.show(); 

Fig. 4.27: Calculation of local RMS fluctuations around linear, quadratic, and cubic trends using 
the calc_rms() function ( , , and , respectively). The red dashed line is the 
fitted trend, fit[v], in seven segments of the 1335 sample. The distance between the red 
dashed trend and the solid red lines is RMS

Monofractal detrended fluctuation analysis  

In DFA, variations in local RMS are quantified by the overall RMS ( ).

Fast fluctuations in the time series  will affect the total RMS deviation  in 

segments of short length (scale), while slow fluctuations will affect  in segments 

of long length (scale). Thus, the fluctuation function  should be calculated for 

several scales to isolate the influence of both fast and slow fluctuations, which in 

turn determine the structural transformations of the time series. The fluctuation 



function  can be calculated for several scales by modifying the previous 

code:
def calc_F(arr, scale, m=1): 
 
    X = np.cumsum(arr - np.mean(arr)) # simulate a random walk (X) 
    X = X.T                           # transpose the values of X 
 
    scale = scale 
    m = m 
    segments = np.zeros(len(scale), dtype=int) 
    F = np.zeros(len(scale)) 
 
    Index = {}  # dictionary of value indices 
    fit = {}    # a dictionary for saving the obtained polynomial curves for 
each segment 
    RMS = {}    # list of standard deviations 
 
    for ns in range(len(scale)): 
        segments[ns] = np.floor(len(X) / scale[ns]).astype(int) 
        RMS[ns] = np.zeros(segments[ns]) 
 
        for v in range(segments[ns]):         # go through each segment 
# determine the initial value of the segment 
            Idx_start = v * scale[ns]   
 
# determine the final value 
            Idx_stop = (v + 1) * scale[ns] if v < segments[ns] - 1 else len(X
)  
 
# form an array of indices of the values of the segment under study 
            Index[v, ns] = np.arange(Idx_start, Idx_stop)   
 
# get values by indices 
            X_Idx = X[Index[v, ns]]                        
 
# determine the polynomial coefficients of order m 
            C = np.polyfit(Index[v, ns], X_Idx, m)  
 
# build a polynomial curve according to the determined coefficients 
            fit[v, ns] = np.polyval(C, Index[v, ns])   
 
# estimate the standard deviation for the fragment v on the scale ns 
            RMS[ns][v] = np.sqrt(np.mean((X_Idx - fit[v, ns])**2))  
 
# estimate the total standard deviation within the scale ns 
        F[ns] = np.sqrt(np.mean(RMS[ns]**2)) 
 
    return F, RMS, Index, X 

scales = [16, 32, 64, 128, 256, 512, 1024][::-1] 
F, RMS, Index, X = calc_F(sp_ret, scale=scales) # estimation of the generaliz
ed fluctuation function on different scales 



fig, ax = plt.subplots(len(scales), sharex=True) 
 
for scale, val in enumerate(scales): 
    l = [Index[val] for val in Index.keys() if (val[1] == scale)] 
 
    x = np.array([]) 
    for v in l: 
        x = np.concatenate([x, v]) 
 
    y = np.array([]) 
    for idx, v in enumerate(l):  
        y = np.concatenate([y, RMS[scale][idx]*np.ones(len(v))]) 
 
    if scales[scale] == 16: 
        ax[scale].plot(time_ser.index[1:], y, c='b', label=" Local fluctuatio
ns: RMS") 
        ax[scale].axhline(y=F[scale], c='r', linestyle='-', label=r"RMS of lo
cal fluctuations: $F$") 
        ax[scale].set_title(f"Scale = {scales[scale]}", fontsize=16) 
        ax[scale].margins(x=0) 
    else:  
        ax[scale].plot(time_ser.index[1:], y, c='b') 
        ax[scale].axhline(y=F[scale], c='r', linestyle='-') 
        ax[scale].set_title(f"Scale = {scales[scale]}", fontsize=16) 
        ax[scale].margins(x=0)        
 
handles, labels = ax[-1].get_legend_handles_labels() 
fig.legend(handles, labels, loc='upper left', fontsize=14) 
 
fig.tight_layout(pad=0.05) 
plt.show(); 

Fig. 4.28 will represent the dynamics of the generalized fluctuation function 

calculated for different time scales.  



Fig. 4.28: Local fluctuations RMS[ns] are calculated for segments with different scales. The 
fluctuation function F[ns] is the total standard deviation of the local fluctuations RMS[ns].
Note that F[ns] decreases with decreasing scale 

DFA determines the monofractal structure of the time series according to the 

power law relationship between the total standard deviation (i.e., ) calculated for 

several scales. The power-law relationship between the total RMS deviation is 

denoted by the slope ( ) of the regression line, calculated using the following 

code:
C = np.polyfit(np.log(scales), np.log(F), 1) 
H = C[0] 
RegLine = np.polyval(C, np.log(scales)) 

Modify the previous code by adding new fragments: 
def calc_H(arr, scale, m=1): 
 
    X = np.cumsum(arr - np.mean(arr)) # simulate a random walk (X) 
    X = X.T                           # transpose the values of X 
 
    scale = scale 
    m = m 
    segments = np.zeros(len(scale), dtype=int) 
    F = np.zeros(len(scale)) 
 
    Index = {}  # dictionary of value indices 



    fit = {}    # dictionary for saving the obtained polynomial curves for ea
ch segment 
    RMS = {}    # dictionary of standard deviations 
 
    for ns in range(len(scale)): 
        segments[ns] = np.floor(len(X) / scale[ns]).astype(int) 
        RMS[ns] = np.zeros(segments[ns]) 
 
        for v in range(segments[ns]):         # go through each segment 
# determine the initial value of the segment 
            Idx_start = v * scale[ns]   
 
# determine the final value 
            Idx_stop = (v+1) * scale[ns] if v < segments[ns] - 1 else len(X) 
  
 
# form an array of indices of the values of the segment under study 
            Index[v, ns] = np.arange(Idx_start, Idx_stop)   
 
# remove values by indexes 
            X_Idx = X[Index[v, ns]]                        
 
# determine the polynomial coefficients of order m 
            C = np.polyfit(Index[v, ns], X_Idx, m)  
 
# build a polynomial curve according to the determined coefficients 
            fit[v, ns] = np.polyval(C, Index[v, ns])   
 
# estimate the standard deviation for the fragment v on the scale ns 
            RMS[ns][v] = np.sqrt(np.mean((X_Idx - fit[v, ns])**2))  
 
# estimate the total standard deviation within the scale ns 
        F[ns] = np.sqrt(np.mean(RMS[ns]**2)) 
 
# find the coefficients of the equation of the line 
    C = np.polyfit(np.log(scale), np.log(F), 1)  
 
# take the slope angle of the line as the Hurst exponent 
    H = C[0] 
 
# create the equation itself 
    RegLine = np.polyval(C, np.log(scale)) 
 
    return H, RegLine, F 

Now let us consider the dependence of the generalized fluctuation function 

 on different lengths (scales) of local segments of the series for the series we are 

studying (see Fig. 4.29): 
scmin = 16 
scmax = 1024 
scres = 19 
exponents = np.linspace(np.log(scmin), np.log(scmax), scres) 
 



scales_exp = np.round(np.exp(1)**exponents).astype(int) 
 
H_multifrac, RegLine_multifrac, F_multifrac = calc_H(sp_ret, scale=scales_exp
, m=1) 
H_monofrac, RegLine_monofrac, F_monofrac = calc_H(pink_noise, scale=scales_ex
p, m=1) 
H_white_noise, RegLine_white_noise, F_white_noise = calc_H(white_noise, scale
=scales_exp, m=1) 

fig, ax = plt.subplots(1, 1) 
 
ax.set_xscale('log') 
ax.set_yscale('log') 
ax.scatter(scales_exp, F_multifrac,  
           label=fr"Multifractal series ($H$={H_multifrac:.2f})",  
           color='darkblue') 
plt.plot(scales_exp, np.exp(RegLine_multifrac),  color='darkblue') 
 
ax.scatter(scales_exp, F_monofrac,  
           label=fr"Monofractal series ($H$={H_monofrac:.2f})",  
           color='magenta') 
plt.plot(scales_exp, np.exp(RegLine_monofrac), color='magenta') 
 
 
ax.scatter(scales_exp, F_white_noise,  
           label=fr" White noise ($H$={H_white_noise:.2f})",  
           color='red') 
plt.plot(scales_exp, np.exp(RegLine_white_noise), color='red') 
 
ax.set_xlabel(r'$\log{ns}$') 
ax.set_ylabel(r"$\log{F(ns)}$") 
 
plt.legend(fontsize=16) 
 
fig.tight_layout() 
plt.show(); 



Fig. 4.29: Plot of the dependence of the total standard deviation (i.e., the fluctuation function )
on scale. The scale-invariant dependence is indicated by the slope  of the regression lines 
(Hurst exponent) 

The Hurst exponent determines the monofractal structure of the time series 

by indicating how fast the total standard deviation  of the local RMS fluctuations 

increases with the size of the local segments of the series (i.e., the scale). Fig. 4.29 

shows that the total RMS value of the local fluctuations  compared to S&P 500 

index and white noise increases faster with the size of the sample segments for 

monofractal pink noise.  

Fig. 4.30 illustrates that the Hurst exponent defines a continuum between 

noise-like time series and random walk-like time series. The Hurst exponent is in 

the range from 0 to 1 for noisy time series, while it is greater than 1 for random 

walk-like time series. The time series has a long-term dependent (i.e. correlated) 

structure when the Hurst exponent is in the range 0.5-1, and an anticorrelated 

structure when the Hurst exponent is in the range 0-0.5. The time series has an 

independent or short-term dependent structure in the special case when the Hurst 

exponent is 0.5. According to the previous figure, the time series of white noise 



appears to be unpredictable as the Hurst exponent is close to 0.5, while pink noise 

has a long-term dependent structure with the Hurst exponent close to 1 and S&P 

500 index demonstrates more antipersistant dynamics.  
betas = np.linspace(0.0, 2.0, 12)[::-1] 
scmin = 16 
scmax = 1024 
scres = 19 
exponents = np.linspace(np.log(scmin), np.log(scmax), scres) 
scales_exp = np.round(np.exp(1)**exponents).astype(int) 

color = iter(plt.cm.rainbow(np.linspace(0, 1, len(betas)))) 
 
fig, ax = plt.subplots(len(betas), 1, sharex=True) 
 
for idx, beta in enumerate(betas): 
 
    noise = nk.signal_noise(duration=sp_length,  # generate noise with differ
ent beta values  
                              sampling_rate=1,  
                              beta=beta,  
                              random_state=123)    
 
    H_noise, _, _ = calc_H(arr=noise, scale=scales_exp, m=1) 
 
    c = next(color) 
    ax[idx].plot(np.arange(len(noise)), noise, label=fr"$H$ = {H_noise:.2f}",
 c=c) 
    ax[idx].legend(loc="upper right", fontsize=12) 
    ax[idx].margins(x=0) 
 
fig.subplots_adjust(hspace=0) 
 
plt.show(); 



Fig. 4.30: The range of Hurst exponent values defines a continuum of fractal structures between 
white noise ( ) and brown noise ( ). The pink noise  separates the noise 

, which has more noticeable fast fluctuations, and the random walks , which have 
more noticeable slow fluctuations 

Multifractal detrended fluctuation analysis 

The structures of monofractal and multifractal time series are different, 

although they have similar overall RMS values. Multifractal time series contain 

local fluctuations with both extremely small and extremely large values, which is 

not typical for monofractal time series. The absence of fluctuations with extremely 

large and small values leads to a normal distribution for a monofractal time series, 

where the variation is described only by the second-order statistical moment 

(variance). Thus, monofractal DFA is based on the second-order statistic of the 

total standard deviation (i.e., ). In a multifractal time series, the local fluctuations, 

RMS[ns][v], will be extremely large for segments  within time periods of large 

fluctuations and extremely small for segments  within time periods of small 

fluctuations. Therefore, multifractal time series are not normally distributed and all 

-order statistical moments should be taken into account. Thus, it is necessary to 



extend the total RMS value of the monofractal DFA to the -order root mean square 

fluctuation function of the multifractal DFA :

def calc_Fq(arr, scale, q, m=1): 
 
    X = np.cumsum(arr - np.mean(arr)) # simulate a random walk (X) 
    X = X.T                           # transpose the values of X 
 
    scale = scale  
    qs = q 
    m = m 
    segments = np.zeros(len(scale), dtype=int) 
    Fq = np.zeros((len(qs), len(scale))) 
    Index = {} 
    RMS = {}    # dictionary of local standard deviations 
    fit = {}    # a dictionary for saving the obtained polynomial curves for 
each segment 
    qRMS = {}   # is a dictionary of local deviations weighted by q 
 
    for ns in range(len(scale)): 
        segments[ns] = np.floor(len(X) / scale[ns]).astype(int) 
        RMS[ns] = np.zeros(segments[ns]) 
 
# go through each segment 
        for v in range(segments[ns]):  
 
# determine the initial value of the segment 
            Idx_start = v * scale[ns]   
 
# determine the final value 
            Idx_stop = (v+1) * scale[ns] if v < segments[ns] - 1 else len(X) 
  
 
# form an array of indices of the values of the segment under study 
            Index[v] = np.arange(Idx_start, Idx_stop)   
 
# remove values by indexes 
            X_Idx = X[Index[v]]                        
 
# determine the polynomial coefficients of order m 
            C = np.polyfit(Index[v], X_Idx, m)  
 
# build a polynomial curve according to the determined coefficients 
            fit = np.polyval(C, Index[v])   
 
# estimate the standard deviation for the fragment v on the scale ns 
            RMS[ns][v] = np.sqrt(np.mean((X_Idx - fit)**2))  
 
# convert q values to the float type 
        qs = np.asarray_chkfinite(qs, dtype=float) 
 
# for multifractality  
# ---------------------------- 
       for nq, qval in enumerate(qs): 



           if (qval !=0.):  
                qRMS[nq, ns] = RMS[ns] ** q[nq] 
                Fq[nq, ns] = np.mean(qRMS[nq, ns]) ** (1/ q[nq]) 
           else: 
                Fq[nq, ns] = np.exp(0.5 * np.mean(np.log(RMS[ns] **2))) 
       # ---------------------------- 
 
    return Fq, qRMS, Index 

The new code block starts a loop that calculates the total root mean square 

value of the -order  from negative to positive . The -order weighs the 

influence of segments of the series with large and small fluctuations, RMS, as 

shown in the following figure. For negative , the value of  is influenced by 

segments of  with small RMS(v). On the contrary,  for positive  is 

affected by segments of  with large RMS(v). Local RMS fluctuations with large 

and small magnitudes are classified by the magnitude of negative or positive order 

, respectively. The  for  and  is more affected by the segments of v 

with the smallest and largest RMS(v), respectively, compared to the  for 

and . The midpoint  is neutral with respect to the influence of segments 

with small and large RMS. Note that the last line of code in the new section 

redefines the special case , since  goes to infinity (i.e., 

). The reader should also note that  is equal to the second-order 

statistic , since . Monofractal DFA is now extended to MF-DFA (see 

Fig. 4.31). 
scales = np.array([32]) 
nq = np.array([-3, -1, 1, 3]) 
 
Fq, qRMS, Index = calc_Fq(sp_ret, scale=scales, q=nq, m=1) 
Fq_pink, qRMS_pink, Index = calc_Fq(pink_noise, scale=scales, q=nq, m=1) 

fig, ax = plt.subplots((len(nq)+1), 1, sharex=True) 
 
ax[0].plot(time_ser.index[1:], sp_ret, label="Multifractal") 
ax[0].plot(time_ser.index[1:], pink_noise, label="Monofractal") 
ax[0].grid(False) 
ax[0].margins(x=0) 
ax[0].legend(loc='upper left', fontsize=12) 
ax[0].get_xaxis().set_visible(False) 
 
 
for idx inrange(1, len(nq)+1): 



    l = [Index[val] for val in Index.keys()] 
 
    x = np.array([]) 
    for v in l: 
        x = np.concatenate([x, v]) 
 
    y = np.array([]) 
    y_pink = np.array([]) 
    for i, v inenumerate(l):  
        y = np.concatenate([y, qRMS[(idx-1, 0)][i]*np.ones(len(v))]) 
        y_pink = np.concatenate([y_pink, qRMS_pink[(idx-1, 0)][i]*np.ones(len
(v))]) 
 
    ax[idx].set_title(fr"Local variations for scale {scales[0]} with $q=${nq[
idx-1]}", fontsize=14) 
    ax[idx].plot(time_ser.index[1:], y) 
    ax[idx].plot(time_ser.index[1:], y_pink) 
    ax[idx].margins(x=0)        
 
handles, labels = ax[0].get_legend_handles_labels() 
 
fig.tight_layout(pad=0.01) 
plt.show(); 

Fig. 4.31: Illustration of the dependence of local fluctuations of qRMS on  at a scale of 32 



The qRMS in Fig. 4.31 is the -order of the local fluctuations (i.e., RMS) and 

is a component of the overall -order of the RMS (i.e., ). The qRMS is presented 

for monofractal (green bar) and multifractal (blue bar) time series. A negative 

order of  (  and ) enhances segments in the multifractal time series with 

extremely small RMS, while a positive order of  (  and ) enhances segments 

with extremely large RMS. Note that  and  amplify small and large 

variation, respectively, more than  and . Note also that a monofractal 

time series has no segments with extremely large or small variations and thus no 

peaks in the qRMS. The -order total root mean square deviation is able to 

distinguish between the structure of small and large fluctuations and, accordingly, 

monofractal and multifractal time series. 

Now we can define the -order Hurst exponents as the slopes  of the 

regression lines for each -order RMS value of . Both  and the regression 

line are determined in a loop for each -order: 
def calc_Hq(arr, scale, q, m=1): 
 
    X = np.cumsum(arr - np.mean(arr)) # simulate a random walk (X) 
    X = X.T                           # transpose the values of X 
 
    scale = scale  
    qs = q 
    m = m 
    segments = np.zeros(len(scale), dtype=int)  
    Fq = np.zeros((len(qs), len(scale)))       # an array to store the genera
l fluctuation function 
    hq = np.zeros(len(qs), dtype=float)        # is an array for Hurst expone
nts of the qth order 
    qRegLine = {} # a dictionary for saving regression lines 
    Index = {}    # a dictionary for storing serial segment indices 
    RMS = {}      # dictionary of local standard deviations 
    fit = {}      # a dictionary for saving the obtained polynomial curves fo
r each segment 
    qRMS = {}     # is a dictionary of local deviations weighted by q 
 
    for ns in range(len(scale)): 
        segments[ns] = np.floor(len(X) / scale[ns]).astype(int) 
        RMS[ns] = np.zeros(segments[ns]) 
 
# go through each segment 
        for v inrange(segments[ns]):  
 
# determine the initial value of the segment 



            Idx_start = v * scale[ns]   
 
# determine the final value 
            Idx_stop = (v+1) * scale[ns] if v < segments[ns] - 1 else len(X) 
    
 
# form an array of indices of the values of the segment under study 
            Index[v] = np.arange(Idx_start, Idx_stop)   
 
# get values by indexes 
            X_Idx = X[Index[v]]                        
 
# determine the polynomial coefficients of order m 
            C = np.polyfit(Index[v], X_Idx, m)  
 
# build a polynomial curve according to the determined coefficients 
            fit = np.polyval(C, Index[v])   
 
# estimate the standard deviation for the fragment v on the scale ns 
            RMS[ns][v] = np.sqrt(np.mean((X_Idx - fit) **2))  
 
# convert q values to the float type 
        qs = np.asarray_chkfinite(qs, dtype=float) 
 
# for multifractality 
# ---------------------------- 
        for nq, qval in enumerate(qs): 
            if (qval !=0.):  
                qRMS[nq, ns] = RMS[ns] ** q[nq] 
                Fq[nq, ns] = np.mean(qRMS[nq, ns]) ** (1/ q[nq]) 
            else: 
                Fq[nq, ns] = np.exp(0.5 * np.mean(np.log(RMS[ns] ** 2))) 
 
        for nq, _ in enumerate(qs):  
            # if the fluctuation is equal to. 0, log2 will collide with divis
ion by 0 
            old_setting = np.seterr(divide="ignore", invalid="ignore") 
            C = np.polyfit(np.log(scale), np.log(Fq[nq, :]), m) 
            np.seterr(**old_setting) 
            hq[nq] = C[0] 
            qRegLine[nq] = np.polyval(C, np.log(scale)) 
        # ---------------------------- 
 
    return hq, qRegLine, Fq  

scmin = 16 
scmax = 1024 
scres = 19 
 
q_min = -5.0 
q_max = 5.0 
q_step = 0.1 
 
nq = np.arange(q_min, q_max+q_step, q_step) 
 



exponents = np.linspace(np.log(scmin), np.log(scmax), scres) 
scales_exp = np.round(np.exp(1)**exponents).astype(int) 
 
Hq_multifrac, qRegLine_multifrac, Fq_multifrac = calc_Hq(sp_ret, scale=scales
_exp, q=nq, m=1) 
Hq_monofrac, qRegLine_monofrac, Fq_monofrac = calc_Hq(pink_noise, scale=scale
s_exp, q=nq, m=1) 
Hq_white_noise, qRegLine_white_noise, Fq_white_noise = calc_Hq(white_noise, s
cale=scales_exp, q=nq, m=1) 

fig, ax = plt.subplots(2, 2) 
 
ax[0][0].set_title("Multifractal") 
ax[0][0].set_xlabel(r"$ns$") 
ax[0][0].set_ylabel(r"$F_{q}(ns)$") 
ax[0][0].set_xscale('log') 
ax[0][0].set_yscale('log') 
for i in range(len(nq)): 
    ax[0][0].scatter(scales_exp, Fq_multifrac[i, :], color='darkblue') 
    ax[0][0].plot(scales_exp, np.exp(qRegLine_multifrac[i]),  color='darkblue
') 
 
ax[0][1].set_title("Monofractal") 
ax[0][1].set_xlabel(r"$ns$") 
ax[0][1].set_xscale('log') 
ax[0][1].set_yscale('log') 
for i in range(len(nq)): 
    ax[0][1].scatter(scales_exp, Fq_monofrac[i, :], color='magenta') 
    ax[0][1].plot(scales_exp, np.exp(qRegLine_monofrac[i]),  color='magenta') 
 
ax[1][0].set_title("White noise") 
ax[1][0].set_xlabel(r"$ns$") 
ax[1][0].set_ylabel(r"$F_{q}(ns)$") 
ax[1][0].set_xscale('log') 
ax[1][0].set_yscale('log') 
for i in range(len(nq)): 
    ax[1][0].scatter(scales_exp, Fq_white_noise[i, :], color='red') 
    ax[1][0].plot(scales_exp, np.exp(qRegLine_white_noise[i]),  color='red') 
 
ax[1][1].set_title(r"Hurst exponent of $q$th order") 
ax[1][1].set_xlabel(r"$q$") 
ax[1][1].set_ylabel(r"$h(q)$") 
ax[1][1].plot(nq, Hq_multifrac, linestyle='-', marker='o', label=" Multifract
al", color='darkblue') 
ax[1][1].plot(nq, Hq_monofrac,linestyle='-', marker='o', label=" Monofractal"
, color='magenta') 
ax[1][1].plot(nq, Hq_white_noise, linestyle='-', marker='o', label=" White no
ise", color='red') 
ax[1][1].legend(loc='center right', fontsize=12) 
 
fig.tight_layout(pad=0.1) 
plt.show(); 



Fig. 4.32: RMS values of  for different -orders and corresponding regression lines calculated 
by MF-DFA for multifractal, monofractal, and white noise 

We can see that the generalized fluctuation function for the multifractal 

depends not only on the scale, but also on , as demonstrated by the different 

slopes of the regression lines . The scaling generalized fluctuation functions 

 for the monofractal and white noise are -independent, since their regression 

lines for different scales have the same slope. The -order Hurst exponent  for 

the multifractal series (blue line) appears to be independent for  and variable 

for . This indicates that the source of multifractality of S&P 500 is 

abnormally large fluctuations, such as the coronavirus pandemic crisis. For the 

monofractal (pink line) and white noise (red line),  remain constant. 

Multifractal spectrum of time series 

The -order Hurst exponent  is just one of several types of scaling 

measures used to parameterize the multifractal structure of time series. As 

presented earlier, we can derive a -order mass index , and then use  to 



obtain a -order singularity index  and a fractal dimension  of 

fluctuations (regions) with a degree of singularity . The graph of  versus 

 represents the multifractal spectrum (see Fig. 4.33). The mass, singularity, 

and fractality indices can be calculated according to the code below: 
tau_multifrac = nq * Hq_multifrac - 1 
tau_monofrac = nq * Hq_monofrac - 1 
tau_white_noise = nq * Hq_white_noise - 1 
 
alpha_multifrac = np.gradient(tau_multifrac, nq) 
alpha_monofrac = np.gradient(tau_monofrac, nq) 
alpha_white_noise = np.gradient(tau_white_noise, nq) 
 
f_multifrac = nq * alpha_multifrac - tau_multifrac 
f_monofrac = nq * alpha_monofrac - tau_monofrac 
f_white_noise = nq * alpha_white_noise - tau_white_noise 

fig, ax = plt.subplots(1, 3) 
 
ax[0].set_xlabel(r"$q$") 
ax[0].set_ylabel(r"$\tau(q)$") 
ax[0].plot(nq, tau_multifrac, linestyle='-', marker='o', label=" Multifractal
", color='darkblue') 
ax[0].plot(nq, tau_monofrac, linestyle='-', marker='o', label="Monofractal", 
color='magenta') 
ax[0].plot(nq, tau_white_noise, linestyle='-', marker='o', label="White noise
", color='red') 
ax[0].legend() 
 
ax[1].set_xlabel(r"$\alpha$") 
ax[1].set_ylabel(r"$f(\alpha)$") 
ax[1].plot(alpha_multifrac, f_multifrac, linestyle='-', marker='o', label=" M
ultifractal", color='darkblue') 
ax[1].plot(alpha_monofrac, f_monofrac, linestyle='-', marker='o', label="Mono
fractal", color='magenta') 
ax[1].plot(alpha_white_noise, f_white_noise, linestyle='-', marker='o', label
="White noise", color='red') 
 
ax[2].set_xlabel(r"$q$") 
ax[2].set_ylabel(r"$f(\alpha)$") 
ax[2].plot(nq, f_multifrac, linestyle='-', marker='o', label=" Multifractal",
 color='darkblue') 
ax[2].plot(nq, f_monofrac, linestyle='-', marker='o', label="Monofractal", co
lor='magenta') 
ax[2].plot(nq, f_white_noise, linestyle='-', marker='o', label="White noise",
 color='red') 
 
fig.tight_layout(pad=0.01)  
plt.show(); 



Fig. 4.33: Multiple representation of the multifractal spectrum for multifractal, monofractal, and 
white noise 

The singularity indices  for large highly concentrated fluctuations are small 

and located in the left tail of the spectrum, while  for small fluctuations are large 

and located in the right tail of the spectrum. 

Thus, the strength of multifractality is described by a large deviation of the 

local singularity exponent  from the central tendency . A monofractal signal 

is the case when  remains almost constant, and in some cases, the multifractal 

spectrum reduces to a single point at a given .

The range of  indicates the variety of singularity exponents that describe 

the dynamics of the system, and the value of  indicates the contribution of 

elements with the corresponding .

The multifractal spectrum can be characterized by different widths, which 

indicates the variability of processes occurring within the system. It can also be 

either symmetrical or asymmetrical. The asymmetry can be both right- and left-

handed, indicating different degrees of influence of highly concentrated and low-



concentrated elements (fluctuations). A multifractal spectrum will have a long left 

tail when the time series has a multifractal structure that is sensitive to local 

fluctuations with large amplitudes. 

On the contrary, a multifractal spectrum will have a long right tail when it is 

sensitive to local fluctuations with small amplitudes. 

the level of fluctuations in the series. We will demonstrate this dependence on the 

example of series distributed according to the alpha-stable Levy distribution. To 

generate random variables from this distribution, we will use the scipy.stats

module. From it, we import the levy_stable class to use the rvs() method. The 

method takes an indicator , which is responsible for the frequency of events that 

fall outside the normal distribution. Consider the range of such  values and the 

spectra of the generated series in Fig. 4.34.  
from scipy.stats import levy_stable 
 
alphas = np.linspace(1.5, 2.0, 7) 
scmin = 16 
scmax = 1024 
scres = 19 
 
q_min = -5.0 
q_max = 5.0 
q_step = 0.1 
nq_levy = np.arange(q_min, q_max+q_step, q_step) 
 
exponents = np.linspace(np.log(scmin), np.log(scmax), scres) 
scales_exp = np.round(np.exp(1)**exponents).astype(int) 

color = iter(plt.cm.plasma(np.linspace(0, 0.8, len(alphas)))) 
 
fig = plt.figure() 
subfigs = fig.subfigures(1, 2) 
ax1 = subfigs[0].subplots(len(alphas), 1, sharex=True) 
ax2 = subfigs[1].subplots(1, 1) 
 
for i in range(len(alphas)): 
 
# generate an alpha-stable process 
    r = levy_stable.rvs(alpha=alphas[i], beta=0, loc=0,  
                        scale=1, size=len(sp_ret), random_state=123) 
 
    Hq_levy, qRegLine_levy, Fq_levy = calc_Hq(r, scale=scales_exp, q=nq_levy,
 m=1) 
    tau_levy = nq_levy * Hq_levy - 1 



    alpha_levy = np.gradient(tau_levy, nq_levy) 
    f_levy = nq_levy * alpha_levy - tau_levy 
 
    c = next(color) 
    ax1[i].plot(np.arange(len(r)), r, label=fr'$\alpha$={alphas[i]:.2f}', c=c
) 
    ax1[i].margins(x=0) 
    ax1[i].legend(loc="upper left", fontsize=12) 
    ax2.plot(alpha_levy, f_levy, marker='o', c=c) 
 
ax1[0].set_title("Multifractal time series", fontsize=16) 
ax1[-1].set_xlabel("Time (ordinal number)") 
ax1[len(alphas)//2].set_ylabel('Oscillation amplitude') 
 
ax2.set_title("Multifractal spectra", fontsize=16) 
ax2.set_xlabel(r"$\alpha$") 
ax2.set_ylabel(r"$f(\alpha)$") 
 
fig.subplots_adjust(hspace=0.1) 
 
plt.show(); 

Fig. 4.34: Illustration of a set of multifractal time series (Levy of alpha stable processes) and 
their multifractal spectra generated with different values of . Note the growth of structural 
differences between periods with small and large fluctuations with increasing width of the 
multifractal spectrum 

A system whose complexity is caused by highly concentrated elements will 

have a clearly defined left-handed spectrum. The complexity of the system caused 



by weakly concentrated elements is characterized by the right tail of the 

multifractal spectrum. If the complexity of the system develops due to elements of 

two types, then the spectrum will appear symmetrical, where the elements of two 

types will be equally probable. For the alpha-stable processes generated by Levy 

above, it can be seen that the lower the value of , the stronger the dominance of 

highly concentrated (large) fluctuations. At , the spectrum is increasingly 

narrowed to a singular point. 

Further, it will be shown that for the resulting multifractal parabola of the 

multifractal spectrum, the values of both the entire spectral width  and its 

right and left tails  can be calculated. It is also possible to calculate the 

value of the singularity, where  takes the maximum value , and even the 

so- asymmetry . Fig. 4.35 schematically shows the 

position of the key indicators of multifractal spectrum. 

Fig. 4.35: Graph of the multifractal spectrum with the values of the multifractal spectrum width 
( ), the values of the minimum, central, and maximum singularity ( ), the width 
of the left and right tails of the spectrum ), and the difference between the fractal dimensions 
at the ends of the parabola ( )



It is also worth noting that this diagram does not represent an exhaustive list 

of system multifractality indicators that we will use in the future, but should 

provide an intuitive understanding of how most multifractal indicators are derived. 

Generalized fractal dimensions 

Along with the multifractal spectrum, it will be useful to consider the 

spectrum of generalized fractal dimensions, or in other words, Renyi dimensions,

since they also have information-theoretical significance. Let us find out the 

physical meaning of generalized fractal dimensions for some values of . When 

, . On the other hand, we can define that 

. Comparing these inequalities, we can come to the ratio . Thus, 

 is the usual Hausdorff dimension of the set . It also corresponds to the 

maximum of the multifractal spectrum, , which is always equal to one for a 

one-dimensional signal. For crisis recognition tasks, this characteristic is the 

coarsest and does not provide information about the statistical properties of the 

system. 

. Since the statistical sum 

when , . Thus, we have uncertainty when 

reveal this uncertainty using the following equation: 

Now, setting , expanding the exponent, and taking into account the 

condition for normalizing the probabilities of , we obtain 

As a result, we derive the following expression: 



The numerator in this formula is the information entropy of the fractal set 

:

Thus, the resulting value of the generalized fractal dimension  is related to 

the entropy  by the following relation: 

Returning to the problem of distributing points on a fractal set , we can say 

that since , the value of  characterizes the information needed to 

describe the position of a point in a certain cell. 

  Additional information on the information dimension 

Information dimension can be used to describe the spatial heterogeneity of a 

system. The more homogeneous the attractor is, the higher this indicator should be. 

That is, the more configurations the elements of a given system can take, the more 

information we need to account for each element. With spatial homogeneity, the 

information entropy also increases, which links the information dimension to the 

concept of entropy. Since is the tangent of the slope of the regression line 

plotted against the entropy and the radius of the circles in which the frequency of 

hits of individual attractor elements is measured, we can say that the information 

dimension reflects the rate of change of the information entropy. The higher  is, 

the faster the entropy grows a measure of our current ignorance about the system. 

The lower , the lower the entropy itself. In other words, the greater the spatial 

asymmetry, the more ordered the complexity, the higher our knowledge of the 

current state of the system, and the less information we need to describe the 

configurations that the system can take

For the generalized fractal dimension at , the following expression is 

valid: 



The value  represents the probability of a point falling into a cell of size .

Then the value  is the probability of two points hitting this cell. Finding the sum 

of  over all occupied cells, we get the probability that two randomly selected 

points from the set  are inside the same cell of size . Thus, the distance between 

these two points will be less than or of the order of . The probability of finding 

two trajectories within a neighborhood of radius  can be found using the 

correlation integral. 

In this case, we conclude that the generalized dimension determines the 

dependence of the correlation integral  on . For this reason,  is referred to 

in the literature as the correlation dimension.

. The value of the function at the 

maximum can be easily determined by using the expression (4.14), where 

 or . When , we obtain that 

, i.e., the maximum value of the spectrum is equal to the Hausdorff 

dimension. 

Fig. 4.36: The maximum of the function  is equal to the fractal dimension 



Consider the case when . Since , it follows from the equation 

above that . On the other hand, we know that since 

, the derivative of  at this point is 1. Differentiate the relation 

 with respect to ,

and assuming that , we get that . Thus, we have 

. Thus, the information dimension  lies on the curve  at the 

point where  and .

Fig. 4.37: Position of the information dimension 

Now consider the case when . Using the previous formula, we obtain 

that  or .



Fig. 4.38: Geometric definition of the correlation dimension 

Next, let us consider the dependence of the generalized fractal dimension 

on different values of  for a multifractal series, monofractal, and white noise (see 

Fig. 4.39). 
difference_zero = np.absolute(nq-0) 
idx_zero = difference_zero.argmin() 
 
difference_one = np.absolute(nq-1) 
idx_one = difference_one.argmin() 
 
difference_two = np.absolute(nq-2) 
idx_two = difference_two.argmin() 
 
# initialize arrays for the dimensions 
Dq_multifrac = np.zeros(len(nq)) 
Dq_monofrac = np.zeros(len(nq)) 
Dq_white_noise = np.zeros(len(nq)) 
 
# We define generalized fractal dimensions where q!=1 
Dq_multifrac[nq!=nq[idx_one]] = tau_multifrac[nq!=nq[idx_one]] / (nq[nq!=nq[i
dx_one]]-1) 
Dq_monofrac[nq!=nq[idx_one]] = tau_monofrac[nq!=nq[idx_one]] / (nq[nq!=nq[idx
_one]]-1) 
Dq_white_noise[nq!=nq[idx_one]] = tau_white_noise[nq!=nq[idx_one]] / (nq[nq!=
nq[idx_one]]-1) 
 
# We define separately the generalized fractal dimensions at q=1 
Dq_multifrac[nq==nq[idx_one]] = -tau_multifrac[nq==nq[idx_one]]  
Dq_monofrac[nq==nq[idx_one]] = -tau_monofrac[nq==nq[idx_one]] 
Dq_white_noise[nq==nq[idx_one]] = -tau_white_noise[nq==nq[idx_one]] 



fig, ax = plt.subplots(1, 1) 
 
ax.plot(nq, Dq_multifrac, linestyle='-', marker='o', label="Multifractal", co
lor='darkblue') 
ax.plot(nq, Dq_monofrac, linestyle='-', marker='o', label="Monofractal", colo
r='magenta') 
ax.plot(nq, Dq_white_noise, linestyle='-', marker='o', label="White noise", c
olor='red') 
ax.set_xlabel(r"$q$") 
ax.set_ylabel(r"$D_{q}$") 
ax.legend(loc="upper right") 
 
ax.annotate(fr'$D_{0}$={Dq_multifrac[nq==nq[idx_zero]][0]:.2f}',  
            xy=(nq[idx_zero], Dq_multifrac[nq==nq[idx_zero]]),  
            xytext=(nq[idx_zero]-2, Dq_multifrac[nq==nq[idx_zero]]+2), 
            arrowprops=dict(facecolor='black', shrink=0.05), fontsize=16) 
 
ax.annotate(fr'$D_{1}$={Dq_multifrac[nq==nq[idx_one]][0]:.3f}',  
            xy=(nq[idx_one], Dq_multifrac[nq==nq[idx_one]]),  
            xytext=(nq[idx_one]-3, Dq_multifrac[nq==nq[idx_one]]-1.5), 
            arrowprops=dict(facecolor='black', shrink=0.05), fontsize=16) 
 
ax.annotate(fr'$D_{2}$={Dq_multifrac[nq==nq[idx_two]][0]:.2f}',  
            xy=(nq[idx_two], Dq_multifrac[nq==nq[idx_two]]),  
            xytext=(nq[idx_two], Dq_multifrac[nq==nq[idx_two]]-1.5), 
            arrowprops=dict(facecolor='black', shrink=0.05), fontsize=16) 
 
plt.show(); 

Fig. 4.39: Dependence of generalized fractal dimensions  on 



The figure shows that, first of all,  for all signals, which is consistent 

with theoretical considerations. The information dimension  for the multifractal 

and white noise is the same, which may indicate the information content of both 

signals. For the monofractal, it is close to zero. The correlation dimension 

shows that, in general, both S&P 500 and white noise are quite similar: their values 

appear to be mostly independent of each other. This is in contrast to the 

conclusions drawn in our previous work, where the approach of  to zero 

indicated an increase in the degree of correlation of the system. For the 

monofractal,  is at the level of 1, which indicates a higher degree of correlation 

in this signal compared to the mono- and multifractals. 

Analogies of multifractals with thermodynamics 

Using MF-DFA concepts, we can take a fresh look at the time signal as a 

thermodynamic system. Within the framework of MF-DFA, the mass index 

can be considered as an analog of free energy, the singularity index  as an analog 

of internal energy , and the multifractal spectrum  as entropy. Indeed, the 

shape of the multifractal spectrum resembles the dependence of the entropy of a 

thermodynamic system on the energy . The parameters  and  can be 

characterized as upper and lower limits of the internal energy of the system. The 

function  is a formal analog of the partition function  in thermodynamics, 

where .



Fig. 4.40: Schematic representation of the analogy of multifractals with the concepts of 
thermodynamics 

More specifically, the multifractal heat capacity  [57] can be defined as 

The specific heat capacity, as a measure of the rate of energy change, is an 

indicator of phase transition phenomena. In a thermodynamic system, a phase is 

characterized by homogeneous physical properties, and a phase transition is a 

sudden change in certain properties under a critical external condition. The study 

of phase transitions in the multifractal spectrum has been limited to simple 

systems, such as the Cantor set and the logistic map. However, our analysis shows 

the presence of phase transitions [8] in the multifractal spectrum of financial 

 exhibits significant fluctuations in the 

neighborhood of , which are reflected in the peak of the specific heat capacity 

 (see Fig. 4.41). 



C_q_multifrac = -np.gradient(alpha_multifrac, nq, edge_order=2) 
C_q_monofrac = -np.gradient(alpha_monofrac, nq, edge_order=2) 
C_q_white_noise = -np.gradient(alpha_white_noise, nq, edge_order=2) 

fig, ax = plt.subplots(1, 2) 
 
ax[0].plot(nq, C_q_multifrac, linestyle='-', marker='o', label="Multifractal"
, color='darkblue') 
ax[0].plot(nq, C_q_monofrac, linestyle='-', marker='o', label="Monofractal", 
color='magenta') 
ax[0].plot(nq, C_q_white_noise, linestyle='-', marker='o', label="White noise
", color='red') 
ax[0].set_xlabel(r"$q$") 
ax[0].set_ylabel(r"$C(q)$") 
ax[0].legend(loc='center left') 
 
ax[1].plot(alpha_multifrac, C_q_multifrac, linestyle='-', marker='o', label="
Multifractal", color='darkblue') 
ax[1].plot(alpha_monofrac, C_q_monofrac, linestyle='-', marker='o', label="Mo
nofractal", color='magenta') 
ax[1].plot(alpha_white_noise, C_q_white_noise, linestyle='-', marker='o', lab
el="White noise", color='red') 
ax[1].set_xlabel(r"$\alpha$") 
 
fig.tight_layout(pad=0.3)  
plt.show(); 

Fig. 4.41: Dependence of the multifractal heat capacity  on  and 



Fig. 4.41 shows that  reaches local and global maxima at positive and 

negative  values, which indicates that S&P 500 becomes extremely irregular due 

to the dynamics of both large and small fluctuations during crisis periods, which 

serve as a quasi-phase transitions of S&P 500. 

4.10 MF-DFA empirical results 

Of course, a fractal analysis of the entire series is important, but this 

approach ignores the assumption that both monofractal and multifractal areas exist 

in the time sequence. That is, it ignores the assumption that the degree of 

complexity changes over time. Quantitative measures of multifractality calculated 

within the sliding window approach are the most objective and practical in system 

analysis. In addition, quantitative measures can be used as indicators or predictors 

of abnormal phenomena, or as a basis for building another predictive model. 

Some charts will present a pair plot of only the time series and the 

plot_pair() function that we defined in the 

previously: 
def plot_pair(x_values,  
              y1_values, 
              y2_values,   
              y1_label,  
              y2_label, 
              x_label,  
              file_name,  
              clr="magenta"): 
 
    fig, ax = plt.subplots() 
 
    ax2 = ax.twinx() 
 
    ax2.spines.right.set_position(("axes", 1.03)) 
 
    p1, = ax.plot(x_values,  
                  y1_values,  
"b-", label=fr"{y1_label}") 
    p2, = ax2.plot(x_values, 
                   y2_values,  
                   color=clr,  
                   label=y2_label) 
 
    ax.set_xlabel(x_label) 
    ax.set_ylabel(f"{y1_label}") 



 
    ax.yaxis.label.set_color(p1.get_color()) 
    ax2.yaxis.label.set_color(p2.get_color()) 
 
    tkw = dict(size=2, width=1.5) 
 
    ax.tick_params(axis='x', rotation=45, **tkw) 
    ax.tick_params(axis='y', colors=p1.get_color(), **tkw) 
    ax2.tick_params(axis='y', colors=p2.get_color(), **tkw) 
 
 
    ax2.legend(handles=[p1, p2]) 
 
    plt.savefig(file_name+".jpg") 
 
    plt.show(); 

For further calculations, we will again use the fathon library, which we used 

earlier to perform the classical DFA. The advantages of this particular library are 

the ability to use the procedure for calculating the division of the series into 

segments starting from the end of the series, since the length of the series does not 

always allow us to divide it into local segments as a whole. That is, theoretically, 

we are left with a segment of the series that cannot be divided into local segments. 

Therefore, repeating the procedure of dividing into local segments starting from 

the end of the series allows us to get around this problem. To simplify the 

presentation of the theoretical material, we did not implement this procedure, but it 

is available in the fathon library. In addition, the library provides the ability to 

calculate the cross-correlation DFA of and its multifractal analog. 
import fathon 
from fathon import fathonUtils as fu 

window = 500 # sliding window width 
tstep = 5    # sliding window time step 
ret_type = 4 # type of a series:  
# 1 – initial 
# 2 - detrending (difference between present and previous values) 
# 3 – initial returns  
# 4 – standardized returns  
# 5 – absolute values (volatility) 
# 6 – standardized series 
 
win_beg = 10       # Initial segment width 
win_end = window-1 # Final segment width 
 



scales_exp_wind = fu.linRangeByStep(win_beg, win_end) # generate an array 
# of linearly separated elements 
 
rev = True # whether to repeat the calculation of the fluctuation function fr
om the end 
 
length = len(time_ser.values) 
 
q_min = -5  # minimum q value 
q_max = 5   # maximum q value  
q_step = 1  # incremental step of q 
 
nq = np.arange(q_min,  
               q_max+q_step,  
               q_step) 
 
order = 3 # order of the polynomial trend 
 
delta_alph = [] 
delta_spec = [] 
max_alph = [] 
min_alph = [] 
mean_alph = [] 
alpha_zero = [] 
delta_alph_right = [] 
delta_alph_left = [] 
assym = [] 
delta_s = [] 
D_0 = [] 
D_1 = [] 
D_2 = [] 
D_left = [] 
D_right = [] 
C_q = [] 
h_q = [] 
tau_q = [] 
D_q = [] 
mfSpect = [] 
alpha = [] 
hFI = [] 
alphaCF = [] 
C_q_area_wind = [] 

stages of calculations: 
for i in tqdm(range(0, length-window, tstep)): 
 
    fragm = time_ser.iloc[i:i+window].copy()   
 
    fragm = transformation(fragm, ret_type) 
 
#  finding a cumulative series 
    cumulative = fu.toAggregated(fragm) 



 
# initialization of the MF-DFA procedure 
    pymfdfa = fathon.MFDFA(cumulative) 
 
# calculation of the fluctuation function and obtaining the generalized Hurst
 exponent 
    n, F = pymfdfa.computeFlucVec(scales_exp_wind, nq, revSeg=rev, polOrd=ord
er) 
    Hq_fragm, _ = pymfdfa.fitFlucVec() 
 
# obtaining the tau indicator 
    tau_wind = nq * Hq_fragm - 1 
 
# obtaining the singularity index 
    alpha_wind = np.gradient(tau_wind, nq, edge_order=2) 
 
# obtaining a multifractal spectrum 
    f_wind = nq * alpha_wind - tau_wind 
 
# obtaining multifractal heat capacity 
    C_q_wind = -np.gradient(alpha_wind, nq, edge_order=2) 
 
# integral indicator C(q) 
    C_q_area = cumulative_trapezoid(np.abs(C_q_wind), nq, initial=0)[-1] 
 
# width of the multifractal spectrum 
    delta_alpha_wind = alpha_wind.max() - alpha_wind.min() 
 
# distance between the ends of the multifractality spectrum 
    delta_phi = f_wind[-1] - f_wind[0] 
 
# maximum alpha value 
    maximal_alpha = alpha_wind.max() 
 
# minimum value of alpha 
    minimal_alpha = alpha_wind.min() 
 
# average alpha value 
    mean_alpha = np.mean(alpha_wind) 
 
# is the value of the singularity at which the spectrum takes the maximum val
ue ( 0) 
    alpha_0 = alpha_wind[np.nanargmax(f_wind)] 
 
# width of the right tail of the spectrum 
    delt_alpha_right = maximal_alpha - alpha_0 
 
# width of the left tail of the spectrum 
    delt_alpha_left = alpha_0 - minimal_alpha 
 
# difference between the width of the left and right tails 
    delt_s = delt_alpha_right - delt_alpha_left 
 
# asymmetry index 
    A = (delt_alpha_left - delt_alpha_right)/(delt_alpha_left + delt_alpha_ri



ght) 
 
# define the index at q=0 
    difference_zero = np.absolute(nq-0) 
    idx_zero = difference_zero.argmin() 
 
# define the index at q=1 
    difference_one = np.absolute(nq-1) 
    idx_one = difference_one.argmin() 
 
# define the index at q=2 
    difference_two = np.absolute(nq-2) 
    idx_two = difference_two.argmin() 
 
# initialize arrays for the dimensions 
    Dq_wind = np.zeros(len(nq)) 
 
# define generalized fractal dimensions where q!=1  
    Dq_wind[nq!=nq[idx_one]] = tau_wind[nq!=nq[idx_one]] / (nq[nq!=nq[idx_one
]]-1) 
 
# define separately the generalized fractal dimensions at q=1 
    Dq_wind[nq==nq[idx_one]] = -tau_wind[nq==nq[idx_one]]  
 
# generalized fractal dimensions obtained from the multifractal spectrum 
    D_zero = f_wind[nq==nq[idx_zero]] 
    D_one = f_wind[nq==nq[idx_one]] 
    D_two = 2*alpha_wind[nq==nq[idx_two]] - f_wind[np.where(alpha_wind[nq==nq
[idx_two]])] 
 
# distance from the center of the distribution of generalized dimensions to t
he left end 
    delta_D_Q_left = Dq_wind[nq==q_min] - Dq_wind[nq==nq[idx_zero]] 
 
# distance from the center of the distribution of generalized dimensions to t
he right end 
    delta_D_Q_right = Dq_wind[nq==nq[idx_zero]] - Dq_wind[nq==q_max] 
 
# h-fluctuation index (hFI) 
    fluct = np.sum(np.gradient(np.gradient(Hq_fragm, nq, edge_order=2), nq, e
dge_order=2)**2)/(2*np.max(np.abs(nq))+2) 
 
# cumulative index of increments of generalized Hurst exponents ( CF) 
    incr = np.sum(np.gradient(Hq_fragm, edge_order=2)**2/ np.gradient(nq, edg
e_order=2)) 
 
    delta_alph.append(delta_alpha_wind) 
    delta_spec.append(delta_phi) 
    max_alph.append(maximal_alpha) 
    min_alph.append(minimal_alpha) 
    mean_alph.append(mean_alpha) 
    alpha_zero.append(alpha_0) 
    delta_alph_right.append(delt_alpha_right) 
    delta_alph_left.append(delt_alpha_left) 
    delta_s.append(delt_s) 



    assym.append(A) 
    D_0.append(D_zero) 
    D_1.append(D_one) 
    D_2.append(D_two) 
    D_left.append(delta_D_Q_left) 
    D_right.append(delta_D_Q_right) 
    C_q.append(C_q_wind) 
    mfSpect.append(f_wind) 
    alpha.append(alpha_wind) 
    hFI.append(fluct) 
    alphaCF.append(incr) 
    C_q_area_wind.append(C_q_area) 
    h_q.append(Hq_fragm) 
    tau_q.append(tau_wind) 
    D_q.append(Dq_wind) 

Save absolute values of indicators to text files. 
# list of names of each indicator to save to txt 
subtitle_of_txts = ['delta_alpha', 'delta_f', 'max_alpha', 'min_alpha', 'mean
_alpha',  
'zero_alpha', 'delta_alpha_right', 'delta_alpha_left', 'assymetry', 
'delta_s', 'D_0', 'D_1', 'D_2', 'hFI', 'alphaCF', 'C_q_area', 
'delta_d_left', 'delta_d_right'] 
 
# list of output values of indicators for saving to txt 
mfdfa_indicators = [delta_alph, delta_spec, max_alph, min_alph, mean_alph, al
pha_zero, delta_alph_right, delta_alph_left, assym, delta_s, D_0, D_1, D_2, h
FI, alphaCF, C_q_area_wind, D_left, D_right] 
 
for i in range(len(subtitle_of_txts)): 
    np.savetxt(f"mfdfa_{subtitle_of_txts[i]}_name={symbol}_ret={ret_type}_ \ 
               order={order}_qmin={q_min}_qmax={q_max}_qinc={q_step}_ \ 
             wind={window}_step={tstep}_windbeg={win_beg}_winden={win_end}.tx
t", mfdfa_indicators[i]) 

The width of the multifractal spectrum 

The first and one of the most practical indicators of system complexity is the 

multifractal width, , which can be represented as the difference between the 

maximum degree of singularity and the minimum: 

If we draw an analogy with thermodynamic indicators, then the width of the 

multifractality spectrum will be the difference between the highest and lowest 

s consider the dynamics of this 

indicator for the stock market indices (see Fig. 4.42): 



measure_label = r'$\Delta\alpha$' 
file_name = f"mfdfa_delta_alpha_name={symbol}_ret={ret_type}_order={order}_qm
in={q_min}_qmax={q_max}_qinc={q_step}_ \ 
           wind={window}_step={tstep}_windbeg={win_beg}_winden={win_end}" 

plot_pair(time_ser.index[window:length:tstep], 
          time_ser.values[window:length:tstep], 
          delta_alph,  
          ylabel,  
          measure_label, 
          xlabel, 
          file_name,  
          clr='red') 

 (a) (b) 

   (c)       (d) 

Fig. 4.42: Multifractal spectrum width indicator  for the time series of S&P 500 (a), Hang 
Seng index (b), DAX (c), and BSE Sensex (d) 

Fig. 4.42 shows that the width of the multifractality spectrum increases 

during crisis events, indicating an increase in the overall degree of complexity and 

periodization. That is, this indicator serves as another confirmation that traders in 

the stock market, for example, behave in a synchronized manner during a crisis. 



The growth of the overall degree of multifractality is an indicator of the growth of 

correlations in the system, which was confirmed by the previous indicators of 

complexity. 

The difference between the ends of the multifractal spectrum 

However, the simple width of the multifractality spectrum does not show, 

for example, what type of fluctuations are most likely, what type of density 

elements play the greatest role in increasing or decreasing the complexity of the 

system. Later, we proposed such an indicator of multifractality as , which can be 

represented as follows [105, 106, 174]: 

measure_label = r'$\Delta f$' 
file_name = f"mfdfa_delta_f_name={symbol}_ret={ret_type}_order={order}_qmin={
q_min}_qmax={q_max}_qinc={q_step}_ \ 
           wind={window}_step={tstep}_windbeg={win_beg}_winden={win_end}" 

plot_pair(time_ser.index[window:length:tstep], 
          time_ser.values[window:length:tstep], 
          delta_spec,  
          ylabel,  
          measure_label, 
          xlabel, 
          file_name,  
          clr='brown') 

Fig. 4.43 illustrates the comparative dynamics of the distance between the 

ends of the multifractality spectrum  for the time series of S&P 500, Hang Seng 

index, DAX, and BSE Sensex.  

 (a) (b) 



   (c)       (d) 

Fig. 4.43: Distance between the ends of the multifractality spectrum  for the time series of 
S&P 500 (a), Hang Seng index (b), DAX (c), and BSE Sensex (d) 

The meaning of this indicator is that it allows us to determine the degree of 

probability of occurrence of elements with high densities and low densities. If this 

indicator is less than zero, then fluctuations reflecting elements with the highest 

concentration (highest fractions) have the highest probability. If this indicator is 

higher than zero, then fluctuations reflecting low-concentration elements (small 

fluctuations) determine the dynamics of the system. If this indicator is zero, then 

both highly singular and low-singular elements contribute equally to the system 

dynamics. 

Turning to thermodynamics, we can recall that  is the entropy of a 

system. Then it becomes clear that the variability of the multifractal spectrum 

allows us to determine the degree of contribution of highly concentrated and low-

concentrated elements to minimizing the entropy of the system. The left-handed 

asymmetry of the multifractal spectrum  tells us that highly concentrated 

elements of the phase space make the greatest contribution to the minimum 

thermodynamic entropy. In other words, these elements are the engine of 

-hand side 

asymmetry of the multifractal spectrum  indicates the minimization of 

entropy due to low-concentrated elements. The symmetry of the ends of the 

spectrum indicates an equal contribution of high-density and sparse regions to 



entropy minimization. As already mentioned, there are cases when the multifractal 

spectrum practically converges to a singularity (one point). In this case, we are 

dealing with a simple monofractal system, which in our case was characterized by 

independent and normally distributed random variables. For such a spectrum, both 

 and  will tend to zero. For such a time series, there is no longer a set of 

fractal dimensions, but only one fractal index, . This is exactly 

the region where the system reaches its thermodynamic equilibrium  the 

maximum entropy. In turn,  can be characterized as the difference of entropies 

at the maximum and minimum internal energy of the system. 

Width of the left  and right  tails of the multifractal 

spectrum 

In addition, we can examine the degree of complexity of the dynamics of 

high-density regions (with large fluctuations) and low-density regions (with small 

fluctuations) separately. To do this, we measure the width of the left and right 

tails separately. The width of the left tail is defined as 

and the width of the right tail as 

In turn, the width of the left tail measures the degree of complexity of 

fluctuations with a large amplitude, and the width of the right tail measures the 

degree of complexity of small fluctuations. An increase in the width of each of the 

tails will reflect an increase in the degree of correlation between the elements. 
fig, ax = plt.subplots(1, 1) 
 
ax2 = ax.twinx() 
ax3 = ax.twinx() 
 
ax2.spines.right.set_position(("axes", 1.03)) 
ax3.spines.right.set_position(("axes", 1.12)) 
 
p1, = ax.plot(time_ser.index[window:length:tstep], time_ser.values[window:len
gth:tstep],  
"b-", label=fr"{ylabel}") 
p2, = ax2.plot(time_ser.index[window:length:tstep], delta_alph_left, color="r



", label=r"$\Delta\alpha_{L}$") 
p3, = ax3.plot(time_ser.index[window:length:tstep], delta_alph_right, color="
g", label=r"$\Delta\alpha_{R}$") 
 
ax.set_xlabel(xlabel) 
ax.set_ylabel(f"{ylabel}") 
 
ax.yaxis.label.set_color(p1.get_color()) 
ax2.yaxis.label.set_color(p2.get_color()) 
ax3.yaxis.label.set_color(p3.get_color()) 
 
tkw = dict(size=4, width=1.5) 
ax.tick_params(axis='y', colors=p1.get_color(), **tkw) 
ax2.tick_params(axis='y', colors=p2.get_color(), **tkw) 
ax3.tick_params(axis='y', colors=p3.get_color(), **tkw) 
ax.tick_params(axis='x', rotation=45, **tkw) 
 
ax3.legend(handles=[p1, p2, p3]) 
 
plt.savefig(f"mfdfa_delta_alpha_left_right_name={symbol}_ret={ret_type}_order
={order}_qmin={q_min}_qmax={q_max}_qinc={q_step}_wind={window}_step={tstep}_w
indbeg={win_beg}_winden={win_end}.jpg") 
plt.show(); 

Fig. 4.44 demonstrates the comparative dynamics of S&P 500, Hang Seng 

index, DAX, BSE Sensex, and their width of the left and right tails of the 

multifractal spectrum.  

(a) (b) 



      (c)         (d) 

Fig. 4.44: Width of the left and right tails of the multifractal spectrum for the time series of S&P 
500 (a), Hang Seng index (b), DAX (c), and BSE Sensex (d) 

Fig. 4.44 shows that the studied indicators react in a characteristic way to 

crisis events. The width of the left side of the multifractality spectrum increases 

during 1992, 1996-2000, 2008, 2016, and the coronavirus pandemic. This indicates 

the dominance of highly concentrated fluctuations (with a large amplitude of 

fluctuations). In addition, the increase in the width of the left tail indicates that 

fluctuations with a large amplitude of fluctuations are characterized by an increase 

in the degree of correlation during crisis events, which in turn can serve as an 

indicator of the growth of self-organization processes. 

Although smaller, the dynamics of the width of the right tail of the 

multifractal spectrum is no less remarkable. This indicator works almost similarly 

to the width of the left tail, but characterizes the dynamics of low-concentrated 

values  fluctuations with a small amplitude of oscillations. Almost synchronous 

dynamics of both indicators indicates an increase in the influence of fluctuations of 

both large-amplitude fluctuations and small-amplitude fluctuations. In other words, 

these two types of fluctuations are the source of the growth of nonlinear 

correlations during crisis events. 

 Singularity exponent  and its variants 

Possible indicators of system complexity include , , , and 

, which respectively characterize the minimum singularity strength,



maximum, average, and singularity under the condition of equilibrium 

consideration of both large fluctuations and small ones. 
fig, ax = plt.subplots(1, 1) 
 
ax2 = ax.twinx() 
ax3 = ax.twinx() 
ax4 = ax.twinx() 
ax5 = ax.twinx() 
 
ax3.spines.right.set_position(("axes", 1.08)) 
ax4.spines.right.set_position(("axes", 1.18)) 
ax5.spines.right.set_position(("axes", 1.27)) 
 
p1, = ax.plot(time_ser.index[window:length:tstep], time_ser[window:length:tst
ep], "b-", label=fr"{ylabel}") 
p2, = ax2.plot(time_ser.index[window:length:tstep], max_alph, "r-", label=r"$
\alpha_{max}$") 
p3, = ax3.plot(time_ser.index[window:length:tstep], min_alph, "g-", label=r"$
\alpha_{min}$") 
p4, = ax4.plot(time_ser.index[window:length:tstep], mean_alph, "c-", label=r"
$\alpha_{mean}$") 
p5, = ax5.plot(time_ser.index[window:length:tstep], alpha_zero, "m-", label=r
"$\alpha_{0}$") 
 
ax.set_xlabel(xlabel) 
ax.set_ylabel(fr"{ylabel}") 
 
ax.yaxis.label.set_color(p1.get_color()) 
ax2.yaxis.label.set_color(p2.get_color()) 
ax3.yaxis.label.set_color(p3.get_color()) 
ax4.yaxis.label.set_color(p4.get_color()) 
ax5.yaxis.label.set_color(p5.get_color()) 
 
tkw = dict(size=4, width=1.5) 
ax.tick_params(axis='y', colors=p1.get_color(), **tkw) 
ax2.tick_params(axis='y', colors=p2.get_color(), **tkw) 
ax3.tick_params(axis='y', colors=p3.get_color(), **tkw) 
ax4.tick_params(axis='y', colors=p4.get_color(), **tkw) 
ax5.tick_params(axis='y', colors=p5.get_color(), **tkw) 
ax.tick_params(axis='x', **tkw, pad=10, rotation=45) 
 
ax5.legend(handles=[p1, p2, p3, p4, p5]) 
 
plt.savefig(f"mfdfa_alpha_min_max_mean_zero_name={symbol}_ret={ret_type}_orde
r={order}_qmin={q_min}_qmax={q_max}_qinc={q_step}_ \ 
            wind={window}_step={tstep}_windbeg={win_beg}_winden={win_end}.jpg
", bbox_inches="tight") 

Fig. 4.45 demonstrates the comparative dynamics of S&P 500, Hang Seng 

index, DAX, BSE Sensex, and their singularity indicators.  



 (a) (b) 

   (c)       (d) 

Fig. 4.45: Singularity indicators for the time series of S&P 500 (a), Hang Seng index (b), DAX 
(c), and BSE Sensex (d) 

As can be seen from Fig. 4.45, all singularity indicators increase in the 

financial phase transition from a state of stability to a state of crisis. This indicates 

an increase in the complexity of the system: a sharp increase in the number of 

agents involved in the self-organized development of the system under study. From 

the point of view of thermodynamics, it could be said that the internal energy of 

the system increases during financial collapse events. 



Type of the long tail of the multifractal spectrum 

In addition to such a measure as , other measures of multifractal spectrum 

asymmetry can be presented. For example, we can determine the type of long tail 

of the multifractal spectrum using the  measure [56]: 

If , the multifractal spectrum has a long left tail, which indicates the 

sensitivity of the time series to local fluctuations with a large amplitude. If ,

the multifractal spectrum has a long right tail, which indicates the sensitivity of the 

signal structure to local fluctuations with a small amplitude. In cases where the 

high- and low-frequency components of the signal are comparable, the singularity 

spectrum will be approximately symmetrical and .
measure_label = r'$\Delta S$' 
file_name = f"mfdfa_delta_s_name={symbol}_ret={ret_type}_order={order}_qmin={
q_min}_qmax={q_max}_qinc={q_step}_ \ 
           wind={window}_step={tstep}_windbeg={win_beg}_winden={win_end}" 

plot_pair(time_ser.index[window:length:tstep], 
          time_ser.values[window:length:tstep], 
          delta_s,  
          ylabel,  
          measure_label, 
          xlabel, 
          file_name,  
          clr='darkorange') 

Fig. 4.46 demonstrates the comparative dynamics of S&P 500, Hang Seng 

index, DAX, BSE Sensex, and their  indicator. 

 (a) (b) 



   (c)           (d) 

Fig. 4.46: Multifractal spectrum tail type indicator  for the time series of S&P 500 (a), Hang 
Seng index (b), DAX (c), and BSE Sensex (d) 

Fig. 4.46 shows that , which indicates that the most crashing parts of 

the stock indices are caused by fluctuations with a large amplitude of fluctuations.  

Asymmetry index 

Next, we can define the following asymmetry index [128, 144, 145]: 

The asymmetry parameter is associated with the predominant type of 

oscillation in the system under study. If  ( ), the system dynamics 

is represented by a symmetrical spectrum. If  ( ), the multifractal 

spectrum has a right-handed asymmetry, which emphasizes the stronger influence 

of small fluctuations on multifractality. Conversely, when  ( ), 

then we are dealing with a left-handed spectrum, which denotes greater 

heterogeneity for large fluctuations and indicates that the time series is dominated 

by the multifractal nature of high-density heterogeneities. Since the asymmetry is 

detected by the sign of , which is equivalent to the sign of , then, based on the 

sign of , we can draw conclusions about both the type of long tail and the sign 

of the multifractal spectrum indicator , i.e., the insensitivity and type of dominant 

fluctuations of the multifractal nature of the time series. 
measure_label = r'$A$' 
file_name = f"mfdfa_A_name={symbol}_ret={ret_type}_order={order}_qmin={q_min}



_qmax={q_max}_qinc={q_step}_ \ 
           wind={window}_step={tstep}_windbeg={win_beg}_winden={win_end}" 

plot_pair(time_ser.index[window:length:tstep], 
          time_ser.values[window:length:tstep], 
          assym,  
          ylabel,  
          measure_label, 
          xlabel, 
          file_name,  
          clr='darkviolet') 

Fig. 4.47 illustrates the comparative dynamics of S&P 500, Hang Seng 

index, DAX, BSE Sensex, and their asymmetry index. 

(a) (b) 

   (c)       (d) 

Fig. 4.47: Multifractal spectrum asymmetry index  for the time series of S&P 500 (a), Hang 
Seng index (b), DAX (c), and BSE Sensex (d) 

Fig. 4.47 shows that, as a rule, the asymmetry index increases during crashes 

and indicates the dominance of the left-hand side spectrum (highly concentrated 

fluctuations with large amplitudes). It is difficult to associate small and large 



fluctuations with specific market sentiment or behavioral patterns. At this point, we 

can only note that these events represented the richest variation in both short-term 

and long-term correlations. 

-fluctuation index 

The fluctuation can be analyzed using the second derivative of the 

generalized Hurst exponent. Note that the amplitude of the second derivative in the 

case of multifractal signals is greater than for monofractal signals. To obtain the 

necessary information from , the -fluctuation index  was proposed 

[19], which is defined as the power of the second derivative of :

The higher the value of this indicator, the higher the self-organization of the 

system. 
measure_label = r'$hFI$' 
file_name = f"mfdfa_hFI_name={symbol}_ret={ret_type}_order={order}_qmin={q_mi
n}_qmax={q_max}_qinc={q_step}_ \ 
           wind={window}_step={tstep}_windbeg={win_beg}_winden={win_end}" 

plot_pair(time_ser.index[window:length:tstep], 
          time_ser.values[window:length:tstep], 
          hFI,  
          ylabel,  
          measure_label, 
          xlabel, 
          file_name,  
          clr='green') 

Fig. 4.48 illustrates the comparative dynamics of S&P 500, Hang Seng 

index, DAX, BSE Sensex, and their -fluctuation index. 



 (a) (b) 

   (c)          (d) 

Fig. 4.48: The -fluctuation index for the time series of S&P 500 (a), Hang Seng index (b), 
DAX (c), and BSE Sensex (d) 

It can be seen that according to , the highest degree of multifractality is 

manifested precisely for the crises of 1987, 1997, 2008, and 2020. These collapse 

events include the largest number of different factors that influenced the dynamics 

of the system under study. This is especially noticeable for the coronavirus 

pandemic. 

Cumulative index of increments of generalized Hurst exponents 

The cumulative square function of increments  [6] of generalized 

Hurst exponents between successive moment orders is a more reliable measure of 

the distribution of generalized Hurst exponents. 
measure_label = r'$\alpha CF$' 
file_name = f"mfdfa_alphaCF_name={symbol}_ret={ret_type}_order={order}_qmin={



q_min}_qmax={q_max}_qinc={q_step}_ \ 
           wind={window}_step={tstep}_windbeg={win_beg}_winden={win_end}" 

plot_pair(time_ser.index[window:length:tstep], 
          time_ser.values[window:length:tstep], 
          alphaCF,  
          ylabel,  
          measure_label, 
          xlabel, 
          file_name,  
          clr='crimson') 

In Fig. 4.49 is presented the comparative dynamics of S&P 500, Hang Seng 

index, DAX, BSE Sensex, and their  index. 

(a) (b) 

(c)       (d) 

Fig. 4.49: Cumulative index of increments of generalized Hurst exponents  for the time 
series of S&P 500 (a), Hang Seng index (b), DAX (c), and BSE Sensex (d) 

The cumulative index presented here is slightly different from the , but 

logically it is approximately the same: events with the highest degree of 

multifractality are characterized by a higher amplitude of . The presented 



index highlights the same crises as the previous one, but the dynamics of this index 

is more pronounced, which makes it more reliable for identifying periods of system 

self-organization. 

 Integral multifractal heat capacity 

The total degree of multifractality, the integral multifractal specific heat 

capacity , can be expressed in the following form: 

measure_label = r'$C_{area}$' 
file_name = f"mfdfa_C_q_area_name={symbol}_ret={ret_type}_order={order}_qmin=
{q_min}_qmax={q_max}_qinc={q_step}_ \ 
           wind={window}_step={tstep}_windbeg={win_beg}_winden={win_end}" 

plot_pair(time_ser.index[window:length:tstep], 
          time_ser.values[window:length:tstep], 
          C_q_area_wind,  
          ylabel,  
          measure_label, 
          xlabel, 
          file_name,  
          clr='darkslateblue') 

In Fig. 4.50 is presented the comparative dynamics of S&P 500, Hang Seng 

index, DAX, BSE Sensex, and their integral multifractal heat capacity  index. 

(a) (b) 



              (c)              (d) 

Fig. 4.50: Integral multifractal heat capacity  for the time series of S&P 500 (a), Hang Seng 
index (b), DAX (c), and BSE Sensex (d) 

The figure shows that the dynamics of the integral heat capacity is very 

similar to the width of the multifractality spectrum. In other words,  is a 

complexity indicator that indicates the degree of self-organization of the financial 

phase transition. It can be seen that financial crashes represent a fairly trend-stable 

dynamic, which is the result of purposeful and collective actions of traders in the 

market. 

Hausdorff dimension 

As already noted,  represents the upper limit of the dimensional changes 

of the fractal subsets of the attractor system. It does not contain information about 

the statistical properties of the system and is not of particular value. 
measure_label = r'$D_{0}$' 
file_name = f"mfdfa_D_0_area_name={symbol}_ret={ret_type}_order={order}_qmin=
{q_min}_qmax={q_max}_qinc={q_step}_ \ 
           wind={window}_step={tstep}_windbeg={win_beg}_winden={win_end}" 

plot_pair(time_ser.index[window:length:tstep], 
          time_ser.values[window:length:tstep], 
          D_0,  
          ylabel,  
          measure_label, 
          xlabel, 
          file_name,  
          clr='darkred') 



Fig. 4.51 shows the comparative dynamics of S&P 500, Hang Seng index, 

DAX, BSE Sensex, and their Hausdorff dimension.  

   (a) (b) 

(c)       (d) 

Fig. 4.51: Hausdorff dimension for the time series of S&P 500 (a), Hang Seng index (b), DAX 
(c), and BSE Sensex (d) 

Information dimension 

The information dimension is closely related to the Shannon information 

entropy. The higher the value of , the faster the entropy increases, which is an 

indicator of how little we know about the current state of the system. As 

decreases, the entropy decreases, which in turn indicates an increase in asymmetry 

in space, a decrease in complexity, and an increase in our understanding of the 

current state of the system. It also means that we need less information to describe 

possible system configurations. 
measure_label = r'$D_{1}$' 
file_name = f"mfdfa_D_1_area_name={symbol}_ret={ret_type}_order={order}_qmin=



{q_min}_qmax={q_max}_qinc={q_step}_ \ 
           wind={window}_step={tstep}_windbeg={win_beg}_winden={win_end}" 

plot_pair(time_ser.index[window:length:tstep], 
          time_ser.values[window:length:tstep], 
          D_1,  
          ylabel,  
          measure_label, 
          xlabel, 
          file_name,  
          clr='darkred') 

Fig. 4.52 shows the comparative dynamics of S&P 500, Hang Seng index, 

DAX, BSE Sensex, and their information dimension. 

 (a) (b) 

             (c)             (d) 

Fig. 4.52: Information dimension for the time series of S&P 500 (a), Hang Seng index (b), DAX 
(c), and BSE Sensex (d) 

Fig. 4.52 shows that the information dimension is characterized by a decline 

during crash events. This indicates an increase in the degree of orderliness of the 



system and the collective attraction of market agents to a specific area of the phase 

space of the system under study. 

Correlation dimension 

The correlation dimension, analogous to the information dimension, can be 

represented as the tangent of the slope angle of the regression line plotted on a 

logarithmic scale with respect to the dependence of the correlation integral  on 

. Similar to , the correlation dimension also determines how quickly the value 

of the correlation integral changes. 
measure_label = r'$D_{2}$' 
file_name = f"mfdfa_D_2_area_name={symbol}_ret={ret_type}_order={order}_qmin=
{q_min}_qmax={q_max}_qinc={q_step}_\ 
           wind={window}_step={tstep}_windbeg={win_beg}_winden={win_end}" 

plot_pair(time_ser.index[window:length:tstep], 
          time_ser.values[window:length:tstep], 
          D_2,  
          ylabel,  
          measure_label, 
          xlabel, 
          file_name,  
          clr='darkred') 

Fig. 4.53 shows the comparative dynamics of S&P 500, Hang Seng index, 

DAX, BSE Sensex, and their correlation dimension. 

(a) (b) 



   (c)       (d) 

Fig. 4.53: Correlation dimension for the time series of S&P 500 (a), Hang Seng index (b), DAX 
(c), and BSE Sensex (d) 

The correlation dimension in Fig. 4.53 is characterized by an increase in the 

pre-crisis period and a decrease during the crisis. This suggests that most market 

agents are beginning to focus on one particular vector of system development. 

Curvature of the left  and right  tails of the distribution 

of generalized fractal dimensions 

The degree of this complexity can be characterized by the curvature of the 

right and left tails of the generalized fractal dimensions. The right side  can 

be defined as 

And the higher the value of this measure, the stronger will be the degree of 

influence of the elements with the highest concentration (density, amplitude of 

fluctuations) on the overall complexity of the system.  

Curvature of the left tail of the curve of generalized fractal dimensions 

:

This indicator will tell us how strong the influence of the least concentrated 

elements is on the complexity of the system. 
fig, ax = plt.subplots(1, 1) 
 



ax2 = ax.twinx() 
ax3 = ax.twinx() 
 
ax2.spines.right.set_position(("axes", 1.03)) 
ax3.spines.right.set_position(("axes", 1.12)) 
 
p1, = ax.plot(time_ser.index[window:length:tstep], time_ser.values[window:len
gth:tstep], "b-", label=fr"{ylabel}") 
p2, = ax2.plot(time_ser.index[window:length:tstep], D_left, color="g", label=
r"$\Delta D_{L}$") 
p3, = ax3.plot(time_ser.index[window:length:tstep], D_right, color="r", label
=r"$\Delta D_{R}$") 
 
ax.set_xlabel(xlabel) 
ax.set_ylabel(f"{ylabel}") 
 
ax.yaxis.label.set_color(p1.get_color()) 
ax2.yaxis.label.set_color(p2.get_color()) 
ax3.yaxis.label.set_color(p3.get_color()) 
 
tkw = dict(size=4, width=1.5) 
ax.tick_params(axis='y', colors=p1.get_color(), **tkw) 
ax2.tick_params(axis='y', colors=p2.get_color(), **tkw) 
ax3.tick_params(axis='y', colors=p3.get_color(), **tkw) 
ax.tick_params(axis='x', rotation=45, **tkw) 
 
ax3.legend(handles=[p1, p2, p3]) 
 
plt.savefig(f"mfdfa_delta_D_left_right_name={symbol}_ret={ret_type}_order={or
der}_qmin={q_min}_qmax={q_max}_qinc={q_step}_wind={window}_step={tstep}_windb
eg={win_beg}_winden={win_end}.jpg") 
plt.show(); 

Fig. 4.54 demonstrates calculated curvature of the left and right tails of the 

generalized fractal dimensions spectrum for the time series of S&P 500, Hang 

Seng index, DAX, and BSE Sensex. 

 (a) (b) 



   (c)       (d) 

Fig. 4.54: Curvature of the left and right tails of the generalized fractal dimensions spectrum for 
the time series of S&P 500 (a), Hang Seng index (b), DAX (c), and BSE Sensex (d) 

Two- and three-dimensional visualization of multifractality 

indicators 

Previously, we analyzed the dependencies , , , , and 

for the entire time series. Now, using the sliding window procedure, we can look at 

First of all, l -dimensional 

graphs: 
def plot_2d(X, Y, Z, subtitle_jpg, subtitle_fig, ylabel, barlabel, cmap, lims
): 
 
    fig, ax = plt.subplots(1, 1, figsize=(10, 5)) 
 
    cp = ax.contourf(X, Y, Z, alpha=0.8, cmap=cmap) 
    plt.colorbar(cp, ax=ax, extend='both', label=barlabel) 
 
    ax.set_xlim((time_ser.index[window:length:tstep][0],  
                 time_ser.index[window:length:tstep][-1])) 
    ax.set_ylim((np.min(lims), np.max(lims))) 
 
    ax.set_xlabel(xlabel) 
    ax.set_ylabel(ylabel) 
 
    ax.set_title(subtitle_fig, pad=10) 
 
    ax.tick_params(axis='both', which='major', pad=10) 
 
    fig.tight_layout() 
 
    plt.savefig(f"mfdfa_{subtitle_jpg}_name={symbol}_ret={ret_type}_order={or



der}_ \ 
                qmin={q_min}_qmax={q_max}_qinc={q_step}_windbeg={win_beg}_win
den={win_end}.jpg",  
                bbox_inches="tight") 
    plt.show(); 

and three-dimensional: 
def plot_3d(X, Y, Z, subtitle_jpg, ylabel, zlabel, cmap): 
 
    fig, ax = plt.subplots(subplot_kw={"projection": "3d"}) 
 
    surf = ax.plot_surface(X, Y, Z, cmap=cmap, rstride=2, cstride=2, linewidt
h=0) 
 
    ax.set_xlabel(xlabel, labelpad=15) 
    ax.set_ylabel(ylabel, labelpad=15) 
    ax.set_zlabel(zlabel, labelpad=15) 
    ax.tick_params(axis='both', which='major', pad=5) 
 
    fig.colorbar(surf, shrink=0.5, aspect=10, location='right', pad=0.1) 
 
    fig.tight_layout() 
 
    plt.savefig(f"mfdfa_{subtitle_jpg}_name={symbol}_ret={ret_type}_order={or
der}_ \ 
                qmin={q_min}_qmax={q_max}_qinc={q_step}_windbeg={win_beg}_ \ 
                winden={win_end}.jpg", bbox_inches="tight") 
 
    plt.show(); 

After declaring the required functions, you can start visualizing. 
X, Y = np.meshgrid(time_ser.index[window:length:tstep], nq) 
Z = np.array(h_q).T 
 
plot_2d(X, Y, Z,  
        subtitle_jpg='contour_h(q)',  
        subtitle_fig=fr"Heat chart $h(q)$",  
        ylabel=r"$q$",  
        barlabel=r"$h(q)$", 
        cmap='jet', 
        lims=nq) 

Figs. 4.55 and 4.56 will show the dynamics of the generalized Hurst 

exponent  changing over time for the time series of S&P 500, Hang Seng 

index, DAX, and BSE Sensex within two- and three-dimensional representations. 



 (a) (b) 

        (c)                    (d) 

Fig. 4.55: Two-dimensional contour diagram of the dynamics of the generalized Hurst exponent 
 changing over time for the time series of S&P 500 (a), Hang Seng index (b), DAX (c), and 

BSE Sensex (d) 

X, Y = np.meshgrid(np.arange(window, length, tstep), nq) 
Z = np.array(h_q).T 
 
plot_3d(X, Y, Z,  
        subtitle_jpg='3d_h(q)',  
        ylabel=r"$q$",  
        zlabel=r"$h(q)$", 
        cmap='jet') 

 (a) (b) 



  (c)       (d) 

Fig. 4.56: Three-dimensional diagram of the dynamics of the generalized Hurst exponent 
changing over time for the time series of S&P 500 (a), Hang Seng index (b), DAX (c), and BSE 
Sensex (d) 

Fig. 4.55 and Fig. 4.56 show that the generalized Hurst exponent is 

characterized by a significant increase during crises. The  is especially high 

for , which indicates a significant persistence of small fluctuations during 

periods of turbulence. In this case, the highest degree of nonlinearity is represented 

by the crises of 1987, 1997, 2008, and 2020-2021, which is confirmed by the 

previous indicators. 

Dynamics of  over time in two- and three-dimensional spaces 

X, Y = np.meshgrid(time_ser.index[window:length:tstep], nq) 
Z = np.array(tau_q).T 
 
plot_2d(X, Y, Z,  
        subtitle_jpg='contour_tau(q)',  
        subtitle_fig=fr"   $\tau(q)$",  
        ylabel=r"$q$",  
        barlabel=r"$\tau(q)$", 
        cmap='viridis', 
        lims=nq) 

Figs. 4.57 and 4.58 will demonstrate the dynamics of the indicator 

changing over time for the time series of S&P 500, Hang Seng index, DAX, and 

BSE Sensex within two- and three-dimensional representations. 



 (a) (b) 

   (c)      (d) 

Fig. 4.57: Two-dimensional contour diagram of the dynamics of the indicator  changing 

over time for the time series of S&P 500 (a), Hang Seng index (b), DAX (c), and BSE Sensex (d) 

X, Y = np.meshgrid(np.arange(window, length, tstep), nq) 
Z = np.array(tau_q).T 
 
plot_3d(X, Y, Z,  
        subtitle_jpg='3d_tau(q)',  
        ylabel=r"$q$",  
        zlabel=r"$\tau(q)$", 
        cmap='viridis') 

 (a) (b) 



  (c)       (d) 

Fig. 4.58: Three-dimensional diagram of the dynamics of the indicator  changing over time 
for the time series of S&P 500 (a), Hang Seng index (b), DAX (c), and BSE Sensex (d) 

As can be seen from the figures (Fig. 4.57 and Fig. 4.58),  becomes 

more nonlinear for all values of . Significant troughs can be seen at the ends of 

the tails of this indicator, which can serve as indicators of crash events, but 

compared to the same Hurst exponent, this indicator is less expressive. 

Dynamics of  over time in two- and three-dimensional spaces 

X, Y = np.meshgrid(time_ser.index[window:length:tstep], nq) 
Z = np.array(D_q).T 
 
plot_2d(X, Y, Z,  
        subtitle_jpg='contour_D(q)',  
        subtitle_fig=fr"Heat chart $D(q)$",  
        ylabel=r"$q$",  
        barlabel=r"$D(q)$", 
        cmap='magma', 
        lims=nq) 

Figs. 4.59 and 4.60 will illustrate the dynamics of the generalized fractal 

dimension  changing over time for the time series of S&P 500, Hang Seng 

index, DAX, and BSE Sensex within two- and three-dimensional representations. 



 (a) (b) 

   (c)      (d) 

Fig. 4.59: Two-dimensional contour diagram of the dynamics of the generalized fractal 
dimension  changing over time for the time series of S&P 500 (a), Hang Seng index (b), 
DAX (c), and BSE Sensex (d) 

X, Y = np.meshgrid(np.arange(window, length, tstep), nq) 
Z = np.array(D_q).T 
 
plot_3d(X, Y, Z,  
        subtitle_jpg='3d_D(q)',  
        ylabel=r"$q$",  
        zlabel=r"$D(q)$", 
        cmap='magma') 

 (a) (b) 



  (c)       (d) 

Fig. 4.60: Three-dimensional diagram of the dynamics of the generalized fractal dimension 
changing over time for the time series of S&P 500 (a), Hang Seng index (b), DAX (c), and BSE 
Sensex (d) 

The two- and three-dimensional representations of the generalized fractal 

dimension show that  increases during crisis events. The generalized fractal 

dimension also presents the most indicative dynamics for negative values of ,

although there are also slight fluctuations for positive .

Dynamics of  in two- and three-dimensional spaces 

X, Y = np.meshgrid(time_ser.index[window:length:tstep], nq) 
Z = np.array(C_q).T 
 
plot_2d(X, Y, Z,  
        subtitle_jpg='contour_C(q)',  
        subtitle_fig=fr"Heat chart $C(q)$",  
        ylabel=r"$q$",  
        barlabel=r"$C(q)$", 
        cmap='hot', 
        lims=nq) 

Figs. 4.61 and 4.62 will demonstrate the dynamics of the multifractal heat 

capacity  changing over time for the time series of S&P 500, Hang Seng 

index, DAX, and BSE Sensex within two- and three-dimensional representations. 



 (a) (b) 

   (c)         (d) 

Fig. 4.61: Two-dimensional contour diagram of the dynamics of the multifractal heat capacity 
 changing with time for the time series of S&P 500 (a), Hang Seng index (b), DAX (c), and 

BSE Sensex (d) 

X, Y = np.meshgrid(np.arange(window, length, tstep), nq) 
Z = np.array(C_q).T 
 
plot_3d(X, Y, Z,  
        subtitle_jpg='3d_C(q)',  
        ylabel=r"$q$",  
        zlabel=r"$C(q)$", 
        cmap='hot') 

 (a) (b) 



  (c)       (d) 

Fig. 4.62: Three-dimensional contour diagram of the dynamics of the multifractal heat capacity 
 changing with time for the time series of S&P 500 (a), Hang Seng index (b), DAX (c), and 

BSE Sensex (d) 

In these figures (Fig. 4.61 and Fig. 4.62), jumps in multifractal heat capacity 

are observed during crisis events, which indicates the analogy between physical 

phase transitions and crisis events. It can be seen that under different market 

regimes,  can be symmetrical, demonstrating an equal impact on market 

dynamics of both highly concentrated and low-concentrated elements. Also, 

can shift to the left as well as to the right, which indicates the variability of the 

market and the influence of different initial conditions on its structuring. 

Dynamics of  over time in two- and three-dimensional spaces 

X = time_ser.index[window:length:tstep].values 
X = np.expand_dims(X, axis=1) 
X = np.repeat(a=X, repeats=nq.shape[0], axis=1) 
 
Y = np.array(alpha) 
Z = np.array(mfSpect) 
 
plot_2d(X, Y, Z,  
        subtitle_jpg='contour_f(alpha)',  
        subtitle_fig=fr"Heat chart $f(\alpha)$",  
        ylabel=r"$\alpha$",  
        barlabel=r"$f(\alpha)$", 
        cmap='hsv', 
        lims=alpha) 



Figs. 4.63 and 4.64 will show the dynamics of the multifractal spectrum 

 changing over time for the time series of S&P 500, Hang Seng index, DAX, 

and BSE Sensex within two- and three-dimensional representations. 

 (a) (b) 

   (c)      (d) 

Fig. 4.63: Two-dimensional contour diagram of the dynamics of the multifractal spectrum 
changing with time for the time series of S&P 500 (a), Hang Seng index (b), DAX (c), and BSE 
Sensex (d) 

X = np.arange(window, length, tstep) 
X = np.expand_dims(X, axis=1) 
X = np.repeat(a=X, repeats=nq.shape[0], axis=1) 
 
Y = np.array(alpha) 
Z = np.array(mfSpect) 
 
plot_3d(X, Y, Z, subtitle_jpg='3d_f(alpha)',  
        ylabel=r"$\alpha$",  
        zlabel=r"$f(\alpha)$", 
        cmap='hsv') 



 (a) (b) 

  (c) (d) 

Fig. 4.64: Three-dimensional diagram of the dynamics of the multifractal spectrum 
changing over time for the time series of S&P 500 (a), Hang Seng index (b), DAX (c), and BSE 
Sensex (d) 

As can be seen from the last figures (Fig. 4.63 and Fig. 4.64), the width of 

the multifractality spectrum changes in shape over time, and becomes wider during 

crisis events, as evidenced by such an indicator as . It can be seen that in the 

pre-crisis periods, the left-handed asymmetry increases, which characterizes 

fluctuations of a significant amplitude. The crises themselves represent a shift of 

 to the right, indicating the dominance of fluctuations with small amplitudes. 

In any case, an increase in the width of the spectrum is an indicator of an increase 

in the degree of self-organization of the elements involved in the system under 

study. In other words, both  and the previous indicators can be recommended 



as indicators or precursors of crisis events. Further, it will be interesting to consider 

varieties of MF-DFA that, for example, take into account multifractal cross-

correlations [5]. 

4.11  Conclusions on multifractal analysis  

In this chapter, we analyzed price fluctuations of the stock indices using a 

spectrum of monofractal indicators. It has been shown that these methods are quite 

resistant to non-stationarity of the signal being analyzed. The stock market is 

characterized by rises and falls in fractal dimension, which indicates a variation in 

the efficiency of its development at different points in time. As already mentioned, 

a decline in the fractal dimension in a crisis or pre-crisis state of the market may 

indicate an increase in the degree of periodization (orderliness) of the system. An 

increase in the fractal dimension may be an indicator of increasing disorder. 

Moreover, a spectrum of multifractal indicators was presented as indicators 

(precursor indicators) of crash events. It has been shown that the relevant 

indicators behave in a characteristic way (increase or decrease) in crisis and pre-

crisis periods in the stock market. It can be seen that the stock indices are 

characterized by variability in the degree of multifractality, which indicates a 

change in the correlations of both small fluctuations and large ones on different 

spatial and temporal scales. Further research could be aimed at exploring the 

possibility of determining thresholds for the degree of multifractality that could be 

used to determine the degree of development of financial markets. Some emerging 

markets may be more developed than others because they are dynamic and 

growing, and therefore their range of multifractality may be the widest. Thus, in 

this case, it is possible to identify different stages of market development and 

model variables in the dynamics of complex systems as a function of the degree of 

multifractality. 



5 Chaos-dynamic measures of complexity 
Seemingly random fluctuations in complex systems often exhibit varying 

levels of complexity and chaos. Given limited data, it becomes difficult to 

determine the limits of their predictability. The analysis of such systems, the 

processes that determine their dynamics, and the theory of chaos have been 

considered in various fields, such as economics, finance, physics, etc. When it 

comes to analyzing, for example, DAX dynamics, knowledge of its completely 

random and, at the same time, deterministic processes can potentially explain time 

series fluctuations of various nature. Over the years, chaos theory has provided 

approaches to studying some interesting properties of time series. The most 

common ones are: correlation dimension, BDS test, Kolmogorov entropy, 

Lyapunov exponents, etc. 

We will demonstrate how Lyapunov exponents make it possible to study the 

modes of chaotic and deterministic behavior. 

5.1 Lyapunov exponents and sensitivity to initial conditions 

The evolution of the system demonstrates sensitivity to initial conditions. 

This means that initially close trajectories that develop can quickly deviate from 

each other and have completely different outcomes. Accordingly, with small 

uncertainties that intensify extremely rapidly, long-term forecasts are impossible. 

On the other hand, in a system with points of attraction or stable points, the 

distance between them asymptotically decreases with time or with the number of 

points that tend to converge [38].  

To represent the idea more accurately, consider two successive trajectories, 

 and the nearest neighbor of this trajectory with a slight displacement, 

, where  represents a small deviation in time , as shown in Fig. 5.1. 



Fig. 5.1: Divergence of two initially close trajectories [21] 

When the dynamics of two initially close trajectories are disrupted by a 

particular event, the distance between them can increase exponentially [166]: 

where  denotes the Lyapunov exponent (LE);  is the distance between 

the point under consideration and its nearest neighbor after  iterations;  is the 

initial distance between the point under consideration and its nearest neighbor at 

the initial time .

The LE is a measure of the rate of exponential divergence of trajectories 

close to each other in the phase space of a dynamic system. In other words, the LE 

shows how quickly trajectories that start close to each other converge or diverge, 

measuring the degree of chaos in the system. 

In cases where our system is -dimensional, we have the same number of 

subjected to perturbations along different axes. By defining the magnitude of the 

perturbation along the -axis as , we obtain Lyapunov exponents:

 for 

To determine whether the motion is periodic or chaotic, especially for large 

, it is recommended to consider the contribution of the system to the largest 

Lyapunov exponent (LLE), since the diameter of the -dimensional ellipsoid 



begins to depend on it [21]. It is the LLE that is used to quantify the predictability 

of systems, since exponential divergence means that in a system where the initial 

perturbation was infinitesimal, the loss of predictability begins. However, it should 

be noted that other indicators also contain important information about the stability 

of the system, including the direction of convergence and divergence of trajectories 

[53]. 

The existence of at least one positive LE is usually considered a strong 

indicator of chaos. A positive LE means that initially close trajectories in phase 

space are sensitive to initial conditions and diverge exponentially fast. Negative LE 

corresponds to cases where trajectories remain close to each other, but this does 

not necessarily mean stability, and we should investigate our system in more detail. 

Zero or very close to zero values indicate that disturbances have little or no effect 

on the evolution of the trajectories of a dynamic system. 

Due to the great interest in LE, more and more calculation tools are being 

developed. Unfortunately, there is still no generally accepted and universal method 

for estimating the entire spectrum of Lyapunov exponents from time series values. 

Some of the most common and popular algorithms were applied by Wolf et al. 

[24], Sano and Sawada [114], and later improved by Eckmann [94], Rosenstein 

[115], Parlitz [160], Balcerak, and others [102]. 

5.2 Methodology for calculating Lyapunov exponents using the 

Ekman method 

First, according to the approach of Eckmann et al. [94], we have to 

reconstruct the attractor dynamics from the time series  with the 

embedding dimension , and then construct a -dimensional orbit representing 

the time evolution 

for

Next, we need to determine the trajectories closest to :



We sort  so that  and store the 

permutation  and its inverse . Next, we try to find the neighbors of  by 

looking at  and scan  at  and 

 until the condition  is satisfied. For the chosen embedding 

dimension , we choose the value of  under the condition 

After the systems are reconstructed to dimension , it is necessary to 

determine the matrix  of dimension , which describes the temporal 

evolution of vectors from the environment of the trajectory  and how they map 

to the state . The matrix  is obtained by searching for neighbors 

The vectors  may not cover . In this case, such uncertainty 

can lead to false indicators that can lead to spurious analysis. To overcome such 

obstacles, the projection of trajectories is defined on a subspace of dimension 

. Thus, the space on which the dynamics takes place corresponds to the 

local dimension , and  should be slightly larger than  to avoid the presence 

of false neighbors [73, 77]. It follows that the trajectory  is associated with a 

-dimensional vector 

where . When , condition (5.4) is replaced by 

the following expression: 

The matrix  is determined by the least squares method. The last step is the 

QR decomposition to find the orthogonal matrices  and the upper triangular 

matrices  for which 



As proposed by Eckmann [92, 94], knowing the  number of points on the 

attractor, the diagonal eigenvalues of the matrix , and the sampling step , the 

following equation can be used to find the -th LE: 

5.3 Application of the Rosenstein method to calculate the Lyapunov 

exponent 

115] uses a time-delayed embedding reconstruction 

method that transfers the most important features of a multidimensional attractor 

into a single one-dimensional time series of some finite size . For the time series, 

each vector  will be represented similarly to the vector (5.5) with the 

dimension of the embedding  and the time delay . Then, on the recovered 

trajectory, we initialize the search in the state space for the nearest neighbor 

for the trajectory :

mean period

where  is the Euclidean norm,  is the nearest neighboring trajectory, 

and  is the trajectory under consideration. 

From (5.1), we already know that the distance between states  and 

grows with time according to a power law, where  is a good approximation of the 

LLE. For further estimates, let us consider the logarithm of the distance on the 

trajectory , where  is the distance between the -th

pair of nearest neighbors defined by Eq. (5.6) after  time steps,  is the initial 

distance between them, and  is the time interval between measurements (time 

series sampling period). 

The subsequent result of this algorithm is a function of time: 



where  is the size of the reconstructed time series, and 

 is the -th line whose slope is approximately equal to the LLE. Then it is 

proposed to calculate the LLE as the slope of the most linear section. Finding such 

a section turns out to be a non-

method is simple to implement and compute. 

5.4 Practical calculations of LLE and LEs  

e approaches can be used to calculate the corresponding 

chaos-
import matplotlib.pyplot as plt  
import numpy as np 
import neurokit2 as nk 
import yfinance as yf 
import pandas as pd 
import scienceplots 
from tqdm import tqdm 
 
%matplotlib inline 

plt.style.use(['science', 'notebook', 'grid'])  
 
size = 22 
params = { 
'figure.figsize': (8, 6),             
'font.size': size,                    
'lines.linewidth': 2,                 
'axes.titlesize': 'small',            
'axes.labelsize': size,               
'legend.fontsize': size,              
'xtick.labelsize': size,              
'ytick.labelsize': size,              
"font.family": "Serif",               
"font.serif": ["Times New Roman"],    
'savefig.dpi': 300,                   
'axes.grid': False                    
} 
 
plt.rcParams.update(params)           



transformation() function to perform the 

transformation of a series to yields or standardized values: 
def transformation(signal, ret_type): 
 
    for_rec = signal.copy() 
 
    if ret_type == 1:        
       pass 
    elif ret_type == 2: 
        for_rec = for_rec.diff() 
    elif ret_type == 3: 
        for_rec = for_rec.pct_change() 
    elif ret_type == 4: 
        for_rec = for_rec.pct_change() 
        for_rec -= for_rec.mean() 
        for_rec /= for_rec.std() 
    elif ret_type == 5:  
        for_rec = for_rec.pct_change() 
        for_rec -= for_rec.mean() 
        for_rec /= for_rec.std() 
        for_rec = for_rec.abs() 
    elif ret_type == 6: 
        for_rec -= for_rec.mean() 
        for_rec /= for_rec.std() 
 
    for_rec = for_rec.dropna().values 
 
    return for_rec 

define a function for plotting pairwise graphs: 
def plot_pair(x_values,  
              y1_values, 
              y2_values,   
              y1_label,  
              y2_label, 
              x_label,  
              file_name, clr="magenta"): 
 
    fig, ax = plt.subplots() 
 
    ax2 = ax.twinx() 
 
    ax2.spines.right.set_position(("axes", 1.03)) 
 
    p1, = ax.plot(x_values,  
                  y1_values,  
"b-", label=fr"{y1_label}") 
    p2, = ax2.plot(x_values, 
                   y2_values,  
                   color=clr,  
                   label=y2_label) 
 
    ax.set_xlabel(x_label) 



    ax.set_ylabel(f"{y1_label}") 
 
    ax.yaxis.label.set_color(p1.get_color()) 
    ax2.yaxis.label.set_color(p2.get_color()) 
 
    tkw = dict(size=4, width=1.5) 
    ax.tick_params(rotation=45, axis='x', **tkw) 
    ax.tick_params(axis='y', colors=p1.get_color(), **tkw) 
    ax2.tick_params(axis='y', colors=p2.get_color(), **tkw) 
 
 
    ax2.legend(handles=[p1, p2]) 
 
    plt.savefig(file_name +".jpg") 
 
    plt.show(); 

Calculations of Lyapunov exponents using the sliding window 

procedure 

For further calculations, we will use the neurokit2 library. The key 

function for obtaining the relevant indicators is complexity_lyapunov(). It 

provides access to calculations according to the following algorithms: 

.

Makowski

KDTree for more efficient nearest neighbors computation. 

Additionally, the LLE is computed as the slope up to the changepoint 

of divergence rate (the point where it flattens out), making it more 

robust to the length trajectory parameter. 

Eckmann et al. (1986).  

complexity_lyapunov(signal, delay=1, dimension=2, 
method='rosenstein1993', separation='auto', **kwargs)

Parameters: 

signal (Union[list, np.array, pd.Series])  the signal (i.e., a time 

series) in the form of a vector of values; 

delay (int)  time delay (often denoted Tau , sometimes referred to 

as lag) in samples; 



dimension (int)  embedding dimension ( , sometimes referred to 

as d or order). if method is s for 

dimension are recommended;  

method (str)  the method that defines the algorithm for computing 

LE. Can be one of 

or

len_trajectory (int)  applies when method is 

number of data points in which neighboring trajectories are followed; 

matrix_dim (int)  applies when method is 

Corresponds to the number of LEs to return; 

min_neighbors (int, str)  applies when method is 

Minimum number of neighbors. 

If  min(2 * matrix_dim, matrix_dim + 4) is used; 

**kwargs (optional)  other arguments to be passed 

to signal_psd() for calculating the minimum temporal separation of 

two neighbors. 

Returns: 

lle (float)  an estimate of the largest Lyapunov exponent (LLE) if 

method is n array of LEs if 

info (dict)  a dictionary containing additional information regarding 

the parameters used to compute LLE. 

neurokit2 library: 
!pip install --upgrade neurokit2  

5.4.1.1 Calculation of the LLE based on the Rosenstein method 

signal = time_ser.copy() 
ret_type = 1 # type of a series:  
             # 1 - initial  
             # 2 - detrending (difference between present and previous values
) 
             # 3 – initial returns  
             # 4 – standardized returns  



             # 5 – absolute values (volatility) 
             # 6 – standardized series 
 
time_ser_ret = transformation(signal, ret_type)  

d_E = 3                    # embedding dimension 
tau = 10                   # time delay 
approach_lyap = "makowski" # method for LLE  
max_len = "auto"           # set the maximum trajectory length to 10 times th
e delay 
sep = "auto"               # estimation of the average period as the inverse 
of the average frequency of the power spectrum  

and visualize the trajectory divergence of the reconstructed phase space of 

S&P 500, Hang Seng index, DAX, BSE Sensex, representing the calculated LLEs 

(see Fig. 5.3): 
lle, _ = nk.complexity_lyapunov(signal=time_ser_ret,  
                                method=approach_lyap,  
                                dimension=d_E,  
                                delay=tau, 
                                max_length=max_len, 
                                separation=sep,  
                                show=True) 

 (a) (b) 



   (c)       (d) 

Fig. 5.3: Diagram of trajectory divergence of the reconstructed phase space of S&P 500 (a), 
Hang Seng index (b), DAX (c), BSE Sensex (d), representing the calculated LLEs 

Fig. 5.3 shows a typical plot (solid curve) of the average trajectory 

divergence versus time ; the orange line has a slope equal to the theoretical value 

of . The short blue section before the red dashed line is used to extract the 

largest Lyapunov exponent. As we can see, the curve changes at longer time 

periods because the system is limited in phase space and the average divergence 

stock indices are on the borderline between chaos and stability, i.e., the divergence 

index of the series dynamics is balanced by convergence. 

As we have already seen, complex systems are volatile, and the system can 

show either convergence or divergence or complete immutability over time. 

the sliding window procedure. Let us define the following parameters: 
window = 500  
tstep = 1     
length = len(time_ser)   
ret_type = 1 # type of a series:  
             # 1 - initial,  
             # 2 - detrending (difference between present and previous values
) 
             # 3 – initial returns,  
             # 4 – standardized returns,  
             # 5 – absolute values (volatility) 
             # 6 – standardized series 
 
d_E = 3 # embedding dimension 



tau = 1 # time delay 
approach_lyap = "makowski" # method for LLE: rosenstein1993, makowski  
max_len = "auto" # set the maximum trajectory length to 10 times the delay: a
uto 
sep = "auto" # estimation of the average period as the inverse of the average
 frequency of the power spectrum 
 
LLE = []                # array to save LLE 

Now you can start the sliding window procedure: 
for i in tqdm(range(0, length-window, tstep)):   
 
    fragm = time_ser.iloc[i:i+window].copy()   
    fragm = transformation(fragm, ret_type)    
    lle, _ = nk.complexity_lyapunov(signal=fragm,  
                                    method=approach_lyap,  
                                    dimension=d_E,  
                                    delay=tau, 
                                    max_length=max_len, 
                                    separation=sep,  
                                    show=False) 
 
    LLE.append(lle) 

Save the results to a text file: 
name = f"LLE_name={symbol}_window={window}_step={tstep}_rettype={ret_type}_\ 
    d_E={d_E}_tau={tau}_approach={approach_lyap}_max_len={max_len}_separation
={sep}.txt" 
 
np.savetxt(name, LLE) 

Define the parameters for further figures: 
# notation of the Lyapunov exponent in the figure legend 
label_lyap = r'$\lambda_{max}$' 
 
# title of the figure 
file_name = f"LLE_name={symbol}_window={window}_step={tstep}_rettype={ret_typ
e}_\ 
    d_E={d_E}_tau={tau}_approach={approach_lyap}_max_len={max_len}_separation
={sep}" 
 
# the color of an indicator 
color ='red' 

and plot the dynamics of S&P 500, Hang Seng index, DAX, BSE Sensex, 

and their LLEs according to Rosenstein method (see Fig. 5.4): 
plot_pair(time_ser.index[window:length:tstep], 
          time_ser.values[window:length:tstep], 
          LLE,  
          ylabel,  
          label_lyap, 



          xlabel, 
          file_name, 
          color) 

 (a) (b) 

   (c)           (d) 

Fig. 5.4: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their 
LLEs according to Rosenstein method 

In Fig. 5.4 we can see that the LLEs begin to decline in crisis and pre-crisis 

states, indicating an increase in the correlation of the dynamics under study. At the 

time of the crisis, the LLE begins to rise, indicating an increase in divergence 

during crisis periods. 

5.4.1.2 Calculation of Lyapunov exponents based on the Eckmann method 

window = 500  
tstep = 1  
length = len(time_ser)   
ret_type = 1  
d_E = 4 # dimensionality of the original space (number of exponents) 



d_M = 3 # dimension of the subspace embedding 
 
approach_lyap = "eckmann1986" # method for LLE calculations 
sep = "auto" # estimation of the average period as the inverse of the average
 frequency of the power spectrum 
min_neighb = "default" # min(2 * matrix_dim, matrix_dim + 4)         
 
LE = []                         # array for saving LE 

for i in tqdm(range(0, length-window, tstep)):  
 
    fragm = time_ser.iloc[i:i+window].copy()   
    fragm = transformation(fragm, ret_type)   
    le, _ = nk.complexity_lyapunov(signal=fragm,  
                                   method=approach_lyap,  
                                   dimension=d_E, 
                                   matrix_dim=d_M,  
                                   min_neighbors=min_neighb, 
                                   separation=sep,  
                                   show=False) 
 
    LE.append(le) 

Save the results to text files: 
LE = np.array(LE) 
 
for i in range(d_E): 
    np.savetxt(f"LE number={i+1}_name={symbol}_window={window}_step={tstep}_r
ettype={ret_type}_\ 
    d_E={d_E}_d_M={d_M}_approach={approach_lyap}_min_neighbors={min_neighb}_s
eparation={sep}.txt", LE[i]) 

dynamics of S&P 500, Hang Seng index, DAX, BSE 

Sensex, and their spectrum of LEs according to Eckmann method (see Fig. 5.5): 
fig, ax = plt.subplots(LE.shape[1]+1, 1, sharex=True) 
 
ax[0].plot(time_ser.index[window:length:tstep], time_ser.values[window:length
:tstep], label=symbol) 
ax[0].set_ylabel(symbol) 
ax[0].legend() 
 
for i in range(1, LE.shape[1]+1): 
    ax[i].plot(time_ser.index[window:length:tstep], LE[:, i-1], color='red', 
label=fr'$\lambda_{i}$') 
    ax[i].set_ylabel(fr"$\lambda_{i}$") 
    ax[i].legend() 
 
ax[-1].set_xlabel(xlabel) 
fig.subplots_adjust(hspace=0) 
 
plt.savefig(f"LE name={symbol}_window={window}_step={tstep}_rettype={ret_type



}_\ 
    #d_E={d_E}_d_M={d_M}_approach={approach_lyap}_min_neighbors={min_neighb}_
separation={sep}.jpg") 
plt.show(); 

 (a) (b) 

   (c)       (d) 

Fig. 5.5: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their 
spectrum of LEs according to Eckmann method 

As shown in Fig. 5.5, the range of LEs reacts in a special way to stock 

market crises. It can be seen that, first,  decreases in the pre-crisis periods and 

increases during the crisis. This dynamics is especially characteristic of the crises 

of 1997, 2001, 2008, 2011, 2015, and 2020. In the pre-crisis periods, there is a 

convergence of trajectories in the phase space of the system, which indicates an 

increase in its orderliness. The crisis and post-crisis periods themselves are 

characterized by divergence

it is clear that as we go down from the 1st to the 4th LE, we gradually lose 



information about the dynamics of the system. That is, the first largest indicators 

seem to be the most informative in this case. Perhaps, in this case, it makes sense 

to consider only the largest LE. 

Save the indicator in a text file: 
name = f"LE Eckman name={symbol}_window={window}_step={tstep}_rettype={ret_ty
pe}_\ 
    #d_E={d_E}_d_M={d_M}_approach={approach_lyap}_min_neighbors={min_neighb}_
separation={sep}.txt" 
 
np.savetxt(name, LE[:, 0]) 

Define the parameters for saving figures: 
# labeling of the Lyapunov exponent in the figure legend 
label_lyap = r'$\lambda_{max}$' 
 
# figure title 
file_name = f"LE Eckmann name={symbol}_window={window}_step={tstep}_rettype={
ret_type}_\ 
    #d_E={d_E}_d_M={d_M}_approach={approach_lyap}_min_neighbors={min_neighb}_
separation={sep}" 
 
# color of an indicator 
color ='red' 

plot_pair(time_ser.index[window:length:tstep], time_ser.values[window:length:
tstep], LE[:, 0], ylabel, label_lyap, xlabel, file_name, color) 

Fig. 5.6 shows the comparative dynamics of S&P 500, Hang Seng index, 

DAX, BSE Sensex, and the LLE based on the Eckmann method. 

 (a) (b) 



   (c)       (d) 

Fig. 5.6: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their 
LLEs according to the Eckmann method 

5.5 Conclusions on Lyapunov exponents 

Chaos theory and its tools remain a huge challenge for researchers in various 

fields of science. In the world of LEs, there is a growing interest in their definition, 

numerical methods, and application to various complex systems. To summarize, 

the LLE allows us to establish: 

the region of sensitivity to initial conditions; 

the region of chaos; 

the region of stability. 



6 Network analysis of crisis phenomena 
In this section, we will demonstrate modern methods for converting time 

series into a network (graph) with further investigation of the corresponding 

spectral and topological measures of complexity. We will also show that these 

measures can be compared with the dynamics of the initial time series (hence 

graphodynamics) and if they are informative about possible changes in the series 

itself, then they can be used to build indicators of the characteristic dynamics of 

complex systems. 

Most complex systems inform their structural and dynamic nature by 

generating a sequence of certain characteristics that can be represented by time 

series. In recent years, interesting algorithms for converting time series into a 

network have been developed, which allows expanding the range of known 

characteristics of time series even to network ones [9, 13, 17]. Recently, several 

approaches to converting time sequences into complex network-like mappings 

have been proposed. These methods can be roughly divided into three classes 

[141

time series and is called the Visibility Graph (VG) [99, 141]. 

The second analyzes the mutual approximation of different segments of the 

time sequence and uses the technique of recurrence analysis [141]. A recurrence 

diagram displays the existing recurrence of phase trajectories in the form of a 

binary matrix, the elements of which are ones or zeros, depending on whether the 

selected points of the phase space of a dynamical system are close (recurrent) with 

a given precision or not. A recurrence diagram is easily transformed into an 

adjacency matrix, according to which the spectral and topological characteristics of 

the graph are calculated [15]. 

Finally, if we base the formation of connections of the elements of the graph 

on the correlation relations between them, then we get a correlation graph [141]. 

To construct and analyze the properties of a correlation graph, it is necessary to 

form an adjacency matrix from the correlation matrix. To do this, it is necessary to 



enter a value that for the correlation field will serve as the distance between the 

correlated agents. Such a distance can be represented as , where  is 

the correlation coefficient between the two assets. Thus, if the correlation 

coefficient between two assets is significant, then the distance between them is 

small, and starting from a certain critical value of , the assets can be considered 

related on the graph. For the adjacency matrix, this means that they are adjacent on 

the graph. Otherwise, the assets are not contiguous. In this case, the coherence 

condition of the graph is mandatory condition. 

The main goal of such methods is to accurately reproduce the information 

stored in time series in an alternative mathematical structure, so that powerful 

graph theory tools can later be used to characterize time series from a different 

perspective in order to bridge the gap between nonlinear analysis of time series, 

dynamical systems, and graph theory. 

In this chapter, we will consider only the algorithm of the VG. 

6.1 Methods for converting time series into visibility graphs 

Visibility graphs (VG) are based on the simple mapping of time series to a 

network domain, where each observation is a vertex in a complex network. Two 

vertices  and  are connected by an edge if the following condition applies to them 

[98]: 

where  presents a certain obstacle that should not be present for the two 

vertices to be linked by a path. 

The adjacency matrix  of the represented non-directional and 

unweighted VG can be represented as 

where  is the Heaviside function. 



The Horizontal visibility graph (HVG) is a simplified version of this 

algorithm [30]. For the time series under study, the sets of vertices VG and HVG 

are the same, while the set of edges of the HVG displays the mutual horizontal 

visibility of the two observations  and . That is, it is possible to construct an 

edge  if  for all  at  so that 

VG and HVG capture essentially the same properties of the system under 

study, since HVG is a subgraph of VG with the same set of vertices, but possesses 

only a subset of VG edges. Note that VG is invariant with respect to the 

superposition of linear trends, while HVG is not. 

Library ts2vg 

To further construct the classic Visibility Graph (VG) or its horizontal 

counterpart, we will use the ts2vg library. The ts2vg package provides a high-

performance implementation of algorithms for constructing visibility graphs from 

time series data, first introduced by Lucas Lacassa et al. [99]. 

Visibility graphs and some of their properties (e.g., power distributions) are 

computed quickly and efficiently, even for time series with millions of 

observations. An efficient divide-and-conquer algorithm is used to calculate graphs 

whenever possible [173]. 

6.1.1.1 ts2vg installation 

The latest released version of ts2vg is available on PyPI and can be easily 

installed by running the following command: 
!pip install ts2vg 

6.1.1.2 Supported graph types 

6.1.1.2.1 Main types 

Natural visibility graph [99] (ts2vg.NaturalVG);



Horizontal visibility graph [30] (ts2vg.HorizontalVG). 

6.1.1.2.2 Available variations 

Weighted visibility graph (via the parameter weighted);

Directional visibility graph (via the parameter directed);

Parametric visibility graph [83] (via the parameters min_weight and 

max_weight); 

Limited Penetrable Visibility Graphs  [131, 159] (via the parameter 

penetrable_limit).

Please note that several graph options can be combined and used at the same 

time. More detailed documentation can be found on the website of the ts2vg

library. 

6.1.1.2.3 Compatibility with other libraries 

The resulting graphs can be easily converted to graph objects from other 

common Python graph libraries such as igraph, NetworkX, and SNAP for further 

analysis. 

For this, the following methods are provided: 

as_igraph();
as_network();
as_snap().

6.2 Network measures estimation 

First, import the necessary modules for further work: 
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
import numpy as np
import neurokit2 as nk
import yfinance as yf
import pandas as pd
import networkx as nx
import scienceplots

from sklearn import preprocessing
from tqdm import tqdm



from ts2vg import NaturalVG, HorizontalVG
from scipy.spatial import distance

%matplotlib inline

And we will configure the figures for the output: 
plt.style.use(['science', 'notebook', 'grid']) 

size = 22
params = {
'figure.figsize': (8, 6),            
'font.size': size,                   
'lines.linewidth': 2,                
'axes.titlesize': 'small',           
'axes.labelsize': size,              
'legend.fontsize': size,             
'xtick.labelsize': size,             
'ytick.labelsize': size,             
"font.family": "Serif",              
"font.serif": ["Times New Roman"],   
'savefig.dpi': 300,                  
'axes.grid': False                   
}

plt.rcParams.update(params)          

Let us consider the possibility of using graphodynamic indicators as 

indicators or indicators-harbingers of crisis phenomena. 

standardization or finding profitability). To do this, declare the 

transformation() function, which will take a time signal, a series type, as 

input and return its transformation. 

the original representation of the time series provides the most informative 

representation for graph construction. Nevertheless, we assume that, for example, 

the profitability of a physical signal may have a better graph representation, which 

is why we define this function in this chapter. 
def transformation(signal, ret_type):

    for_graph = signal.copy()

    if ret_type == 1:       
       pass
    elif ret_type == 2:
       for_graph = for_graph.diff()
    elif ret_type == 3:



       for_graph = for_graph.pct_change()
    elif ret_type == 4:
       for_graph = for_graph.pct_change()
       for_graph -= for_graph.mean()
       for_graph /= for_graph.std()
    elif ret_type == 5: 
       for_graph = for_graph.pct_change()
       for_graph -= for_graph.mean()
       for_graph /= for_graph.std()
       for_graph = for_graph.abs()
    elif ret_type == 6:
       for_graph -= for_graph.mean()
       for_graph /= for_graph.std()

    for_graph = for_graph.dropna().values

    return for_graph

We return the same output signal. Next, set the parameters of the graph 

under study. For further calculations, we will use the same values of the time 

window, step, and series type. 
signal = time_ser.copy()
ret_type = 1 # type of a series:  
# 1 – initial 
# 2 - detrending (difference between present and previous values) 
# 3 – initial returns  
# 4 – standardized returns  
# 5 – absolute values (volatility) 
# 6 – standardized series

for_graph = transformation(signal, ret_type) # series transformation

window = 500           # sliding window width
tstep = 5              # sliding window time step
graph_type = 'classic' # graph type: classic, horizontal

length = len(time_ser) 

Graph construction 

Since constructing a graph for the entire time series can take quite a long 

period of time, we will only plot a visibility graph for its fragment. To do this, we 

will determine the parameters of index_begin and index_end that will indicate 

the beginning of the construction and the ending. For the classic VG we have the 

following visibility connections (see Fig. 6.1): 
index_begin = 3700
index_end = 5700



date = date_in_num[index_begin:index_end]

if graph_type == 'classic':
    g = NaturalVG(directed=None).build(for_graph[index_begin:index_end], xs=d
ate)
    pos1 = g.node_positions()
    nxg = g.as_networkx()
if graph_type == 'horizontal':
    g = HorizontalVG(directed=None).build(for_graph[index_begin:index_end], x
s=date)
    pos1 = g.node_positions()
    nxg = g.as_networkx()

graph_plot_options = {
'with_labels': False,
'node_size': 0,
'node_color': [(0, 0, 0, 1)],
'edge_color': [(0, 0, 0, 0.15)],
}

fig, ax = plt.subplots(1, 2, figsize=(15, 8))

nx.draw_networkx(nxg, ax=ax[0], pos=pos1, **graph_plot_options)
ax[0].tick_params(bottom=True, labelbottom=True)
ax[0].plot(time_ser.index[index_begin:index_end], for_graph[index_begin:index
_end], label=fr"{ylabel}")
ax[0].set_title(f'Visibility connections of {ylabel}', pad=10)
ax[0].set_xlabel(xlabel)
ax[0].set_ylabel(f"{ylabel}")
ax[0].legend(loc='upper right')
ax[0].tick_params(axis='x', labelrotation=45)

ax[1].set_title(f'Graph representation of {symbol}', pad=10)

# determine the position of the nodes on the graph
pos2 = nx.spring_layout(nxg, k=0.15, iterations=100)

# calculate degree centrality
degCent = nx.degree_centrality(nxg)

# create a list of vertex sizes based on degree centrality
node_sizes = [v*100 for v in degCent.values()]

# colors of nodes based on their degree of centrality
node_colors = [v for v in degCent.values()]

# build a graph
nx.draw_networkx(nxg, ax=ax[1], pos=pos2,
                node_size=node_sizes,  
                node_color=node_colors,
                with_labels=False,
                cmap=plt.get_cmap('plasma'))



# assign a minimum and maximum value 
# of degree centrality to build the heat scale
vmin = np.asarray(list(degCent.values())).min()
vmax = np.asarray(list(degCent.values())).max()

sm = plt.cm.ScalarMappable(cmap=plt.get_cmap('plasma'), 
                           norm=plt.Normalize(vmin=vmin, vmax=vmax))
cb = plt.colorbar(sm, ax=ax[1])
cb.set_label('Degree centrality')

plt.savefig(f"Time_ser_connections_symbol={symbol}_idx_beg={index_begin}_\
            idx_end={index_end}_sertype={ret_type}_network_type={graph_type}.
jpg", bbox_inches="tight", dpi=1000)

Fig. 6.1: A natural visibility graph before the crash of 2001 in the S&P 500 market and a 
network representation of this fragment 

As we can see from the figure, the pre-crisis period of 2001 is characterized 

by a significant degree of visibility. The figure on the right shows that a cluster 

characterized by a high degree of centrality begins to form in the stock market 

network, which can serve as a harbinger of a crash. 



Sliding window procedure for network analysis 

Next, we will observe how the properties of the network change over time. 

To do this, we will use the well-known procedure of a moving window. As part of 

this procedure, we will investigate the graphodynamics of both spectral and 

topological indicators.  

To construct the pairwise dynamics of a particular indicator and the series 

under study, we determine the function plot_pair:
def plot_pair(x_values, y1_values, y2_values, y1_label, y2_label, x_label, fi
le_name, clr="magenta"):

    fig, ax = plt.subplots()

    ax2 = ax.twinx()
    ax2.spines.right.set_position(("axes", 1.03))

    p1, = ax.plot(x_values, 
                  y1_values, 
"b-", label=fr"{y1_label}")
    p2, = ax2.plot(x_values,
                   y2_values, 
                   color=clr, 
                   label=y2_label)

    ax.set_xlabel(x_label)
    ax.set_ylabel(f"{y1_label}")
    ax.yaxis.label.set_color(p1.get_color())
    ax2.yaxis.label.set_color(p2.get_color())

    tkw = dict(size=2, width=1.5)

    ax.tick_params(axis='x', rotation=35, **tkw)
    ax.tick_params(axis='y', colors=p1.get_color(), **tkw)
    ax2.tick_params(axis='y', colors=p2.get_color(), **tkw)
    ax2.legend(handles=[p1, p2])

    plt.savefig(file_name +".jpg")
    plt.show();

Spectral characteristics 

Spectral graph theory is based on the study of the properties of graphs 

through eigenvalues or eigenvectors of the adjacency matrix  or the Laplace 

matrix (Laplacian matrix)  [65].  

Recall that the standard Laplace matrix for the graph  is defined as 



where  is the diagonal matrix , where the -th diagonal element is the 

degree of vertex  in  [117], and  is the adjacency matrix . In this chapter, we 

present the spectral characteristics for the normalized Laplace matrix [143], which 

is defined as 

If  is the eigenvalue of , then  [65]; that is, by normalizing the 

Laplace matrix, we normalize the eigenvalues. 
AlgebraicCon = []
GraphEnergy = []
SpecMoment_3 = []
SpecRadius = []
SpecGap = []
NaturalConnectivity = []

for i in tqdm(range(0, length-window, tstep)):

    fragm = time_ser.iloc[i:i+window].copy()  
    fragm = transformation(fragm, ret_type)

    if graph_type == 'classic':
        g = NaturalVG(directed=None).build(fragm)
        pos = g.node_positions()
        nxg = g.as_networkx()
    if graph_type == 'horizontal':
        g = HorizontalVG(directed=None).build(fragm)
        pos = g.node_positions()
        nxg = g.as_networkx()

# spectrum of eigenvalues of the adjacency matrix
    adj_spectrum = nx.adjacency_spectrum(nxg).real

# sort eigenvalues in ascending order
    sorted_adj_spectrum = np.sort(adj_spectrum)

# calculate algebraic connectivity
    alg_con = nx.algebraic_connectivity(nxg, normalized=True, method='tracemi
n_lu') 

# calculate the energy of the graph
    graph_en = np.sum(np.abs(adj_spectrum))

# calculate the spectral gap
    spec_gap = sorted_adj_spectrum[-1] - sorted_adj_spectrum[-2]

# calculate the spectral radius
    spec_rad = np.max(np.abs(adj_spectrum))



# calculate the spectral moment
    spec_mom_3 = np.mean(adj_spectrum **3)

# calculate natural connectivity
    nat_con = np.log(np.mean(np.exp(adj_spectrum)))

    AlgebraicCon.append(alg_con)
    GraphEnergy.append(graph_en)
    SpecRadius.append(spec_rad)
    SpecGap.append(spec_gap)
    SpecMoment_3.append(spec_mom_3)
    NaturalConnectivity.append(nat_con)

Save initial values to a text document. We also prepare labels for figures and 

names of saved measures: 
ind_names = ['algebraic_conn', 'graph_energy', 'spectral_radius', 
'spectral_grap', 'spectral_moment_3', 'natural_connectivity']

indicators = [AlgebraicCon, GraphEnergy, SpecRadius, 
              SpecGap, SpecMoment_3, NaturalConnectivity]

measure_labels = [r'$\lambda_2$', r'$E$', r'$R$', r'$\delta$', r'$m_3$', r'$N
_c$']

file_names = []

for i in range(len(ind_names)):
    name = f"{ind_names[i]}_symbol={symbol}_wind={window}_step={tstep}_series
type={ret_type}_graph_type={graph_type}"
    np.savetxt(name +".txt", indicators[i])
    file_names.append(name)

6.2.3.1 Algebraic connectivity 

Regarding the eigenvalues of the Laplace matrix, one of the main 

characteristics we can obtain is the algebraic connectivity  of the graph, which 

corresponds to the second smallest eigenvalue of the matrix. This indicator reflects 

the number of disconnected components. For an unconnected graph,  will be 

zero, and for a graph with a higher density of connections,  will be higher. Using 

this indicator, it is possible to determine the fault tolerance and synchronization of 

the system under study. 
plot_pair(time_ser.index[window:length:tstep], time_ser.values[window:length:
tstep], indicators[0], ylabel, measure_labels[0], xlabel, file_names[0], clr=
"magenta") 



In Fig. 6.2 is illustrated the comparative dynamics of S&P 500, Hang Seng 

index, DAX, BSE Sensex, and their algebraic connectivity.  

 (a) (b) 

 (c) (d) 

Fig. 6.2: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their 
algebraic connectivity 

Fig. 6.2 shows that  increases in the pre-crisis periods, which indicates an 

increase in the degree of synchronization between market traders in these periods. 

The stock market network is becoming more and more correlated and stable. Such 

dynamics may indicate an increase in coherence between major market players 

regarding their further actions on stock market. 

6.2.3.2 Graph energy 

From the eigenvalues of the adjacency matrix  from , one can determine a 

measure such as the graph energy  [68, 80]: 



Similar to , we have a completely disconnected graph when .

For each , there are many edges  that determine the high and effective 

connectivity of .
plot_pair(time_ser.index[window:length:tstep],
          time_ser.values[window:length:tstep],
          indicators[1], 
          ylabel, 
          measure_labels[1],
          xlabel,
          file_names[1],
          clr="crimson") 

In Fig. 6.3 is shown the comparative dynamics of S&P 500, Hang Seng 

index, DAX, BSE Sensex, and their graph energy. 

 (a) (b) 

   (c)       (d) 

Fig. 6.3: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their 
graph energy 



Fig. 6.3 shows that during periods of relative stability,  remains at a rather 

low level, indicating that market traders are disconnected during such periods. 

Both buyers and sellers act rather uncorrelated. In pre-crisis periods, energy begins 

to increase, indicating an increase in the efficiency of work between market players 

and their connectivity. 

6.2.3.3 Spectral radius 

In addition to the above measures, you can define such measures as the 

spectral radius, which is the largest absolute eigenvalue of the matrix :

plot_pair(time_ser.index[window:length:tstep],
          time_ser.values[window:length:tstep],
          indicators[2], 
          ylabel, 
          measure_labels[2],
          xlabel,
          file_names[2],
          clr="orange") 

In Fig. 6.4 is shown the comparative dynamics of S&P 500, Hang Seng 

index, DAX, BSE Sensex, and their spectral radius. 

 (a) (b) 



   (c)       (d) 

Fig. 6.4: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their 
spectral radius 

Fig. 6.4 shows that the spectral radius increases during crisis and pre-crisis 

periods, indicating that the correlation of the stock market graph is growing and 

that traders are synchronizing their actions. 

6.2.3.4 Spectral gap 

By ranking the eigenvalues of the adjacency matrix  in non-decreasing 

order, i.e., , we can define a measure called the spectral gap:

for which for which  is the first largest eigenvalue of  and  is the 

second largest eigenvalue. The spectral gap shows the synchronization rate in the 

studied network. The larger it is, the more interconnected the nodes are and the 

more complex the graph is.  
plot_pair(time_ser.index[window:length:tstep],
          time_ser.values[window:length:tstep],
          indicators[3], 
          ylabel, 
          measure_labels[3],
          xlabel,
          file_names[3],
          clr="darkgreen") 

In Fig. 6.5 is presented the comparative dynamics of S&P 500, Hang Seng 

index, DAX, BSE Sensex, and their spectral gap. 



 (a) (b) 

   (c)      (d) 

Fig. 6.5: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their 
spectral gap 

Fig. 6.5 demonstrates that the spectral gap is also an indicator of market 

synchronization in pre-crisis periods. However, the dynamics of this indicator 

suggests that in times of crisis, the largest eigenvalue of the Laplace matrix begins 

to carry the most information. It can be assumed that the second and third can also 

serve as indicators of crash events, but the largest eigenvalue in this case seems to 

be the best solution. 

6.2.3.5 Spectral moment 

A spectral measure of complexity that we would also like to introduce is the 

-th spectral moment. For a nonnegative integer , the  -th spectral moment is 

defined as 



where  is the number of closed loops of length  [52]. The number of 

closed traversals is an important indicator for measuring the complexity of a 

system. As shown in the work of Wu et al. [90], using the number of closed 

traversals of the entire length, we can measure the complexity of the graph and the 

redundancy of alternative shortest paths. Thus, higher values of  correspond to 

higher network complexity. For further calculations, we chose .
plot_pair(time_ser.index[window:length:tstep],
          time_ser.values[window:length:tstep],
          indicators[4], 
          ylabel, 
          measure_labels[4],
          xlabel,
          file_names[4],
          clr="chocolate") 

In Fig. 6.6 is illustrated the comparative dynamics of S&P 500, Hang Seng 

index, DAX, BSE Sensex, and their spectral momentum indicator. 

 (a) (b) 



   (c)      (d) 

Fig. 6.6: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their 
spectral momentum indicator 

The dynamics of  shows that the most significant degree of 

synchronization was characterized by the pre-crisis dynamics. During these 

periods, we had the largest number of fairly high eigenvalues of the Laplace 

matrix, and thus a fairly high degree of market synchronization in these periods. 

6.2.3.6 Spectral natural connectivity  

Yun et al. [172

adjacency spectrum of a graph . It was proposed to call this indicator the natural 

connectivity or natural eigenvalue:

Estrada [59], Wu et al. [90] have shown that  is a sensitive and reliable 

measure of network resilience. 
plot_pair(time_ser.index[window:length:tstep],
          time_ser.values[window:length:tstep],
          indicators[5], 
          ylabel, 
          measure_labels[5],
          xlabel,
          file_names[5],
          clr="black") 

In Fig. 6.7 is illustrated the comparative dynamics of S&P 500, Hang Seng 

index, DAX, BSE Sensex, and their spectral natural connectivity indicator. 



 (a) (b) 

   (c)     (d) 

Fig. 6.7: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their 
spectral natural connectivity 

Fig. 6.7 shows that the natural connectivity index increases in pre-crisis 

periods. That is, this indicator can be used as an indicator or precursor of crash 

events in the stock market. Particularly characteristic is the increase in the degree 

of market synchronization on the eve of 1997 or 2021, which may indicate the 

initial stages of strengthening the stability of the stock market network. 

Topological measures of centrality  

There are many ways to quantify the importance of a vertex or an edge in 

terms of a particular network attribute, thus reflecting the topology of a complex 

network. 
DegreeMax = []
GlobalEigenvectorCentrality = []
GlobalClosenessCentrality = []
GlobalInformationCentrality = []
GlobalBetweennessCentrality = []
GlobalHarmonicCentrality = []

for i in tqdm(range(0,length-window,tstep)):

    fragm = time_ser.iloc[i:i+window].copy()  
    fragm = transformation(fragm, ret_type)

    if graph_type == 'classic':
        g = NaturalVG(directed=None).build(fragm)
        pos = g.node_positions()
        nxg = g.as_networkx()



    if graph_type == 'horizontal':
        g = HorizontalVG(directed=None).build(fragm)
        pos = g.node_positions()
        nxg = g.as_networkx()

# maximum vertex degree
    deg_max = max(dict(nxg.degree()).values())

# global eigenvector centrality
    glob_eigenvector_centrality = np.mean(list(nx.eigenvector_centrality_nump
y(nxg).values()))

# global closeness centrality 
    glob_closeness_centrality = np.mean(list(nx.closeness_centrality(nxg).val
ues()))

# global information centrality
    glob_information_centrality = np.mean(list(nx.information_centrality(nxg)
.values()))

# global betweenness centrality
    glob_betweenness_centrality = np.max(list(nx.betweenness_centrality(nxg).
values()))

# global harmonic centrality
    glob_harm_centrality = np.mean(list(nx.harmonic_centrality(nxg).values())
)

    DegreeMax.append(deg_max)
    GlobalEigenvectorCentrality.append(glob_eigenvector_centrality)
    GlobalClosenessCentrality.append(glob_closeness_centrality)
    GlobalInformationCentrality.append(glob_information_centrality)
    GlobalBetweennessCentrality.append(glob_betweenness_centrality)
    GlobalHarmonicCentrality.append(glob_harm_centrality)

Save the initial values to a text document. We also prepare labels for the 

figures and titles for the saved ones: 
ind_names = ['DegreeMax', 'GlobalEigenvectorCentrality', 'GlobalClosenessCent
rality', 
'GlobalInformationCentrality', 'GlobalBetweennessCentrality', 'GlobalHarmonic
Centrality']

indicators = [DegreeMax, GlobalEigenvectorCentrality, GlobalClosenessCentrali
ty, 
              GlobalInformationCentrality, GlobalBetweennessCentrality, Globa
lHarmonicCentrality]

measure_labels = [r'$D_{max}$', r'$X$', r'$C$', r'$I$', r'$B$', r'$GHc$']

file_names = []

for i in range(len(ind_names)):



    name = f"{ind_names[i]}_symbol={symbol}_wind={window}_step={tstep}_series
type={ret_type}_graph_type={graph_type}"
    np.savetxt(name +".txt", indicators[i])
    file_names.append(name)

6.2.4.1 Maximum vertex degree 

The node degree or degree centrality is conceptually the simplest metric 

for describing the connectivity characteristics of a single node in a complex 

network. It can be represented as 

where  counts the number of -th edges incident to vertex .

In addition to the degree of a particular vertex, we can identify the vertex 

with the largest number of incident edges. We can denote the number of such 

vertices as :

plot_pair(time_ser.index[window:length:tstep],
          time_ser.values[window:length:tstep],
          indicators[0], 
          ylabel, 
          measure_labels[0],
          xlabel,
          file_names[0],
          clr="magenta") 

Fig. 6.8 represents the comparative dynamics of S&P 500, Hang Seng index, 

DAX, BSE Sensex, and their maximum degree indicator.  

 (a) (b) 



 (c) (d) 

Fig. 6.8: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their 
maximum vertex degree 

Fig. 6.8 shows that the maximum degree of the peak begins to increase 

during crisis and pre-crisis periods, indicating that the centrality of one or more 

nodes is increasing. It can be assumed that one or more market traders begin to 

concentrate the attention of all other actors involved in the stock market. 

6.2.4.2 Mean eigenvector centrality 

The eigenvector centrality calculates the importance of a node by adding 

the influences of its neighbors. The centrality for node  is the -th element of the 

eigenvector  associated with the eigenvalue  of the maximum modulus, which is 

positive. Such an eigenvector  is determined to the nearest multiplicative constant 

by the equation 

where  is the adjacency matrix of graph . The above equation is 

equivalent to the following: 

That is, adding the eigenvector centralities of the predecessors of node 

gives the degree of influence of  multiplied by . In the case of undirected graphs, 

 also solves the familiar equation .



According to the Perron-Frobenius theorem [3], if  is strongly connected, 

then there exists a single eigenvector , and all its elements are strictly positive. 

If  is not highly connected, then there may be several left eigenvectors 

associated with , and some of their elements may be zero. 

  Note 

The degree of influence or eigenvector centrality was introduced by Landau 

[81] for chess tournaments. Later, it was rediscovered by Wei [156] and then 

popularized by Kendall [108] in the context of sports rankings. Berge introduced a 

general definition for graphs based on social ties [34]. Bonacic [120] reintroduced 

eigenvector centrality and made it popular in linkage analysis.

This function computes the left dominant eigenvector corresponding to the 

addition of the influence of predecessors: this is a common approach. To add the 

centrality of successors, first flip the graph with G.reverse(). 

This implementation uses the SciPy sparse eigenvalue solver (ARPACK) to 

find the largest eigenvalue/eigenvector pair using Arnoldi iterations.

plot_pair(time_ser.index[window:length:tstep],
          time_ser.values[window:length:tstep],
          indicators[1], 
          ylabel, 
          measure_labels[1],
          xlabel,
          file_names[1],
          clr="crimson") 

Fig. 6.9 represents the comparative dynamics of S&P 500, Hang Seng index, 

DAX, BSE Sensex, and their global eigenvector centrality. 



(a) (b) 

   (c)          (d) 

Fig. 6.9: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their 
global eigenvector centrality 

6.2.4.3 Global closeness centrality 

In a network, the distance  between node  and node  denotes the number 

of edges that connect the shortest path between these two nodes. Based on the 

notion of the length of the shortest path between two nodes, we can provide 

various measures that characterize the connectivity of the entire network. One such 

measure is the closeness centrality between node  and all other nodes 

providing the inverse average of all shortest paths from  to all nodes .

The arithmetic mean of the closeness degree for each -th node gives us the 

global (average) closeness centrality:



plot_pair(time_ser.index[window:length:tstep],
          time_ser.values[window:length:tstep],
          indicators[2], 
          ylabel, 
          measure_labels[2],
          xlabel,
          file_names[2],
          clr="orange") 

Fig. 6.10 represents the comparative dynamics of S&P 500, Hang Seng 

index, DAX, BSE Sensex, and their global closeness centrality. 

 (a) (b) 

   (c)             (d) 

Fig. 6.10: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their 
global closeness centrality  

As can be seen from the figure (Fig. 6.10), the global closeness centrality 

increases during crisis and pre-crisis periods, indicating a decline in the length of 

the shortest paths in the stock market market visibility graph. This indicates that 



the degree of synchronization between traders increases before and during the 

crash phenomena. 

6.2.4.4 Global information centrality  

To determine the centrality of any node , it is proposed to first determine its 

information connectivity with other nodes, i.e. . The average 

harmonic value of information about the path from node  to other nodes will be 

used to determine the degree of information centrality of node . In particular, if 

 is related to the centrality or information content of node , then 

According to Stevenson and Zeleny [240], the degree of information can be 

calculated by inverting a simple matrix. First of all, we define the  matrix 

, where 

and , where  is the degree of vertex .

Next, by defining the matrix , we can calculate 

according to the following equation: 

The element  in Eq. (6.2) can be rewritten as follows: 

where  and .

Therefore, information centrality of node  can be presented as  



Similarly, to measure the global information centrality, we consider the 

arithmetic mean of the local information centrality: 

plot_pair(time_ser.index[window:length:tstep],
          time_ser.values[window:length:tstep],
          indicators[3], 
          ylabel, 
          measure_labels[3],
          xlabel,
          file_names[3],
          clr="darkgreen") 

Fig. 6.11 shows the comparative dynamics of S&P 500, Hang Seng index, 

DAX, BSE Sensex, and their global information centrality. 

 (a) (b) 

   (c)      (d) 

Fig. 6.11: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their 
global information centrality 



Fig. 6.11 shows that the global information centrality is increasing in the 

pre-crisis periods, which is an indicator of the growing efficiency of information 

transfer between market traders and the growing determinism of market dynamics. 

6.2.4.5 Maximum betweenness centrality  

Another commonly studied path-based characteristic of nodes is the 

betweenness centrality, which measures the fraction of all shortest paths in the 

network that go from  to  through node . For the total number of shortest paths 

between nodes  and , denoted as , and the shortest paths passing through a 

given node , the degree of intermediation can be defined as 

To find the largest amount of information passing through a particular -th

node, we measure the maximum betweenness centrality by considering each -th

node: 

plot_pair(time_ser.index[window:length:tstep],
          time_ser.values[window:length:tstep],
          indicators[4], 
          ylabel, 
          measure_labels[4],
          xlabel,
          file_names[4],
          clr="chocolate") 

Fig. 6.12 demonstrates the comparative dynamics of S&P 500, Hang Seng 

index, DAX, BSE Sensex, and their maximum betweenness centrality. 



 (a) (b) 

            (c)           (d) 

Fig. 6.12: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their 
maximum betweenness centrality 

As you can see, the maximum betweenness centrality decreases in the pre-

crisis periods, which indicates a decline in the number of intermediaries through 

which information about the future dynamics of the studied stock indices can pass. 

This suggests that there are one or more traders in the market who are the focus of 

almost all other traders, and all traders can be connected to the most influential 

ones through one or more shortest paths. 

6.2.4.6 Global harmonic centrality  

Marchiori and Latora [161] proposed a measure similar to (6.1), called the 

harmonic centrality. For a given node , it can be defined as 



where  if there is no path between nodes  and . The global 

harmonic centrality is determined by the arithmetic mean of local harmonic 

centralites. 
plot_pair(time_ser.index[window:length:tstep],
          time_ser.values[window:length:tstep],
          indicators[5], 
          ylabel, 
          measure_labels[5],
          xlabel,
          file_names[5],
          clr="black") 

In Fig. 6.13 is shown the comparative dynamics of S&P 500, Hang Seng 

index, DAX, BSE Sensex, and their global harmonic centrality. 

 (a) (b) 

 (c) (d) 

Fig. 6.13: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their 
global harmonic centrality 



6.2.4.7 Assortativity 

Assortativity refers to the tendency of a network to connect nodes with 

similar properties, while disassortativity is manifested in the connection of nodes 

with dissimilar properties. Real-world networks can exhibit different levels of 

assortativity. Social networks, such as interactions between scientists or corporate 

directors, usually have positive assortativity. On the other hand, technological and 

biological networks, such as power grids, the Internet, protein interactions, neural 

networks, and food webs, usually exhibit negative assortativity. 

In the following, we will present several indicators of assortativity for the 

early identification of stock market crises. 
Assortativity = []
AvgDegreeConnectivity = []

for i in tqdm(range(0, length-window, tstep)):

    fragm = time_ser.iloc[i:i+window].copy()  
    fragm = transformation(fragm, ret_type)

    if graph_type == 'classic':
        g = NaturalVG(directed='left_to_right').build(fragm)
        pos = g.node_positions()
        nxg_dir = g.as_networkx()
     if graph_type == 'horizontal':
        g = HorizontalVG(directed='left_to_right').build(fragm)
        pos = g.node_positions()
        nxg_dir = g.as_networkx()

# calculation of assortativity
    assort = nx.degree_pearson_correlation_coefficient(nxg_dir)

# average degree connectivity
    avg_deg_con = np.mean(list(nx.average_degree_connectivity(nxg_dir, source
="in", target="in").values()))

    Assortativity.append(assort)
    AvgDegreeConnectivity.append(avg_deg_con)

ind_names = ['Assortativity', 'AvgDegreeConnectivity']

indicators = [Assortativity, AvgDegreeConnectivity]

measure_labels = [r'$r$', r'$\langle d_{nn}^{w} \rangle$']

file_names = []



for i in range(len(ind_names)):
    name = f"{ind_names[i]}_symbol={symbol}_wind={window}_step={tstep}_series
type={ret_type}_graph_type={graph_type}"
    np.savetxt(name +".txt", indicators[i])
    file_names.append(name)

6.2.4.7.1 Average degree connectivity 

The average degree connectivity  for nodes with degree  is another 

measure used to study the structure of networks [139]. Since it can be expressed as 

, where  is the conditional probability that a given 

vertex with degree d is connected to a vertex with degree . This value expresses 

the correlation between the degrees of connected vertices [150]. In the absence of 

correlations between degrees,  does not depend on , nor on the average 

degree of its nearest neighbors, i.e.,  [139]. In the presence of 

correlations, the behavior of  defines two general classes of networks. If 

 is an increasing function of , then nodes with a high (low) degree are 

more likely to be connected to nodes with a higher (lower) degree. This property is 

called assortative mixing in various fields of science [107]. On the contrary, the 

descending behavior of  defines disassortative mixing, in the sense that 

nodes with high (low) degree have most neighbors with low (high) degree. 

The measure of such assortativity or disassortativity for the neighbors of a 

certain vertex  can be defined as the average degree connectivity (weighted 

average degree of the nearest neighbor): 

where -th node;  is an element 

of the adjacency matrix ;  is the weight of the edge  (in our case, it is equal 

to 1);  represents the vertex degree of the -th neighbor. 

In general, this equation measures the degree of attraction of neighbors with 

high or low vertex degree to each other relative to the magnitude of actual 

interactions. 



plot_pair(time_ser.index[window:length:tstep],
          time_ser.values[window:length:tstep],
          indicators[1], 
          ylabel, 
          measure_labels[1],
          xlabel,
          file_names[1],
          clr="darkorange") 

Fig. 6.14 represents the comparative dynamics of S&P 500, Hang Seng 

index, DAX, BSE Sensex, and their average degree connectivity.  

 (a) (b) 

   (c)       (d) 

Fig. 6.14: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their 
average degree connectivity 

As can be seen from this figure (Fig. 6.14), the average degree connectivity 

increases in the pre-crisis periods, indicating a gradual increase in the degree of 

attraction of nodes with high degree centrality to nodes with even higher centrality. 



6.2.4.7.2 Degree of assortativity  

Another form of assortative mixing depends on one or more scalar properties 

of the network vertices. To calculate it, we define a matrix  that satisfies the 

addition rules: , , , where  and  are the 

shares of edges that start and end at vertices  and 

correlation coefficient, one can determine the degree of assortativity [107]. Thus, 

this assortativity coefficient is calculated as 

and  and  define the standard deviations of the distributions  and  ;

, where  indicates higher disassortativity,  demonstrates 

higher assortativity, and  indicates no assortativity between nodes. 
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Fig. 6.15 represents the comparative dynamics of S&P 500, Hang Seng 

index, DAX, BSE Sensex, and their average degree of assortativity. 

 (a) (b) 



   (c)       (d) 

Fig. 6.15: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their 
average degree of assortativity 

Fig. 6.15 shows that the assortativity coefficient decreases in the pre-crisis 

periods, indicating disassortative market behavior at these points in time: nodes 

with a low degree of connectivity and centralization gravitate toward nodes 

characterized by a high degree of mediation, harmony, information, proximity, etc. 

As already mentioned, the disassortment inherent in the pre-crisis periods of the 

stock indices is also characteristic of both real social and complex biological 

networks. 

6.2.4.8 Clustering 

In graph theory, the clustering coefficient indicates the degree to which 

nodes in a graph tend to cluster. Studies show that in most real-world networks, 

including social media, nodes usually form compact groups with a high number of 

connections between them. 

and quadratic clustering. 
Transitivity = []
AvgClustering = []
AvgSquareClustering = []

for i in tqdm(range(0, length-window, tstep)):

    fragm = time_ser.iloc[i:i+window].copy()  
    fragm = transformation(fragm, ret_type)



    if graph_type == 'classic':
        g = NaturalVG(directed=None).build(fragm)
        pos = g.node_positions()
        nxg = g.as_networkx()
    if graph_type == 'horizontal':
        g = HorizontalVG(directed=None).build(fragm)
        pos = g.node_positions()
        nxg = g.as_networkx()

# transitivity
    trans = nx.transitivity(nxg)

# global clustering coefficient 
    avg_clust = nx.average_clustering(nxg)

# global square clustering coefficient  
    avg_sqr_clust = np.mean(list(nx.square_clustering(nxg).values()))

    Transitivity.append(trans)
    AvgClustering.append(avg_clust)
    AvgSquareClustering.append(avg_sqr_clust)

ind_names = ['AvgClustering', 'Transitivity', 'AvgSquareClustering']

indicators = [AvgClustering, Transitivity, AvgSquareClustering]

measure_labels = [r'$\langle C_3 \rangle$', r'$T$', r'$\langle C_4 \rangle$']

file_names = []

for i in range(len(ind_names)):
    name = f"{ind_names[i]}_symbol={symbol}_wind={window}_step={tstep}_series
type={ret_type}_graph_type={graph_type}"
    np.savetxt(name +".txt", indicators[i])
    file_names.append(name)

6.2.4.8.1 Global clustering coefficient  

In order to characterize the density of connections between the neighbors of 

vertex , we can use the local clustering coefficient:

where the numerator denotes the number of closed triangles containing 

vertex .

We can consider the global clustering coefficient as the arithmetic mean of 

the local triangle clustering coefficient [51]: 



which measures the average tendency of the system to form triangular 

clusters. 
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Fig. 6.16 shows the comparative dynamics of S&P 500, Hang Seng index, 

DAX, BSE Sensex, and their global clustering coefficient. 

 (a) (b) 

   (c)            (d) 

Fig. 6.16: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their 
global clustering coefficient 



Fig. 6.16 shows that in absolute terms, the global triad clustering coefficient 

remains at a fairly high level, which indicates a fairly high degree of clustering of 

stock market traders. Locally, in the pre-crisis periods, it can be seen that 

decreases, which indicates the localized destruction of clustered groups of traders 

and their growing attraction to one or more market players. 

6.2.4.8.2 Transitivity

In the case of very heterogeneous degrees, i.e., scale-free networks where 

only a few nodes have high degrees and the rest have low degrees ( ), the 

nodes with low degrees will participate mainly in the calculation of the local 

clustering coefficient, which can lead to underestimation of triangular clusters in 

the network. Barrat and Weigt [2] proposed an alternative approach to overcome 

this problem, called transitivity [142]: 

In real networks, we may encounter cases where connected neighbors in the 

network can form different cliques (forms of clustering). The classical local 

clustering coefficient, which measures the probability of finding triangles, usually 

corresponds to one-way networks. However, it cannot be formed in bipartite 

networks [126, 127]. The complex structures of one-way, two-way, and multi-way 

networks in a real-world system can lead to the formation of clusters of a much 

higher order. 
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Fig. 6.17 illustrates the comparative dynamics of S&P 500, Hang Seng 

index, DAX, BSE Sensex, and their transitivity. 



 (a) (b) 

   (c)       (d) 

Fig. 6.17: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their 
transitivity 

The transitivity indicator works in a similar way to . However, unlike 

, it provides much more signals of further crash behavior in the stock market. 

It can be seen that the market retains a fairly high share of triangular clicks that 

become incomplete in pre-crisis periods, as indicated by the decline in .

6.2.4.8.3 Square clustering coefficient  

Similar to , which is the classical local clustering coefficient, it has been 

proposed to quantify the clustering coefficient  [121], which corresponds to the 

. That is, 

that two neighbors of node  have a common neighbor other than . For each node 

, it can be calculated as 



where  represents the number of observed quadratic clusters; 

;  if 

 and  are connected and 0 otherwise [130]. Similarly to (6.3), we can define the 

global square clustering coefficient:
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Fig. 6.18 represents the comparative dynamics of S&P 500, Hang Seng 

index, DAX, BSE Sensex, and their quadratic clustering coefficient. 

 (a) (b) 



   (c)          (d) 

Fig. 6.18: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their 
quadratic clustering coefficient 

Fig. 6.18 shows that globally, stock indices contain a much smaller share of 

quadratic clusters compared to triadic clusters. Locally, we observe similar 

dynamics to the previous indicators:  decreases in the pre-crisis period and 

gradually increases during the crisis and post-crisis periods. We can make the same 

assumption as before: in pre-crisis periods, traders begin to gradually isolate 

s analytics and focus their attention on the actions of 

one or more of the most influential groups. Although their clustering decreases, 

their actions remain coordinated according to the information they receive from the 

outside. 

6.2.4.9 Connectivity

In mathematics, a connected graph is a graph whose number of edges 

approaches the maximum possible number (when each pair of vertices is connected 

by a single edge). Conversely, a sparse graph contains only a small number of 

edges. The exact definition of which graph is considered connected or sparse is 

ambiguous. Thus, the definition of graph density may vary depending on the 

context of the problem. 
Density = []

for i in tqdm(range(0, length-window, tstep)):

    fragm = time_ser.iloc[i:i+window].copy()  



    fragm = transformation(fragm, ret_type)

    if graph_type == 'classic':
        g = NaturalVG(directed=None).build(fragm)
        pos = g.node_positions()
        nxg = g.as_networkx()
    if graph_type == 'horizontal':
        g = HorizontalVG(directed=None).build(fragm)
        pos = g.node_positions()
        nxg = g.as_networkx()

# calculate density
    dens = nx.density(nxg)

    Density.append(dens) 

ind_names = ['Density']

indicators = [Density]

measure_labels = [r'$\rho$']

file_names = []

for i in range(len(ind_names)):
    name = f"{ind_names[i]}_symbol={symbol}_wind={window}_step={tstep}_series
type={ret_type}_graph_type={graph_type}"
    np.savetxt(name +".txt", indicators[i])
    file_names.append(name)

6.2.4.9.1 Density 

The density of a graph can help determine how densely populated the graph 

is with different edges. The higher it is, the greater the connectivity of the graph 

under study. It can be calculated as 

where  is the number of edges in , and  is the 

maximum number of edges in a simple undirected graph. 
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In Fig. 6.19 is presented the comparative dynamics of S&P 500, Hang Seng 

index, DAX, BSE Sensex, and their density indicator.  

 (a) (b) 

       (c)          (d) 

Fig. 6.19: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their 
density indicator 

The figure shows that the global market connectivity remains quite low  

( ), which indicates an insufficiently high level of connectivity between 

current and past nodes of price fluctuations in the stock market. The windowed 

dynamics of  indicates that at the pre-crisis point in time, the degree of density of 

6.2.4.10 Distance measures 

indicators of its efficiency or the distance of its vertices from the center of 

connectivity of the graph under study. 



Diameter = []
Radius = []

for i in tqdm(range(0, length-window, tstep)):

    fragm = time_ser.iloc[i:i+window].copy()  
    fragm = transformation(fragm, ret_type)

    if graph_type == 'classic':
        g = NaturalVG(directed=None).build(fragm)
        pos = g.node_positions()
        nxg = g.as_networkx()
    if graph_type == 'horizontal':
        g = HorizontalVG(directed=None).build(fragm)
        pos = g.node_positions()
        nxg = g.as_networkx()

# calculate diameter
    diameter = nx.diameter(nxg)

# radius
    rad = nx.radius(nxg)

    Diameter.append(diameter)
    Radius.append(rad)

ind_names = ['Diameter', 'Radius']

indicators = [Diameter, Radius]

measure_labels = [r'$diam$', r'rad']

file_names = []

for i in range(len(ind_names)):
    name = f"{ind_names[i]}_symbol={symbol}_wind={window}_step={tstep}_series
type={ret_type}_graph_type={graph_type}"
    np.savetxt(name +".txt", indicators[i])
    file_names.append(name)

6.2.4.10.1 Diameter 

Note that the shortest path, which is a characteristic of the distance between 

the studied nodes  and , can be used to characterize the overall size of the 

network. The value that determines the largest distance between vertex  and any 

other vertex is called eccentricity:



The size of the network can be characterized in terms of diameter and is 

defined as 
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In Fig. 6.20 is presented the comparative dynamics of S&P 500, Hang Seng 

index, DAX, BSE Sensex, and their network diameter indicator. 

 (a) (b) 

   (c)       (d) 

Fig. 6.20: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their 
network diameter 



Fig. 6.20 shows that the diameter of the graph decreases in the pre-crisis 

period, which indicates that the upper boundary of the graph is approaching its 

center. This means that information passing from one trader to another in the stock 

market will take much fewer steps. In other words, in pre-crisis periods, traders 

rely less and less on intermediaries from various news resources and spend more 

time directly studying trading patterns in the stock market. 

6.2.4.10.2 Radius 

Thus, the diameter is the largest (maximum) path length in the network. 

Therefore, we can determine the smallest eccentricity of the network under study, 

which is called the radius:
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Fig. 6.21 provides results on the comparative dynamics of S&P 500, Hang 

Seng index, DAX, BSE Sensex, and their network radius.  

 (a) (b) 



   (c)       (d) 

Fig. 6.21: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their 
network radius 

Since the radius of the graph is the smallest eccentricity of the network, and 

the diameter is the largest, a similar conclusion can be drawn. If you look closely, 

you will notice that the radius represents about half the diameter, but the trend of 

these two indicators is identical. 

6.2.4.11 Network efficiency 

In the field of network science, network efficiency, also called 

communication efficiency, is a key metric. This concept is based on the 

assumption that the farther apart two nodes in a network are, the less efficient their 

communication becomes. Efficiency can be analyzed at both the local and global 

levels of the network. At the global level, the overall exchange of information 

throughout the network is evaluated, where information flows in parallel. At the 

es on a smaller scale is measured. In 

particular, the local efficiency of a node  reflects how efficiently its neighbors 

exchange information in its absence. 
LocalEfficiency = []
GlobalEfficiency = []

for i in tqdm(range(0, length-window, tstep)):

    fragm = time_ser.iloc[i:i+window].copy()  
    fragm = transformation(fragm, ret_type)



    if graph_type == 'classic':
        g = NaturalVG(directed=None).build(fragm)
        pos = g.node_positions()
        nxg = g.as_networkx()
    if graph_type == 'horizontal':
        g = HorizontalVG(directed=None).build(fragm)
        pos = g.node_positions()
        nxg = g.as_networkx()

# calculate local efficiency
    local_eff = nx.local_efficiency(nxg)

# calculate global efficiency
    glob_eff = nx.global_efficiency(nxg)

    LocalEfficiency.append(local_eff)
    GlobalEfficiency.append(glob_eff)

ind_names = ['LocalEfficiency', 'GlobalEfficiency']

indicators = [LocalEfficiency, GlobalEfficiency]

measure_labels = [r'$E_{loc}$', r'$E_{glob}$']

file_names = []

for i in range(len(ind_names)):
    name = f"{ind_names[i]}_symbol={symbol}_wind={window}_step={tstep}_series
type={ret_type}_graph_type={graph_type}"
    np.savetxt(name +".txt", indicators[i])
    file_names.append(name)

6.2.4.11.1 Global efficiency  

The definition of small-world behavior according to [161] can be expressed 

in terms of the efficiency  of the network. The efficiency  between nodes  and 

 is defined as . When  and, consistently, when ,  and  are 

considered disconnected. According to the efficiency formalism, it can be 

quantified for both global and local scales . Latorre and Marchiori emphasized 

that  and  can be viewed as first approximations of global  and local 

 efficiency.

The average (global) efficiency of  can be defined as



For the most efficient graph, where information is disseminated most 

efficiently,  takes on a maximum value, and otherwise it takes on a minimum 

value. 
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Fig. 6.22 provides results on the comparative dynamics of S&P 500, Hang 

Seng index, DAX, BSE Sensex, and their global network efficiency indicator. 

 (a) (b) 

   (c)          (d) 

Fig. 6.22: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their 
global network efficiency 

Fig. 6.22 shows that the degree of global network efficiency increases in the 

pre-crisis periods, indicating an increase in the degree of information flow in the 



network. From the point of view of the visibility graph, stock indices begin to act 

in a more deterministic way, where the connectivity of its visibility graph becomes 

close to the topology of an ideal graph, where all information is transmitted in the 

most efficient way. 

6.2.4.11.2 Local efficiency 

Local efficiency plays a role similar to the global clustering coefficient. 

Local efficiency  can be quantified as 

where  is a local subgraph of , and  characterizes the efficiency 

of this particular subgraph. Similar to the global clustering coefficient, 

determines how fault-tolerant the system under study is, i.e., how efficiently 

information is transported between the first neighbors of the -th node when it is 

removed. 
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Fig. 6.23 illustrates the comparative dynamics of S&P 500, Hang Seng 

index, DAX, BSE Sensex, and their local network efficiency indicator. 

 (a) (b) 



 (c) (d) 

Fig. 6.23: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their 
local network efficiency 

Globally,  for the stock market, which indicates the global 

resilience of the stock market network to possible attacks and exclusion of market 

traders from global trade. The windowed procedure shows that  decreases in 

the pre-crisis periods, indicating a decline in local network efficiency. As already 

mentioned, since most attention is focused on one or more major market players, 

their potential disconnection from global trading could destabilize the entire stock 

market. 

6.2.4.12 Shortest path 

AvgPathLength = []

for i in tqdm(range(0, length-window, tstep)):

    fragm = time_ser.iloc[i:i+window].copy()  
    fragm = transformation(fragm, ret_type)

    if graph_type == 'classic':
        g = NaturalVG(directed=None).build(fragm)
        pos = g.node_positions()
        nxg = g.as_networkx()
    if graph_type == 'horizontal':
        g = HorizontalVG(directed=None).build(fragm)
        pos = g.node_positions()
        nxg = g.as_networkx()

# calculate the average shortest path length
    avg_path_len = nx.average_shortest_path_length(nxg)

    AvgPathLength.append(avg_path_len)



ind_names = ['AvgPathLength']

indicators = [AvgPathLength]

measure_labels = [r'$ApLen$']

file_names = []

for i in range(len(ind_names)):
    name = f"{ind_names[i]}_symbol={symbol}_wind={window}_step={tstep}_series
type={ret_type}_graph_type={graph_type}"
    np.savetxt(name +".txt", indicators[i])
    file_names.append(name)

6.2.4.12.1 Average shortest path length  

Paying attention to the length of the shortest path between two vertices  and 

, we can define a measure called the average shortest path length:
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Fig. 6.24 provides the comparative dynamics of S&P 500, Hang Seng index, 

DAX, BSE Sensex, and their average shortest path length indicator. 

 (a) (b) 



   (c)       (d) 

Fig. 6.24: Dynamics of S&P 500 (a), Hang Seng index (b), DAX (c), BSE Sensex (d), and their 
average shortest path length index 

Fig. 6.24 shows that  is characterized by a decline in pre-crisis 

periods and an increase in crisis and post-crisis periods. Similar to the previous 

indicators, which only relied on the length of the shortest path between pairs of 

nodes,  indicates an increase in the efficiency of information transfer 

between market traders. It can also be said that on the built stock indices visibility 

-crisis period.  

6.3 Conclusions on network analysis 

This chapter demonstrates the possibility of studying complex socio-

economic systems within the framework of the network paradigm of complexity. 

The time series of stock indices were represented in an equivalent way  by a 

visibility network that has a wide range of characteristics: both spectral and 

topological. Examples of stock indices crashes have shown that most network 

indicators can serve as precursor indicators of crisis phenomena and can be used 

for possible early warning of unwanted crises in stock market. 
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